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1 Inferring the average fragment length

1.1 Description of the EM algorithm

The goal of the EM algorithm is to infer the average length of the fragments of a single-end sequencing
experiment from a (peak) cross-correlation function in a given interval (see the main document).

Let CC : [xmin, xmax]→ N denote the (peak) cross-correlation function truncated to a certain interval
(typically from 0 to 300). The inference procedure makes the following assumptions:

∗to whom correspondence should be addressed
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1. M is a random variable that takes on integer values within the range [xmin, xmax] and CC(x) is
the function that tallies the occurrences of the value x.

2. The random variable M is a mixture of three random variables G1, G2 and U . That is, there is a
random variable K that can take on values 1 2 or 3 with probabilities respectively π1, π2 and π3
and such that:

M |{K = k} ∼


G1, k = 1

G2, k = 2

U, k = 3

.

The coefficients πi will be referred to as the mixing coefficients. G1 and G2 represent respectively
the phantom peak and the fragment peak (Landt et al., 2012), while U represents the background
noise.

3. The random variables Gi, i = 1, 2 are distributed according to a discretized and truncated gaussian
random variable with parameters µi and σi, that is:

Prob{Gi = g} =
exp(− (g−µi)

2

σ2
i

)∑xmax

x=xmin
exp(− (x−µi)2

σ2
i

)
.

4. The random variable U is uniformly distributed in the interval [xmin, xmax].

From these assumptions the likelihood of CC as a function of the parameters π1, π2, µ1, µ2, σ1, σ2 can be
computed and a local maximum can be attained using the expectation maximization algorithm.

Since G1 models the phantom peak commonly observed in cross-correlation analyses, the initial value
for µ1 is set to the average read length, while the initial value for µ2 defaults to 147 and can be modified
by the user. The initial values for σ2

1 , σ2
2 , π1 and π2 are respectively 36, 1000, 0.1 and 0.1.

The phantom peak is not always present. In case the EM algorithm infers an unreasonable value
for it (i.e. 20 bp apart from the average read length), the whole inference is repeated using only the
components G2 and U .

1.2 Analysis of the K562 dataset

We used NucHunter to compute the cross-correlation and peak cross-correlation function for the histone
modification dataset for the cell line K562 (Bernstein et al., 2010), followed by the inference of the
average fragment length using the previously described EM algorithm. The plots in Figure 1 show for
each library the two cross-correlation functions, as well as the inferred phantom and fragment peak,
represented respectively by a red and green dashed lines.

The plots suggest that:

• the peak cross-correlation function is more suitable than the cross-correlation function for inferring
the average fragment length because it exhibits a sharper peak

• the EM algorithm, by explicit modelling of the phantom peak, is able to identify the fragment peak
correctly, even in cases where the former is higher than the latter.

1.3 A quality score for σ

The peak detection algorithm used by NucHunter depends mainly on the parameter σ mentioned in the
main document (see Section 2.2).

To a certain extent σ can be chosen a priori considering how the shape of the Mexican hat wavelet
depends on σ (see Figure 2). The impulse response of the filter used for peak detection can be interpreted
as a position-specific score assigned to the read counts in proximity of a candidate position (in the Figure,
position 0). Ideally, the score assigned to a nucleosome should not be influenced by the read counts due
to adjacent nucleosomes, which would argue for the choice of a very small σ. However, a small σ causes
an increase in false positives and less reliable nucleosome calls. A high signal-to-noise ratio should allow
for smaller values of σ.
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Figure 1: Inference of the average fragment length. For each histone modification ChIP-seq experiment
the plot on top shows the cross-correlation function and the plots below shows the peak cross-correlation
function. The green and red dashed lines represent respectively the phantom peak and the fragment
peak position as inferred by the EM algorithm.

3



−300 −200 −100 0 100 200 300

−
0

.5
0

.0
0

.5
1

.0

position (bp)

in
te

n
s
it
y

sigma

20

30

40

50

60

70

80

nucleosomal DNA

internucleosomal distance

Figure 2: Dependence of the Mexican hat wavelet on σ. The wavelet can be interpreted as a position-
specific score assigned to the read counts in proximity of a candidate position (in this case, position 0).
The portion of DNA protected by the nucleosome is delimited by the dashed lines, the distance to the
next nucleosome in case of an array of adjacent nucleosomes in yeast is shown with a dotted line. If
σ is too large, adjacent nucleosomes cannot be resolved, if it is too small, peak detection becomes too
sensitive to noise.

