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S1 – Linear response regime 

 
 

Figure S1. (a) Specific loss power (SLP) as function of the square of the magnetic 

field for the MNF-citrate sample at a particle volume fraction of 0.51%. Symbols 

represent experimental data while the solid line corresponds to a linear fit of the data. 

(b) Efficiency (defined as SLP/H2) as function of the magnetic field at the same 

particle concentration (26mg/mL). Decreasing SLP with increasing magnetic field 

indicates that the sample is at the low barrier regime (see theoretical discussion on 

Ref. 7). (c) Specific loss power (SLP) as function of the square of the magnetic field 

for the BNF-starch sample at a particle volume fraction of 0.8%. Symbols represent 

experimental data while the solid line corresponds to a linear fit of the data. (d) 

SLP/H2 as function of the magnetic field for the same particle concentration 

(41mg/mL). 
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S2 – Theoretical calculations for fanning and coherent dimers 

 

Coherent rotation 

 
 

The dipolar interaction term in SI units for a coherent dimer is given by 
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Dividing by 2𝑉!, the dipolar contribution term to the free energy density is given by 
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Fanning rotation 

 
 

The dipolar interaction term in SI units for a fanning dimer is given by 
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Dividing by 2𝑉!, the dipolar contribution term to the free energy density is given by 
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Note that the dipolar contribution has a similar effect as the anisotropy term 

(𝐾  sin! 𝜃 ), i.e. both terms have a sine square dependence in the free energy. 

Nevertheless, the dipolar contribution term to the effective anisotropy of both dimers, 

coherent and fanning, differs by a factor of 3. 

In CGS units, the dipolar contribution to the free energy density for both 

dimers is written as 
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The differences between the fanning and coherent dimers to the SLP 

calculations can be found below. We can now show similar calculations as Fig. 4 in 

the manuscript, but now specifically for the different dimers. 

 



 
 

Figure S2. (a) SLP as function of dimensionless anisotropy term for a poly-disperse 

sample considering the non-interacting case (Q=1) and the different dimers (Q=2), i.e. 

coherent and fanning and field amplitude of 133Oe. (b) SLP as function of chain size 

for the different dimers considering a poly-disperse system and distinct surface-to-

surface distances. (c) Optimum hyperthermia size ratio as function of chain size for 

the distinct dimers and a surface-to-surface distance of 2nm. (d) Monodisperse 

calculation of the relative anisotropy increase ∆!
!(!!!)

=     ! ! !!(!!!)
!(!!!)

   as function of 

mean chain size for distinct intrinsic magnetic anisotropy values (fanning 

configuration). Note that the effect increases lowering the nanoparticle (intrinsic, i.e. 

non-interacting) magnetic anisotropy value. 
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S3 – Electron magnetic resonance (EMR) data 

 

Note that different from NMR, where the magnetic field is constant, and one changes 

the frequency of the electromagnetic field (note that we are not discussing NMRI), in 

EMR, the frequency is fixed, i.e. the (low amplitude) ac electromagnetic field 

frequency is constant (in our case around 9.4Ghz, x-band – microwave), and is 

applied perpendicular to the DC field. Also, the DC applied magnetic field is changed 

in order to achieve the resonance field condition. The resonance condition is detected 

through a microwave absorption at a given field range. Indeed, the electron magnetic 

resonance occurs when the energy difference between two states (which is changed 

by sweeping the magnetic field, and dependent upon the effective field felt by the 

electron spins) is equal to the microwave electromagnetic energy.  So, note that in 

EMR one does not have a fixed 0.3T applied to the sample. Actually the field sweeps 

from 5mT up to 0.5T. Maximum absorption (resonance) is occurring at around 0.3T 

for the samples investigated in this work.  

