Appendix S1

Formal definition of a reconciliation [5]

Definition 1. Consider a gene tree G, a dated species tree S such that $S(G) \subseteq \mathcal{L}(S)$, and its subdivision S'. Let α be a function that maps each node u of G onto an ordered sequence of nodes of S', denoted $\alpha(u) = (\alpha_1(u), \alpha_2(u), \ldots, \alpha_\ell(u))$. Function α is said to be a reconciliation between G and S' if and only if exactly one of the following events occurs for each pair of nodes u of G and $\alpha_i(u)$ of S' (denoting $\alpha_i(u)$ by x' below):

a) if x' is the last node of $\alpha(u)$, one of the cases below is true:

1.
$$u \in L(G), x' \in L(S')$$
 and $s(x') = s(u);$ (\mathbb{C} event)

2.
$$\{\alpha_1(u_l), \alpha_1(u_r)\} = \{x'_l, x'_r\};$$
 (S event)

3.
$$\alpha_1(u_l) = x' \text{ and } \alpha_1(u_r) = x';$$
 (D event)

4. $\alpha_1(u_l) = x'$, and $\alpha_1(u_r)$ is any node other than x' having height h(x')

or
$$\alpha_1(u_r) = x'$$
, and $\alpha_1(u_l)$ is any node other than x' having height $h(x')$; (\mathbb{T} event)

b) otherwise, one of the cases below is true:

5.	x'	is an artificial node and $\alpha_{i+1}(u)$ is its only child;	(Ø	event)
6.	x'	is not artificial and $\alpha_{i+1}(u) \in \{x'_l, x'_r\};$	$(\mathbb{SL}$	event)

7. $\alpha_{i+1}(u)$ is any node other than x' having height h(x'). (TL event)

Proof of Lemma 1

Given a reconciliation R and an event e, let ind(R, e) be the indicator function for e in R, i.e. ind(R, e) = 1if $e \in \mathbb{E}(R)$ and ind(R, e) = 0 otherwise. Let R_A be the reconciliation of \mathcal{R} minimizing

$$d_{a}(R_{A}, \mathcal{R}) = \sum_{R \in \mathcal{R}} d_{a}(R_{A}, R)$$

$$= \sum_{R \in \mathcal{R}} \sum_{e \in \mathbb{E}(R)} \left(1 - ind(R_{A}, e)\right)$$

$$= \sum_{e \in \mathbb{E}(\mathcal{R})} f(e) \cdot |\mathcal{R}| \cdot \left(1 - ind(R_{A}, e)\right)$$

$$= \sum_{R \in \mathcal{R}} |R| - |\mathcal{R}| \sum_{e \in \mathbb{E}(R_{A})} f(e) \qquad (1)$$

where $|\mathcal{R}|$ and $|\mathcal{R}|$, respectively denote the number of reconciliations in \mathcal{R} and the number of events in a reconciliation \mathcal{R} . The claim for the asymmetric case then follows from the fact that the first sum and the $|\mathcal{R}|$ factor in (1) are independent of the choice of R_A .

Now for the symmetric distance, suppose R_S is a candidate reconciliation for being the symmetric median of \mathcal{R} , then for every event $e \in \mathbb{E}(\mathcal{R})$ each $R \in \mathcal{R}$ containing the event contributes by adding one to $d_S(R_S, \mathcal{R})$ if $e \notin \mathbb{E}(R_S)$, and each $R \in \mathcal{R}$ not containing the event contributes by adding one if $e \in \mathbb{E}(R_S)$. More

precisely, we have

$$d_{S}(R_{S},\mathcal{R}) = |\mathcal{R}| \sum_{e \in \mathbb{E}(\mathcal{R})} \left((1 - f(e))ind(R_{S}, e) + f(e)(1 - ind(R_{S}, e)) \right)$$
$$= |\mathcal{R}| \sum_{e \in \mathbb{E}(\mathcal{R})} f(e) + |\mathcal{R}| \sum_{e \in \mathbb{E}(\mathcal{R})} \left(ind(R_{S}, e).(1 - 2f(e)) \right)$$
$$= |\mathcal{R}| \sum_{e \in \mathbb{E}(\mathcal{R})} f(e) + |\mathcal{R}| \sum_{e \in \mathbb{E}(R_{S})} \left(1 - 2f(e) \right)$$
$$= \sum_{R \in \mathcal{R}} |R| - 2|\mathcal{R}| \sum_{e \in \mathbb{E}(R_{S})} (f(e) - 0.5)$$
(2)

This holds because R_S is in \mathcal{R} . The first summation term and the $2|\mathcal{R}|$ factor do not depend on the choice of R_S , hence the reconciliation minimizing $d_S(R_S, \mathcal{R})$ is that maximizing $\sum_{e \in \mathbb{E}(R_S)} (f(e) - 0.5)$.