On the other hand σ can be chosen in a data-driven manner based on the peak cross-correlation (pcc)
function. As mentioned in the main document, a strong peak in the pcc plot is also an evidence that
the peaks obtained in the peak detection step are reliable. To measure the strength of the peak as a
function of σ, we use the following procedure:

1. We perform peak calling on the strand-specific signals N and P using the algorithm outlined in
Section 2.2 in the main document for different values of σ (typically, from 30 to 70),

2. for each σ we infer the average fragment length Fσ from the pcc plot (which typically does not
change very much),

3. we discard the lowest-scoring peaks so that for each σ there is an equal total number of peaks from
the two strands,

4. we re-compute the pcc function for the given peak set in the interval [Fσ − 73, Fσ + 73] (so as to
minimize the influence from adjacent nucleosomes),

5. we fit the mixture model presented in Section 1.1 constraining the mean of the peak model to Fσ
and without the phantom peak, for simplicity,

6. as a score, we consider the log-likelihood of the resulting model minus the log-likelihood of a uniform
model (log-likelihood ratio).

The whole procedure is automated and parallelized and constitutes part of NucHunter. The plots in
Figure 3 show how the score changes with σ on different datasets. In all the shown examples the score
curve has a maximum at a reasonable value for σ, which makes the choice easy. When this is not the
case, σ should be chosen a priori.

The default value σ = 50 is, in general, a reasonable choice, as Figure 3 suggests. Moreover Figure 4
suggests that NucHunter is sufficiently robust to sub-optimal settings of the parameters σ and F .
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(a) Yeast dataset presented in the
main document. Maximum at σ = 48.

(b) Simulated dataset presented in
Section 3. Maximum at σ = 52.

(c) Human dataset presented in Sec-
tion 4. Maximum at σ = 54.

Figure 3: Quality score as a function of the parameter σ used for peak detection. The quality score is
based on the strength of the fragment peak in the peak cross-correlation plot. In the human dataset,
ChIP-seq data from several histone modifications contribute to the score: the score curve has been
obtained by summing up the score curves from each dataset. All the maxima occur at values close to
the default value 50.
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Figure 4: Robustness of NucHunter to sub-optimal settings. The performance evaluation was done in
the yeast dataset and is similar to the one reported in the main document. The end points of the curves
show the performance measures of the algorithms using the default score thresholds. The curves labelled
by “NucHunter: x,y” show NucHunter’s performance when the parameters σ (default value: 50) and F
(average fragment length, estimated value on this dataset: 136) are set respectively to x and y.
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2 Performance measures

Given a list of high-confidence, base pair-resolution peaks M = {m1,m2, . . .mr} and a list of predicted
peaks P = {p1, p2, . . . ps} we define three performance measures in order to evaluate how accurate the
predicted peaks are:

1. the specificity,

2. the sensitivity,

3. the area under the (normalized) error curve (AUC).

Let dist(i, j) denote the genomic distance between the predicted peak pi and the benchmark peak mj .

Given a cutoff distance D (D = 20 bp in our analyses), the specificity is the quantity |{i:∃j:dist(i,j)≤D}|r

and, similarly, the sensitivity is |{j:∃i:dist(i,j)≤D}|s . The first performance measure does not penalize
situations where many predicted peaks are close to the same benchmark peak and the second one does
not penalize situations where for many closely-spaced benchmark peaks there is only one associated
prediction.

In order to assess the performance of a peak caller at a higher resolution, we use a measure that
depends on the distribution of the d(i, j) values smaller than W = 73 bp (the “errors”). We define
the (normalized) error curve ce as the cumulative distribution function of the errors smaller than the
threshold W :

ce(d) =
|{(i, j) : dist(i, j) ≤ d}|
|{(i, j) : dist(i, j) ≤W}|

.

The cumulative error curve should look almost like a 0 − 1 step for very precise predictions and like a
straight line from the origin to the point (W, 1) for random predictions (see Figure 5). Therefore, we
define the area under the (normalized) error curve (AUC) as:

AUC =
1

W + 1

W∑
d=0

ce(d).

Contrary to the sensitivity and specificity, the AUC has the property that the peaks in P and the peaks
in M play a symmetric role, i.e. swapping the predictions with the benchmark peaks the result does
not change. Moreover, because it depends only on pairs of peaks closer than W base pairs, the AUC is
suitable for the comparison of nucleosome predictions derived from different histone marks, where a large
number of peaks derived from one dataset might not have a corresponding peak derived from the other.
For these reasons the AUC has been employed to compare nucleosome predictions when a nucleosome
map is not available and when different histone marks are compared.

