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Supplementary Figure 1. Characteristics of different vessels in LNs. a, Diagram of an LN 
emphasising the vascular systems and HEVs. b, A summary of features of different vessels in LNs. 
PNAd, a specific marker for HEVs; MAdCAM-1, a specific marker for mucosal HEVs. c, An H&E-
stained WT MLN section showing an HEV with its distinct cuboidal morphology, a flat-walled non-
HEV vessel, and a flat thin-walled lymphatic vessel (LV) containing lymphocytes. Arrows indicate 
endothelial cells. d and e, Confocal images of WT MLN cryosections showing HEVs expressing a 
high level of CD31 (d) and PNAd (e). Scale bars, 50 µm. 
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Supplementary Figure 2. Generation of Pdpn floxed and globally inducible PDPN-deficient mice. 
a, Gene targeting strategy for generating mice with a Pdpn allele flanked by loxP sites (Pdpnf). b, PCR 
genotyping of F1 generation. WT and gene-targeted positive embryonic stem (ES) cell clones were 
used as controls. Asterisks indicate pups with germline transmission of the Pdpnf allele. c, Breeding 
strategy to develop TM-inducible global PDPN-deficient mice, Pdpnf/f;CagCre mice, by crossing 
Pdpnf/f mice with tamoxifen (TM)-inducible Cre-recombinase transgenic mice (CAG-Cre-ERT2 Tg) 
under control of a ubiquitous fusion promoter, CMV-early enhancer element/chicken beta-actin. d, 
PCR genotyping showing pups with the Pdpnf/f genotype (red asterisk). e, Immunoblot analysis of 
PDPN in MLNs and CLNs from P15 WT and Pdpnf/f;CagCre mice 10 days after 20 µg tamoxifen was 
orally administered daily from P1 to P5. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 
used as a loading control. Three experiments showed similar results. 
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Supplementary Figure 3. Mucosal LN but not peripheral LN bleeding correlates with loss of 
PDPN after induced deletion. a-b, Representative gross images and confocal images of 
immunofluorescence staining for PDPN expression in MLNs after TM treatment (20 µg/ day from P1 
to P5) from P8 mice (a) or P15 mice (b). Asterisk indicates bleeding. c, Representative gross images 
and confocal images for PDPN expression in MLNs from 3-month-old mice after TM treatment (1 
mg/day from age 3 weeks for 1 week, and 1 mg/week thereafter). d, Frequency of MLN bleeding and 
percent of PDPN deletion at various times (mean ± s.d., n = 10 MLNs and 30 sections per group). e, 
Representative gross images and confocal images of PDPN staining in popliteal LNs (PLN), which 
represent peripheral LNs from 1-month-old (P30) mice after TM treatment. f, Frequency of MLN and 
peripheral (inguinal and popliteal) LN bleeding and percent of PDPN deletion. n = 34 LNs per group. 
Three cryosections per LN were analyzed. Scale bars, 2 mm (gross), 50 µm (confocal). 
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Supplementary Figure 4. PDPN is highly expressed on FRCs that surround HEVs. a-d, Confocal 
images of a 1-month-old WT MLN cryosection stained with antibodies to PDPN, Lyve-1, and CD31 
(a); PDPN and ER-TR7 (b); PDPN, CD31, and αSMA (c); or PDGFRβ (d). ER-TR7, αSMA, and 
PDGFRβ are markers for FRCs. Arrows mark PDPN+ FRCs. Scale bars, 50 µm. 
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Supplementary Figure 5. Generation of mice lacking PDPN specifically in FRCs. a, Breeding 
strategy to develop mice lacking PDPN in PDGFRβ-expressing FRCs, Pdpnf/f;PdgfrbCre, by crossing 
Pdpnf/f mice with transgenic mice expressing Cre under control of the Pdgfrb promoter. b, Confocal 
images of PDPN, Lyve-1, and CD31 in MLNs showing considerably reduced levels of PDPN on FRCs 
around CD31+ HEVs from Pdpnf/f;PdgfrbCre mice (arrows) but not from WT mice. PDPN was also 
slightly reduced on lymphatic vessels (LV, arrowheads) of Pdpnf/f;PdgfrbCre mice relative to that from 
WT mice. c, Flow cytometry analysis (gated on CD45- cells from LNs) shows that CD31- FRCs and 
CD31+ LECs but not CD31- blood endothelial cells (BECs) of WT mice express PDPN. However, 
PDPN is reduced on FRCs and LECs of Pdpnf/f;PdgfrbCre mice. d, Quantification of PDPN remaining 
on FRCs or LECs of LNs from Pdpnf/f;PdgfrbCre mice compared with WT controls (mean ± s.d., n = 6 
mice per group from three experiments). e, Confocal images of MLNs from WT or Pdpnf/f;PdgfrbCre 
mice stained for PDPN and PDGFRβ  showing that WT and Pdpnf/f;PdgfrbCre had similar FRC 
morphological structures. Scale bars, 50 µm. *, P < 0.05; ***, P < 0.001. 