Proof of Theorem 1

Proof: For each node v of \mathcal{G} , we introduce the notion of *best local reconciliation support* for v, denoted BLS(v), which corresponds to the maximum support achievable for event nodes of a subtree rooted at v and belonging to a reconciliation tree:

$$BLS(v) = \max_{\substack{T \in \mathcal{T}, \\ v \in V_e(T)}} \left(\sum_{w \in V_e(T_v)} f_{\mathcal{G}}(w) \right)$$
(3)

We will now show that SCORE(v) = BLS(v), for each node $v \in V(\mathcal{G})$, which will prove the theorem as i) each root of \mathcal{G} corresponds to the root of a reconciliation tree; ii) there is a bijection between $\mathbb{E}(R)$ and $V_e(T_R)$; i.e. line 11 will then be shown to return a suitable reconciliation tree.

The proof that SCORE(v) = BLS(v) for each node $v \in V(\mathcal{G})$ proceeds by induction on the height of v. If h(v) = 0, by construction of \mathcal{G} , v is an event node such that $e(v) = \mathbb{C}$ [18] and, by line 8 of Algorithm 1, $SCORE(v) = f_{\mathcal{G}}(v) = BLS(v)$, as v has no child here. Let us now suppose that SCORE(u) = BLS(u), for each node $u \in V(\mathcal{G})$ with $h(u) < h_i$ and let v be a node in \mathcal{G} such that $h(v) = h_i$. Note that, if v is an event node, from Condition C_4 of Definition 5 of [18], each reconciliation tree in \mathcal{T} containing v also contains all child nodes of v (that have a height strictly smaller than h_i). Thus:

$$BLS(v) = \max_{\substack{T \in \mathcal{T}, \\ v \in V_e(T)}} \left(\sum_{w \in V_e(T_v)} f_{\mathcal{G}}(w) \right) = f_{\mathcal{G}}(v) + \sum_{u \in ch(v)} \max_{\substack{T \in \mathcal{T}, \\ u \in V_e(T)}} \left(\sum_{w \in V_e(T_u)} f_{\mathcal{G}}(w) \right)$$
$$= f_{\mathcal{G}}(v) + \sum_{u \in ch(v)} BLS(u) = f_{\mathcal{G}}(v) + \sum_{u \in ch(v)} SCORE(u) = SCORE(v)$$

where these equalities hold by definition of BLS(v), by induction and by line 8 of Algorithm 1. On the contrary, if v is a mapping node, from Condition C_5 of Definition 5 in [18], each reconciliation tree from \mathcal{T} containing v also contains exactly one child node of v. Hence, $BLS(v) = \max_{u \in ch(v)} BLS(u) = \max_{u \in ch(v)} SCORE(u) = SCORE(v)$, which holds by definition of BLS(v), by induction and by line 10 of Algorithm 1. This concludes the proof that SCORE(v) = BLS(v) for each node $v \in V(\mathcal{G})$ and thus ensures that node r selected on line 11 of Algorithm 1 maximizes $BLS(\cdot)$ among all roots of \mathcal{G} .

Algorithm 2 simply traverses \mathcal{G} starting from the root node $r(T_A)$ of an optimal reconciliation tree T_A and identifies all other nodes of T_A . Indeed, the subset of nodes selected by Algorithm 2 satisfies all conditions

of Definition 5 of [18], and can thus be proved to be a valid reconciliation tree T_A using a proof similar to that of Theorem 1 of [18]. Moreover, it is straightforward to see that $BLS(r(T_A)) = \sum_{w \in V_e(T_A)} f_{\mathcal{G}}(w)$ and, since all reconciliation trees in \mathcal{T} are rooted at roots of \mathcal{G} [18], this concludes the proof.