The American Journal of Human Genetics, Volume 93

Supplemental Data

Topical Enzyme-Replacement Therapy Restores

Transglutaminase 1 Activity and Corrects Architecture

of Transglutaminase-1-Deficient Skin Grafts

Karin Aufenvenne, Fernando Larcher, Ingrid Hausser, Blanca Duarte, Vinzenz Oji, Heike Nikolenko, Marcela Del Rio, Margitta Dathe, and Heiko Traupe

Figure S1. Recombinant Expression and Purification of Human Full-Length Transglutaminase 1

A: Coomassie stained SDS-Gel (10%) and **B**: Western Blot of different expression and purification steps. Lane 1, cell lysate before purification; lanes 2,3, washing steps with 20 mM imidazole; lane 4, washing step with 40 mM imidazole; lanes 5-10 elution steps. Lanes 6-10 in **A** show highly purified rhTG1.

Figure S2. Intensity Scans to Record Intracellular Localization of Liposomes in *TGM1-/-*Keratinocytes

A: Intensity scan along the red line in the equator plane of a *TGM*-/- undifferentiated cell and **B**: of a *TGM*-/- differentiated cell. Traces of the fluorescence intensity of the lipopeptide (green), Rhod-labeled lipid (red) and cell-excluded, membrane-bound trypan blue (blue).

Figure S3. Immunohistochemical Detection of Differentiation Markers and TG1-Substrates after Treatment with rhTG1-LUV Preparations

In regenerated TG1-deficient grafts as well as in human TG1-deficient skin the investigated differentiation markers show a more diffuse and shifted distribution when compared to normal skin. Staining of filaggrin (A-E), involucrin (F-J), plasminogen activator inhibitor-2 (PAI-2) (K-O) and loricrin (P-T) in mice treated with rhTG1-LUV formulations reveal a normalization of the distribution patterns when compared to untreated or retinoid treated mice.

	MLVs [*]	LUVs [#]	LUVs [#]	SUVs [¶]
Diameter [nm] (Dynamic light scattering)	> 1500 nm	200 nm	100 nm	< 50 nm
Inner volume (calculated) (V=1 ml, 10 mM lipid)	> 200 µl	~ 180 µl	~ 55 µl	~ 10 µl
Amount of encapsulated protein (Dialysis, HPLC)	+++	++	++	+
Stability (Dynamic light scattering)	+	+++	+++	++
Coupling of lipopeptide vector (Fluorescence-spectroscopy)	+++	+++	+++	+++
Polydispersity-Index/Uniformity (Dynamic light scattering)	> 1.0	0.108	0.075	0.548

Table S1. Characterisation of Liposomal Preparations of Different Diameters

*MLVs: <u>m</u>ultilamellar <u>l</u>arge <u>v</u>esicles; [#]LUVs: <u>l</u>arge <u>u</u>nilamellar <u>v</u>esicles; [¶]SUVs: <u>s</u>mall <u>u</u>nilamellar <u>v</u>esicles; +++ high; ++ moderate; + low.