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Supplementary Figure 6. Generation of mice lacking PDPN specifically in endothelial cells 
including LECs. a, Breeding strategy to develop mice lacking PDPN in endothelial cells, 
Pdpnf/f;Tie2Cre mice, by crossing Pdpnf/f mice with Tie2Cre transgenic mice. b, Confocal images of 
PDPN, Lyve-1, and CD31 staining in MLNs from WT and Pdpnf/f;Tie2Cre mice. Arrows indicate 
PDPN+ FRCs surrounding CD31+ HEVs. Arrowheads indicate lymphatic vessels (LV) with PDPN 
deletion. c, Flow cytometry analysis (gated on CD45- cells from LNs) shows that PDPN is reduced on 
LECs but not FRCs of Pdpnf/f;Tie2Cre mice. d, Quantification of PDPN remaining on LECs and FRCs 
of LNs from Pdpnf/f;Tie2Cre mice compared with WT controls (mean ± s.d. n = 6 mice per group from 
three experiments). e, Confocal images of cryosections of MLNs from mice lacking PDPN in different 
cell types. Arrows indicate Ter119+ RBCs extravasated outside HEVs in Pdpnf/f;CagCre and 
Pdpnf/f;PdgfrbCre mice. Arrowheads show no extravasated RBCs around HEVs in Pdpnf/f;Tie2Cre 
mice. f, Morphological analyses of HEVs in MLNs from mice lacking PDPN in different cell types 
based on toluidine blue–stained semi-thin sections (~300 nm, grayscale). Red arrows indicate RBCs 
(R) extravasated or in gaps between high endothelial cells (E). L, leukocytes. Dashed lines indicate 
HEVs. e, f, Six mice per group were analyzed in two separate experiments. Scale bars, 50 µm 
(confocal), 25 µm (semi-thin). **, P < 0.01; n.s., no significance. 
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Supplementary Figure 7. Postnatal loss of CLEC-2 function causes bleeding in LNs. a, Gross 
images and confocal analysis of P15 CLNs from WT mice treated with the mAb INU1, which depletes 
CLEC-2 in vivo, or isotype control Rat IgG1κ. Asterisk indicates bleeding. Arrows indicate Ter119+ 
RBCs around an HEV. n = 20 LNs per group from four experiments. b, Diagram depicting generation 
of WT > WT and Clec-2–/– > WT bone marrow irradiation chimaeras (WT or Clec-2–/– BM chimaera, 
respectively). c, Flow cytometry analysis of CLEC-2 expression on platelets from peripheral blood 12 
weeks after bone marrow transplantation (n = 8 mice/group). d, Gross images and confocal analysis of 
MLNs from WT and Clec-2–/– BM chimaera mice. Asterisk indicates bleeding. Arrows indicate 
Ter119+ RBCs outside HEVs. Data represent at least three experiments. Scale bars, 2 mm (gross), 50 
µm (confocal).  
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Supplementary Figure 8. Mice lacking CLEC-2 specifically on platelets have spontaneous 
bleeding in LNs. a, Gene targeting strategy for generating mice with a Clec-2 allele flanked by loxP 
sites (Clec-2f). b, Breeding strategy to develop platelet-specific deletion of CLEC-2 by crossing Clec-
2f/f mice with mice expressing Cre-recombinase under the control of the megakaryocyte-specific 
promoter Pf4 (Pf4Cre Tg). PCR genotyping showing pups with the Clec-2f/f;Pf4Cre genotype (#5 and 
#7). c, Flow cytometry analysis of CLEC-2 expression on platelets from peripheral blood of 1-month-
old WT and Clec-2f/f;Pf4Cre mice. d, Gross morphology and confocal images of CLNs from 1-month-
old WT and Clec-2f/f;Pf4Cre mice. Asterisk indicates bleeding. Arrows indicate extravasated Ter119+ 
RBCs. Data represents eight mice per group from two experiments. Scale bars, 2 mm (gross), 50 µm 
(confocal). 