3 Simulated ChIP-seq experiment

As an additional test, we artificially generated a ChIP-seq sample. The simulation was done as follows.

1. We considered a chromosome of the length of chromosome IV in yeast (1531933 bp) and reads of
36 base pairs.

2. We generated reads due to noise. The number of noise reads at each genomic position was sampled
from a poisson distribution with average 2.

3. We generated reads due to nucleosomes.

• Nucleosomes were assigned to genomic positions. The positions were chosen sampling the
inter-nucleosomal distance D from the random variable G + 147, where G is a geometric
random variable such that D averages to 165.

• Given a fragment length F (the value 140 was chosen for the simulations), and for each nu-
cleosome position p, the reads on the positive and negative strands where generated sampling
their positions from a gaussian random variable with average respectively p−F/2 and p+F/2
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Figure 5: Distance distribution (left) and cumulative error curve (right) relative to the benchmark yeast
dataset and the predictions presented in the main document. The top 5000 predictions have been chosen
from each tool. The distance distribution histogram has been smoothed with a running mean in a window
of 10 bps.

and with uniformly varying sigmas (from 10 to 50). The number of sampled reads was sam-
pled from a poisson distribution with lambdas such that the expected number of reads at the
peak position uniformly varies from 1 to 3.

In Figure 6 we show the performance of the three different algorithms on the the simulated dataset with
respect to the performance measures outlined in Section 2.

4 Performance assessment on the human K562 dataset

The publicly available epigenomic data for the human cell line K562 (Bernstein et al., 2010) includes
ChIP-seq experiments for different histone marks as well as replicate ChIP-seq experiments. We used
this dataset to test how reproducible the nucleosome calls are between replicates and to cross-validate
pairs of histone marks using different nucleosome detection algorithms. For this assessment, however, it
should be noted that reproducibility does not necessarily imply the reliability of the nucleosome calls,
and without a high-confidence nucleosome map it is hard to draw conclusions on the performance of the
algorithms, especially when the AUC values are close to 0.5.

Figures 7 and 8 show how the AUC between predictions from two ChIP-seq samples depends on
the total number of nucleosome calls. In Figure 7 replicate ChIP-seq experiments have been compared,
whereas in Figure 8 pairs of different histone modifications have been used. Overall the statistics suggest
that, even though not for every dataset and not for every score threshold, the nucleosome predictions
from NucHunter are in general more reproducible than those from other tools.

5 Runtime and memory usage

We tested the runtime and memory usage of the different algorithms on different datasets. We used
the epigenomic data from the human cell line IMR90 made publicly available by the NIH Epigenomics
Roadmap project (Bernstein et al., 2010) and we performed two sets of tests. In the first set (see Table
1) we split the mapped reads from a single experiment (for histone mark H3K4me3) into different files
according to the chromosome they have been mapped to (each file contains reads mapped to a single
chromosome). This operation was necessary in order to test the efficiency of Template Filter, which
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Figure 6: Performance of the three different algorithms on the simulated dataset. The circles indicate
the performance of the algorithms using the default thresholds for selecting the number of peaks.

otherwise would not run. In the second set of tests Template Filter was excluded and the whole files
relative to four different histone marks were used as inputs (see Table 2). All the tests were carried out
on a quad-core computer at a clock speed of 3.10GHz and with 8GB of RAM. Overall the results show
that NucHunter is faster than the other two algorithms and uses less memory on large genomes.

6 Nucleosome clustering

6.1 Normalization procedure

For each predicted nucleosome NucHunter returns a vector where each component represents a read
count for a particular histone modification in a given window of the genome. Additionally, when a
control experiment is present, NucHunter also returns the noise level, which is the read count relative
to the given window and to a smoothed version of the control signal. Let Cij denote the read count
matrix, where i = {1, . . . n} ranges over the nucleosome predictions and j = {1, ..,m} ranges over the
histone marks, let Ni denote the noise level for each histone modification and let µ and σ denote the
functions that compute respectively the sample mean and the sample standard deviation of a vector.
The normalization procedure consists in the following steps:

1. A matrix of adjusted read count/noise level ratios M
(0)
ij =

CCijαj

Ni
is computed. The histone

modification-dependent coefficient αj rescales the ratios so that they are concentrated around 1.