 
 

Figure S3. (a) X-band electron magnetic resonance spectra of different particle 

volume fractions of the MNF colloid. (b) EMR of some representative particle 

concentrations of the BNF sample. 
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S4 – Magnetic birefringence data 

 

 
 

Figure S4. (a) Static magnetic birefringence (SMB) intensity as function of the 

magnetic field for different particle volume fraction MNF-citrate samples. Symbols 

represent experimental data while the solid line corresponds to the best fit of the data 

using a theoretical model based upon Ref. S1 and 36. The model contained just two 

parameters that were related to the chain size and the surface-to-surface distance 

between nanoparticles forming the linear chain. (b) Mean chain size (agglomerate 

size) as function of the particle volume fraction. The model enable us to estimate the 

agglomerate size as well as the percentage of particles forming chains (since isolated 

spherical nanoparticles do not contribute to the SMB data). From this we obtained the 

mean chain size (Q≈1.1), which was found to be close (but lower) to the electron 

magnetic resonance analysis (see Fig. 2(d) – Q between 1.1-1.3) at this particle 

concentration range. (Details on the experimental set up can be found in Ref. 37). 

[S1] Xu, M. & Ridler, P. J. Linear dichroism and birefringence effects in magnetic 

fluids. J. Appl. Phys. 82, 326-332 (1997). 
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S5 – Three dimensional polydisperse Monte Carlo simulations 

 

 
Figure S5. Three-dimensional polydisperse Monte Carlo simulations for the MNF-

citrate sample (see Ref. 14 for details on the algorithm). Nanoparticles are considered 

spherical. The simulation used a zeta potential of -20.3mV (that corresponds to a 

number of molecules of 1.2x1017mol/m2 – see Ref. 14), an external magnetic field of 

0.30 T (close to the EMR field) and three distinct Hamaker constants, namely A=0.1, 

0.5 and 1.0 x 10-19 J. The size distributions follows the experimental TEM parameters 

(see Fig. 2 (b)). The simulation indicates that small agglomerates can be found even at 

the low particle concentration range depending upon the Hamaker and zeta potential 

(which is related to the grafting, i.e. the number of molecules at the nanoparticle 

surface) parameters. The quantitative differences between the experimental data (see 

Fig. 2(d)) and MC simulation is expected due to possible desorption of coating 

molecules and depletion effect (The MC simulation does not take into account ion-ion 

correlations in the electrostatic interaction – see Ref. 14). Nevertheless one can 

clearly observe the same trend as the EMR analysis, i.e. chain lenght increases with 

increasing concentration. The inset shows the same MC data at a lower concentration 

range. As expected, chain length increases with increasing Hamaker constant and 

particle concentration. Dashed lines are guide to the eye. 
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S6 – Chain size theoretical model: High field and zero field limit   

 

According to the literature,14,38 the dependence of the mean chain size on the volume 

fraction is given by  < 𝑄 >= 2𝜑𝑒!/ 1+ 4𝜑𝑒! − 1 , with φ the particle volume 

fraction and E a dimensionless energy parameter between particles in the chain. In the 

flexible chain model, this parameter for zero field condition, reads 𝐸!!! = 2𝜆 −

ln  (3𝜆!), whereas at the high field limit 𝐸!→! = 2𝜆 − ln  (3𝜆!). 38,S2 

 

 
 

Figure S6. (a) Chain size as function of particle volume fraction for the high and zero 

field cases for a constant interaction parameter value, i.e.  𝜆=5.3. (b) The inverse of 

chain size (1/Q) as function of the interaction parameter for the two limiting cases, 

H=0 (black line) and 𝐻 → ∞ (red line) at a fixed volume fraction, phi=0.005%. The 

blue line is the difference between the inverse of the zero field chain size to the high 

field one. Note that the model indicates that only above a “critical” interaction 

parameter 𝜆!"#$, one observes significant differences between both estimations. (c) A 

phase-like diagram indicating how the 𝜆!"#$ depends upon the volume fraction. This 

estimation assumed a difference value of 0.5% between the chain sizes. If 𝜆 < 𝜆!"#$ 

both chain sizes can be assumed to have the same value, while for 𝜆 > 𝜆!"#$ the chain 

size at both limits are very distinct. From EMR experimental data we estimate for  the 

MNF sample 𝜆=5.3.  