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Supplementary Figure 9. Loss of FRC PDPN decreases abluminal platelet localization around 
HEVs. Confocal images of MLN cryosections stained with antibodies to CD31, platelets, and PDPN. 
Arrows indicate platelets on the abluminal side of HEVs. Arrowheads indicate platelets that are not 
closely associated with HEVs. Bar graph on the right represents percentage of HEVs with platelets on 
their abluminal side (mean ± s.d., 250 HEVs/mouse (n = 3)). Scale bar, 50 µm.
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Supplementary Figure 10. Mucosal LNs share similar molecular signatures with immunised 
“reactive” peripheral LNs. a-b, Confocal analyses of cryosections of MLNs or popliteal LNs with or 
without OVA/CFA challenge from 1-month-old WT and Pdpnf/f;CagCre mice after staining with 
antibodies to CD31 and PNAd (a) or MAdCAM-1 (b), a mucosal LN-specific HEV marker. Data 
represents two experiments in which 150 HEVs/group (n = 3) were analyzed. Scale bars, 50 µm. 
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Supplementary Figure 11. Blocking lymphocyte trafficking through HEVs ameliorates HEV 
bleeding. a, Gross morphology (insets) and confocal images of CLNs from 2-week-old WT and Rag1–

/– mice treated with mAb INU1 that depletes CLEC-2 in vivo. Asterisk indicates bleeding. n = 6 LNs 
per group. b, Frequency of peripheral leukocytes rolling on 6-sulpho-sLex, which is the functional 
epitope of L-selectin ligands, coated surfaces under flow conditions in an in vitro flow-chamber assay  
to demonstrate the effectiveness of in vivo blockade of L-selectin function using anti-L-selectin (Mel-
14). The leukocytes were isolated from mice after intravenous injections with anti-L-selectin (Mel-14) 
or isotype control rat IgG (mean ± s.d., n = 4 mice from two experiments). c, Gross morphology 
(insets) and confocal images of draining popliteal LNs (PLN) from 1-month-old WT mice one week 
after OVA/CFA challenge and injections with Mel-14, an anti-L-selectin-blocking mAb, or isotype 
control rat IgG. d, Percentage of HEVs with platelets on their abluminal surface in PLNs of WT mice 
without challenge, with OVA/CFA challenge and an isotype control rat IgG, and with OVA/CFA 
challenge and Mel-14 (mean ± s.d., 150 HEVs/group (n = 4)). Scale bars, 2 mm (gross), 50 µm 
(confocal). 
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Supplementary Figure 12. Altered HEV adherens junctions are found in Pdpnf/f;CagCre mice. 
a, Confocal images of intravenously injected FITC-dextran (2,000 kDa) in the small intestine showing 
no leakage of FITC-dextran in intestinal blood vessels of P15 PDPN-deficient mice (arrows). b, Resin-
embedded semi-thin MLN sections (~300 nm) stained with toluidine blue and converted to grayscale. 
Red arrows indicate RBCs (R) between gaps of high endothelial cells (E). L, leukocytes. Red dashed 
lines outline HEVs. c, Merged confocal images from Fig. 3d showing CD31 and VE-cad staining in 
HEVs of P8 MLNs. Insets show CD31 and VE-cad staining in non-HEV blood vessels. d, Immunoblot 
analysis of VE-cad in MLNs of 1-month-old WT and Pdpnf/f;CagCre mice (n = 6 mice/group). 
GAPDH used as a loading control. e, Confocal images of cryosections of MLNs from WT and 
Pdpnf/f;CagCre mice stained with antibodies against CD31, β-catenin (β-cat), and VE-cad. f, Confocal 
images of cryosections of MLNs from WT and Pdpnf/f;CagCre mice stained with antibodies against 
CD31 and N-cadherin (N-cad, arrow). e, f, Data represents two experiments in which 150 HEVs/group 
(n = 3) were analyzed. Scale bars, 50 µm (confocal) and 25 µm (insets), 10 µm (semi-thin). 
