Appendix S1

Formal definition of a reconciliation [5]

Definition 1. Consider a gene tree G, a dated species tree S such that S(G) C L(S), and its subdivision
S’. Let a be a function that maps each node u of G onto an ordered sequence of nodes of S’, denoted
alu) = (ag(u), az(u),...,ar(u)). Function « is said to be a reconciliation between G and S’ if and only if
exactly one of the following events occurs for each pair of nodes u of G and a;(u) of S" (denoting «;(u) by
a2 below):

a) if ' is the last node of a(u), one of the cases below is true:

1. uwe L(G), 2’ € L(S") and s(z') = s(u); (C event)
2. {oa(w), 1 (up)} = {x},2.}; (S event)
3. ai(uw) = 2" and ay(u,) = 2'; (D event)
4. ar(uwy) =2, and oy (u,) is any node other than x' having height h(z')

or aj(uy) =2, and ay(w;) is any node other than x’ having height h(x'); (T event)

b) otherwise, one of the cases below is true:

5. x' is an artificial node and c;11(u) is its only child; (@ event)
6. x' is not artificial and o1 (u) € {z},z).}; (SL event)
7. aiy1(u) is any node other than x’ having height h(x'). (TL event)

Proof of Lemma 1

Given a reconciliation R and an event e, let ind(R, e) be the indicator function for e in R, i.e. ind(R,e) = 1
if e € E(R) and ind(R, e) = 0 otherwise. Let R4 be the reconciliation of R minimizing
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where |R| and |R|, respectively denote the number of reconciliations in R and the number of events in a
reconciliation R. The claim for the asymmetric case then follows from the fact that the first sum and the
|R| factor in (1]} are independent of the choice of R4.

Now for the symmetric distance, suppose Rg is a candidate reconciliation for being the symmetric median of
R, then for every event e € E(R) each R € R containing the event contributes by adding one to dg(Rg,R)
if e ¢ E(Rg), and each R € R not containing the event contributes by adding one if e € E(Rg). More



precisely, we have
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This holds because Rg is in R. The first summation term and the 2|R| factor do not depend on the choice
of Rg, hence the reconciliation minimizing dg(Rg, R) is that maximizing ZeeJE(Rs) (f(e) — 0.5). O

Proof of Theorem 1

Proof: For each node v of G, we introduce the notion of best local reconciliation support for v, denoted
BLS (v), which corresponds to the maximum support achievable for event nodes of a subtree rooted at v
and belonging to a reconciliation tree:

BLS () = max | 3 fg(w) (3)
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We will now show that SCORFE (v) = BLS (v), for each node v € V(G), which will prove the theorem as
i) each root of G corresponds to the root of a reconciliation tree; ii) there is a bijection between E(R) and
V.(TR); i.e. line 11 will then be shown to return a suitable reconciliation tree.

The proof that SCORE (v) = BLS (v) for each node v € V(G) proceeds by induction on the height of v.
If h(v) = 0, by construction of G, v is an event node such that e(v) = C [18] and, by line 8 of Algorithm 1,
SCORE (v) = fg(v) = BLS (v), as v has no child here. Let us now suppose that SCORE (u) = BLS (u),
for each node u € V(G) with h(u) < h; and let v be a node in G such that h(v) = h;. Note that, if v is an
event node, from Condition Cy4 of Definition 5 of [18], each reconciliation tree in 7 containing v also contains
all child nodes of v (that have a height strictly smaller than h;). Thus:
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where these equalities hold by definition of BLS (v), by induction and by line 8 of Algorithm 1. On the
contrary, if v is a mapping node, from Condition Cj of Definition 5 in [18], each reconciliation tree from T con-

taining v also contains exactly one child node of v. Hence, BLS (v) = mzﬁ( : BLS (u) = mz}ﬁ( SCORE (u)
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= SCORE (v), which holds by definition of BLS (v), by induction and by line 10 of Algorithm 1. This
concludes the proof that SCORE (v) = BLS (v) for each node v € V(G) and thus ensures that node r
selected on line 11 of Algorithm 1 maximizes BLS (-) among all roots of G.

Algorithm 2 simply traverses G starting from the root node r(T4) of an optimal reconciliation tree T4 and
identifies all other nodes of T)4. Indeed, the subset of nodes selected by Algorithm 2 satisfies all conditions



of Definition 5 of [18], and can thus be proved to be a valid reconciliation tree T4 using a proof similar to

that of Theorem 1 of [18]. Moreover, it is straightforward to see that BLS (r(T4)) = Z fo(w) and,
wEV.(Ta)

since all reconciliation trees in 7 are rooted at roots of G [18], this concludes the proof. O