2. The matrix columns are rescaled so that they have zero mean and variance equals to one: M
(1)
ij =

M
(0)
ij −µ(M

(0)
j )

σ(M
(0)
j )

. This steps corrects for different statistical properties of the read count signal in the

different experiments.

3. The matrix rows are rescaled so that they have zero mean and variance equals to one: M
(2)
ij =

M
(1)
ij −µ(M

(1)
i )

σ(M
(1)
i )

. This steps correct for different read abundances at different nucleosome locations.

The matrix M
(2)
ij is finally used as input for the k-means clustering algorithm.

6.2 Clustering stability analysis

The k-means clustering algorithm is initialization-dependent. That is, given different initial values for
the centroid positions, the final centroid positions might differ, especially when the parameter k is not
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Figure 7: Performance of the three different algorithms on replicate ChIP-seq experiments. The end
points of the curves show the total number of calls and the AUC using the default score thresholds.
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Figure 8
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Figure 8: Performance of the three different algorithms on pairs of different ChIP-seq experiments. The
end points of the curves show the total number of calls and the AUC using the default score thresholds.
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File Info NucHunter NPS Template Filter
chr chr len cov rt mem rt mem rt mem
chr1 249239814 3861846 26.42 1348768 96.43 2423296 - -
chr2 243074082 2847819 26.67 1444208 79.97 2360000 - -
chr3 197900591 2313629 21.27 1465232 62.84 1928800 - -
chr4 191043378 1633570 22.66 1355264 49.12 1858032 - -
chr5 180710750 1999720 20.60 1324016 55.80 1765568 - -
chr6 171010451 2394851 18.48 1422768 62.15 1677312 - -
chr7 159128122 1800691 19.61 1338192 49.26 1558736 - -
chr8 146299658 1479301 16.57 1373760 43.98 1437024 - -
chr9 141102566 1559164 18.20 1383456 44.42 1388688 673.71 26497584
chr10 135513678 1611968 15.67 951728 45.92 1336608 680.39 25455408
chr11 134945910 2198968 16.21 1368560 55.37 1335248 727.64 25351536
chr12 133836731 2183800 14.64 1370624 52.41 1322928 700.99 25142928
chr13 115107060 846871 11.96 1358784 26.79 1138464 445.55 21600272
chr14 107288083 1339859 11.20 1319856 34.17 1067056 455.20 20135184
chr15 102521084 1342934 11.16 1419760 35.84 1023664 448.22 19242160
chr16 90277089 1472422 11.52 2350800 35.84 908720 397.43 16964608
chr17 81194995 2193500 10.23 1443856 49.81 829760 461.92 15268208
chr18 78016581 665533 9.37 1369936 21.02 787824 302.62 14653552
chr19 59118844 2306566 8.69 2365888 45.08 620496 317.18 11123168
chr20 62963996 943263 7.04 1407504 24.77 650016 265.72 11832672
chr21 48101095 397273 6.33 1384976 12.75 504752 166.29 9035280
chr22 51234688 771284 5.82 1382816 19.94 538096 192.81 9628944
chrX 154922080 774219 23.28 1415392 26.96 1512384 - -
chrY 59030332 1389 10.26 759904 3.54 605728 181.62 11073680
chrM 16567 2536 0.64 291552 0.21 51200 0.05 9072

Table 1: Runtime and memory usage of the different algorithms on one-chromosome files derived from a
H3K4me3 ChIP-seq experiment in human IMR90 cells. The column names have the following meaning:
chr is the chromosome name, chr len is the chromosome length (spanned by reads), cov is the total
read coverage, rt is the runtime (in minutes), mem is the maximum memory usage (in kilobytes). The
symbol - means that the program crashed.

appropriately chosen. In order to test how stable the clustering procedure is for a given k, we ran the
k-means algorithm 20 times with different initializations and we measured the degree of stability of the
results.

To measure the consistency of a set of replicates, we defined a distance measure between two replicates
and we considered the highest distance among all pairs.