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Supplementary Figure 13. The molecular features of mucosal HEV junctions resemble those of 
“reactive” peripheral HEVs. a, Confocal analyses of cryosections of MLNs or draining popliteal LNs 
with or without OVA/CFA challenge from 1-month-old WT, Pdpnf/f;CagCre, and Clec-2f/f;Pf4Cre 
mice after staining with antibodies to CD31 and VE-cad. b, Confocal analyses of cryosections of 
MLNs or draining popliteal LNs with or without OVA/CFA challenge from 1-month-old WT and 
Pdpnf/f;CagCre mice after staining with antibodies to CD31 and ZO-1. c, Confocal images of draining 
popliteal LNs with OVA/CFA challenge from 1-month-old WT and Pdpnf/f;CagCre mice treated with 
an anti-L-selectin antibody (Mel-14) or an IgG control antibody and stained for CD31 and VE-cad. 
Data represents at least 100 HEVs per group from three experiments (n = 4) for each panel. Scale bars, 
50 µm. 
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Supplementary Figure 14. Blocking VE-cad, but not platelet αIIbβ3, increases LN permeability.  
Comparison of Evans blue permeability between immune challenged popliteal LNs of 1-month-old 
WT mice after injections of 11D4.1, an anti-VE-cad blocking monoclonal antibody; JON/A, an anti-
αIIbβ3 blocking mAb (inhibiting platelet aggregation), or an isotype control rat IgG. n = 4 mice per 
group.  
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Supplementary Figure 15. Normalization of VE-cad expression on HEVs from CLEC-2 deficient 
mice after WT platelet transfusion. Merged confocal images from Fig. 3f showing CD31 and VE-
cad staining in HEVs and non-HEVs (insets) in WT BM chimaeras (WT chimaera), and Clec2–/– BM 
chimaeras (Clec2–/– chimaeras) without or with previous injections (i.v.) with WT plts. # marks non-
specific staining. Scale bar, 50 µm. 
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Supplementary Figure 16. Activation of CLEC-2 by PDPN induces S1P release from platelets, 
which maintains HEV VE-cad. a, Flow cytometry analysis of PDPN expression in B16-F0 
melanoma cells before (left) and after (right) cell sorting for PDPN expression. Syrian hamster IgG 
was used as an isotype control (grey shaded histograms). b, Mass spectrometry measurements of S1P 
concentrations in supernatants of WT and Clec-2-/-

 platelets after incubation with PDPN+ or PDPN-  
melanoma cells (mean from 2 samples per group). c, Merged images from Fig. 4b showing CD31 and 
VE-cad staining of HEVs from WT LN slices incubated for 1.5 hrs with DMEM and normal FBS 
(media), DMEM and lipid-depleted FBS (lipid-depleted), lipid-depleted and WT platelets (+WT plts), 
lipid-depleted and Clec-2-/- platelets (+Clec-2-/- plts), lipid-depleted and S1Pless platelets (+S1Pless 
plts), or lipid-depleted and WT plts plus S1PR1 antagonist W146 (+WT plts /W146). Pdpnf/f;CagCre 
LN slices incubated with lipid-depleted and WT platelets (+WT plts) were controls. 100 HEVs 
analyzed per condition. # indicates non-specific staining also observed in negative controls. Scale bars, 
50 µm. 
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Supplementary Figure 17. S1P maintains HEV integrity. a, Peripheral lymphocyte count from 
whole blood of S1Pless and control mice (mean ± s.d., n = 8 mice). b, Gross morphology (insets) and 
confocal images of draining  S1Pless or littermate control popliteal LNs (PLN). LV, lymphatic vessel 
(Lyve-1+); HEV (CD31+). c, Confocal images of PLN HEVs from S1Pless mice or littermate controls 
after intravenous FITC-dextran injection. Arrows indicate vascular leak of FITC-dextran. # indicate 
non-specific staining. d, Confocal images of draining PLN from WT and S1Pless mice with or without 
OVA/CFA challenge stained with antibodies against CD31 and VE-cad. n = 150 HEVs/group from 
three experiments (n = 4). Scale bars, 50 µm. **, P < 0.01. 
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Supplementary Figure 18. Platelet S1P promotes VE-cad expression on HEVs in vivo. Gross 
morphology (insets) and confocal images of CD31 and VE-cad staining of HEVs from S1Pless mice or 
littermate control (Ctrl) popliteal LNs (PLN). n = 50 HEVs analyzed per condition. Graphs represent 
ratios of VE-cad intensities on HEVs relative to control mice transfused with WT platelets (plts) (mean 
± s.d., n = 3 per group). Asterisks indicates bleeding. Scale bars, 2 mm (gross images), 50 µm 
(confocal images). **, P < 0.01; n.s., no significance. 
 