[S2] Zubarev, A. Yu., Iskakova, L. Yu. Theory of structural transformations in 

ferrofluids: Chains and “gas-liquid” phase transitions. Phys. Rev E 65, 061406 

(2002). 
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S7 – Characteristic time (𝝉𝟎) and damping influence on SLP 

 

 

 
Figure S7. (a) In this figure is shown how the characteristic time 𝜏! changes for 

distinct damping factor values. Note that increasing the damping value results in a 

decrease of 𝜏!. (b) SLP as function of the anisotropy dimensionless parameter for 

different damping values (𝜏!). The non-interacting case (Q=1) and the dimer (Q=2) is 

shown. A SLP maximum is observed indicating the existence of optimum anisotropy 

values. Increasing the characteristic time (or decreasing the damping value) shifts the 

maximum anisotropy to lower values, and decreases the maximum SLP. (c) Optimum 

anisotropy values as function of 𝜏!. (d) Optimum anisotropy values as function of the 

damping fator for the non-interacting case (Q=1), and dimers (Q=2) in the fanning 

and coherent configuration. Note that for high damping values the optimum 

anisotropy changes only slightly. This observation is consistent with recent dynamic 

hysteresis simulations.25 The chain formation reduces both SLP and optimum 

anisotropy values. 
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S8 – High field amplitude SLP concentration dependence 

For the high field amplitude study of the SLP concentration dependence we 

used a different hyperthermia system. The magnetic hyperthermia equipment 

consisted of an Ambrell system model EasyHeat-LI. The system operated at 300kHz 

with an 8-turn coil, which was cooled using a closed-loop circulating water system. 

The temperature was measured using a fiber-optic system. Again, the amplitude of the 

alternating magnetic fields was obtained from measurements using an ac field probe 

bought from AMF Lifesystems. 

 
 

Figure S8. (a) SLP as function of particle volume fraction. Black circles correspond to the MNF-citrate data at a 

frequency (f) of 500kHz and 133Oe. The other measurements were performed at f=300kHz. Red circles 

correspond to data at 550Oe, while triangles the field amplitude is 950Oe. Note that one can undoubtedly observe 

a decrease of SLP the larger the particle concentration (chain size). In those high field measurements the chain size 

can be calculated assuming the EMR data, with 𝜆=5.3 and using each particle volume fraction value (determined 

from VSM measurements). The inset shows the same data at a lower concentration range. (b) Initial heating rates 

of the MNF-citrate samples for data at 300kHz. The 500kHz data appears in the inset of Fig. 1(d) of the paper. (c) 

SLP as function of particle volume fraction for the BNF-starch sample. (d) Initial heating rates as function of 

concentration of the BNF samples for data at 300 kHz. 
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S9 – High field amplitude SLP chain size dependence 
 

 

Figure S9. (a) SLP as function of damping factor for the cases Q=1, 3 and 10. 

Polydisperse theoretical calculations used the experimental parameters of the samples. 

Symbols represent the experimental data of the MNF-citrate sample. The error bars 

can not be observed at this scale. (b) SLP as function of damping factor at a smaller 

damping range for the MNF-citrate sample. (c) SLP as function of damping factor for 

the cases Q=1, 3, 10. Symbols represent the experimental data of the BNF-starch 

sample. (d) SLP as function of damping factor at a smaller damping range for the 

BNF-starch sample. Theoretical calculations of the parallelepiped-shaped 

nanoparticles considered the volume distribution. Note that for both samples we 

found an increase in the chain size increasing the particle volume fraction. For the 

MNF-citrate, at the high field limit, the chain length changes from 1 to 2.5. While the 

BNF sample this range is within 2.5 to 3.5. At this range, and due to the experimental 

error bars, it is now clear why the BNF sample had not shown any significant SLP 

concentration dependence. On the contrary, the MNF-citrate shows a strong SLP 

concentration (chain size) dependence at this experimental condition. 
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