
1

Appendix S1

Formal definition of a reconciliation [5]

Definition 1. Consider a gene tree G, a dated species tree S such that S(G) ⊆ L(S), and its subdivision
S′. Let α be a function that maps each node u of G onto an ordered sequence of nodes of S′, denoted
α(u) = (α1(u), α2(u), . . . , α`(u)). Function α is said to be a reconciliation between G and S′ if and only if
exactly one of the following events occurs for each pair of nodes u of G and αi(u) of S′ (denoting αi(u) by
x′ below):

a) if x′ is the last node of α(u), one of the cases below is true:

1. u ∈ L(G), x′ ∈ L(S′) and s(x′) = s(u); (C event)

2. {α1(ul), α1(ur)} = {x′l, x′r}; (S event)

3. α1(ul) = x′ and α1(ur) = x′; (D event)

4. α1(ul) = x′, and α1(ur) is any node other than x′ having height h(x′)

or α1(ur) = x′, and α1(ul) is any node other than x′ having height h(x′); (T event)

b) otherwise, one of the cases below is true:

5. x′ is an artificial node and αi+1(u) is its only child; (∅ event)

6. x′ is not artificial and αi+1(u) ∈ {x′l, x′r}; (SL event)

7. αi+1(u) is any node other than x′ having height h(x′). (TL event)

Proof of Lemma 1

Given a reconciliation R and an event e, let ind(R, e) be the indicator function for e in R, i.e. ind(R, e) = 1
if e ∈ E(R) and ind(R, e) = 0 otherwise. Let RA be the reconciliation of R minimizing

da(RA,R) =
∑
R∈R

da(RA, R)

=
∑
R∈R

∑
e∈E(R)

(
1− ind(RA, e)

)
=

∑
e∈E(R)

f(e).|R|.
(
1− ind(RA, e)

)
=
∑
R∈R
|R| − |R|

∑
e∈E(RA)

f(e) (1)

where |R| and |R|, respectively denote the number of reconciliations in R and the number of events in a
reconciliation R. The claim for the asymmetric case then follows from the fact that the first sum and the
|R| factor in (1) are independent of the choice of RA.
Now for the symmetric distance, suppose RS is a candidate reconciliation for being the symmetric median of
R, then for every event e ∈ E(R) each R ∈ R containing the event contributes by adding one to dS(RS ,R)
if e /∈ E(RS), and each R ∈ R not containing the event contributes by adding one if e ∈ E(RS). More

2

precisely, we have

dS(RS ,R) = |R|
∑

e∈E(R)

(
(1− f(e))ind(RS , e) + f(e)(1− ind(RS , e))

)

= |R|
∑

e∈E(R)

f(e) + |R|
∑

e∈E(R)

(
ind(RS , e).(1− 2f(e))

)

= |R|
∑

e∈E(R)

f(e) + |R|
∑

e∈E(RS)

(
1− 2f(e)

)
=
∑
R∈R
|R| − 2|R|

∑
e∈E(RS)

(
f(e)− 0.5

)
(2)

This holds because RS is in R. The first summation term and the 2|R| factor do not depend on the choice
of RS , hence the reconciliation minimizing dS(RS ,R) is that maximizing

∑
e∈E(RS)

(
f(e)− 0.5

)
.

Proof of Theorem 1

Proof: For each node v of G, we introduce the notion of best local reconciliation support for v, denoted
BLS (v), which corresponds to the maximum support achievable for event nodes of a subtree rooted at v
and belonging to a reconciliation tree:

BLS (v) = max
T∈T ,

v∈Ve(T)

 ∑
w∈Ve(Tv)

fG(w)

 (3)

We will now show that SCORE (v) = BLS (v), for each node v ∈ V (G), which will prove the theorem as
i) each root of G corresponds to the root of a reconciliation tree; ii) there is a bijection between E(R) and
Ve(TR); i.e. line 11 will then be shown to return a suitable reconciliation tree.

The proof that SCORE (v) = BLS (v) for each node v ∈ V (G) proceeds by induction on the height of v.
If h(v) = 0, by construction of G, v is an event node such that e(v) = C [18] and, by line 8 of Algorithm 1,
SCORE (v) = fG(v) = BLS (v), as v has no child here. Let us now suppose that SCORE (u) = BLS (u),
for each node u ∈ V (G) with h(u) < hi and let v be a node in G such that h(v) = hi. Note that, if v is an
event node, from Condition C4 of Definition 5 of [18], each reconciliation tree in T containing v also contains
all child nodes of v (that have a height strictly smaller than hi). Thus:

BLS (v) = max
T∈T ,

v∈Ve(T)

 ∑
w∈Ve(Tv)

fG(w)

 = fG(v) +
∑

u∈ch(v)

max
T∈T ,

u∈Ve(T)

 ∑
w∈Ve(Tu)

fG(w)

= fG(v) +

∑
u∈ch(v)

BLS (u) = fG(v) +
∑

u∈ch(v)

SCORE (u) = SCORE (v)

where these equalities hold by definition of BLS (v), by induction and by line 8 of Algorithm 1. On the
contrary, if v is a mapping node, from Condition C5 of Definition 5 in [18], each reconciliation tree from T con-
taining v also contains exactly one child node of v. Hence, BLS (v) = max

u∈ch(v)
BLS (u) = max

u∈ch(v)
SCORE (u)

= SCORE (v), which holds by definition of BLS (v), by induction and by line 10 of Algorithm 1. This
concludes the proof that SCORE (v) = BLS (v) for each node v ∈ V (G) and thus ensures that node r
selected on line 11 of Algorithm 1 maximizes BLS (·) among all roots of G.

Algorithm 2 simply traverses G starting from the root node r(TA) of an optimal reconciliation tree TA and
identifies all other nodes of TA. Indeed, the subset of nodes selected by Algorithm 2 satisfies all conditions

3

of Definition 5 of [18], and can thus be proved to be a valid reconciliation tree TA using a proof similar to

that of Theorem 1 of [18]. Moreover, it is straightforward to see that BLS
(
r(TA

)
) =

∑
w∈Ve(TA)

fG(w) and,

since all reconciliation trees in T are rooted at roots of G [18], this concludes the proof.