Let K1,K2 : {1, 2, . . . n} → {1, 2, . . . , k} denote two classifications of n objects into k distinct classes,
such as those provided by two different runs of the k-means algorithm on a dataset of n vectors, and let
the invertible function φ : {1, . . . , k} → {1, . . . , k} denote a correspondence between the classes of the
two classifiers. We define the misclassification error as:

dφ(K1,K2) = 1−
∑k
i=1 |{j ∈ {1, 2, . . . n} : K1(j) = i ∧K2(j) = φ(i)}|

n

The correspondence function φ is chosen so as to minimize the misclassification error, so the distance
between classifications K1 and K2 is: d(K1,K2) = minφ{dφ(K1,K2)}. Table 3 shows how the stability
of the clustering algorithm varies with the number k of clusters.
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File Info NucHunter NPS
dataset cov rt mem rt mem

H3K4me3 38942976 359.96 1204848 1028.87 2544096
H3K9me3 43021873 239.43 2406320 7656.62 5235904
H3K27ac 43447140 388.21 1104496 2647.32 3408704

H3K36me3 31779851 236.17 1920976 3697.70 3883136

Table 2: Runtime and memory usage of NucHunter and NPS on different ChIP-seq datasets in human
IMR90 cells. The column names have the following meaning: dataset is the histone mark being analyzed,
cov is the total read coverage, rt is the runtime (in minutes), mem is the maximum memory usage (in
kilobytes).

k mpd
2 0
3 0
4 0
5 9.230E-05
6 0
7 5.680E-05
8 4.970E-05
9 7.881E-04

10 0
11 7.573E-05
12 2.674E-04
13 2.010E-01
14 1.417E-01
15 2.804E-03
16 1.713E-01

Table 3: Stability measure for the results of the k-means algorithm for different values of k. In the
first column the number of clusters k is specified, the second column specifies the maximum pairwise
distance (mpd) between alternative clusterings on the same dataset. For small values of k the results
are particularly robust.

7 Genomic localization analyses

7.1 Average gene profile

For the average gene profile (see Figure 8 (a) in the main document) we selected annotated genes from
RefSeq according to the following criteria:

1. we considered only genes with accession “NM” from the database,

2. we removed overlapping genes preferring those with more exons,

3. we filtered out genes whose transcript length was above the third or below the first quartile of the
length distribution, which resulted in a set of 9408 genes.

Next, we computed nucleosome abundances at each position in the gene body. Since genes have different
transcript lengths, we applied the following procedure to obtain an average rescaled profile:

1. we chose as a length L for the average profile the median transcript length (L = 21962 bp)

2. let x be the position of a nucleosome relative to the TSS of a transcript of length K. Its contribution
needs to be located at a certain position y relative to the TSS of the average profile.

• if x lies within a [−5000, 2000] bp or a K + [−2000, 5000] bp interval, then the nucleosome
contributes one count and it is mapped respectively to positions x or L−K+x of the average
profile.
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• if x lies between 2000 and K − 2000, then the nucleosome is mapped to position y ' 2000 +
(x − 2000) L−4000K−4000 , where y is rounded to an integer, and it contributes an adjusted count

equals to L−4000
K−4000 .

3. for displaying purposes, the obtained profile is smoothed with a running average

7.2 CAGE tags

Figure 8 (b) in the main document was obtained by considering a [−2000,+2000] bp region around
each CAGE tag, counting the nucleosome profile and computing the sum of all the profiles using the
orientation given by the CAGE tag (so the profiles coming from CAGE tags mapped to the negative
strands are flipped).

7.3 DNase tags

Figure 8 (c) in the main document was obtained by considering a [−2000,+2000] bp region around each
nucleosome, computing the DNase hypersensitivity profile, and computing the average across all regions.

8 Comparison with ChromHMM

We compared the nucleosome classes obtained by clustering with the chromatin state classification pro-
vided by ChromHMM (Ernst and Kellis, 2010). We computed a table that counts for each pair (c, s) the
number of nucleosomes of class c falling in a genomic region with chromatin state s, where c ranges over
the classes derived by k-means clustering and s ranges over the states represented in ChromHMM. As
it can be seen in Figure 9, the two annotations are in agreement, at least at a coarse scale, as promoter
nucleosomes tend to be associated with promoter chromatin states, enhancer nucleosomes with enhancer
states, elongation nucleosomes with transcription-associated states, and repressed nucleosomes with re-
pressed states. The differences might be due, in addition to the different methods, also to the different
data sources employed.
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(a) The heatmap colors represent table counts normalized
with respect to the k-means classes (rows).

(b) The heatmap colors represent table counts normalized
with respect to the ChromHMM states (rows).
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(c) Screenshot showing the two alternative approaches to chromatin state analysis.

Figure 9: Correspondence between classes obtained from k-means clustering of nucleosome-associated
histone modification read counts and chromatin states as inferred by the ChromHMM algorithm.
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