Future bloom and blossom frost risk for Malus domestica 1

- considering climate model and impact model uncertainties 2
- Holger Hoffmann^{1*}, Thomas Rath, 3
- Biosystems Engineering, Institute for Biological Production Systems, Leibniz Universität Hannover, 4
- Hannover, Germany 5
- ¹ Present address: Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 6
- Germany 7
- * E-mail: Corresponding hhoffmann@uni-bonn.de 8

Phenological models supplementary S1 9

Projection of temperature 10

- Temperature time series are presented as anomaly from the 1971-2000 mean as indicated by ΔT . The 11
- anomaly of single years as well as of 10 year moving average time series is shown. By way of example, 12
- the latter was calculated as: 13

$$\Delta T_{y1,y2,s} = \frac{1}{10} \sum_{i=-4}^{5} \frac{1}{n} \sum_{d=1}^{n} T_{y2+i,d,s} - \frac{1}{30} \sum_{i=-14}^{15} \frac{1}{n} \sum_{d=1}^{n} T_{y1+i,d,s} \text{ with}$$
(1)

 $\Delta T_{y1,y2,s}$: projected change in year-mean air temperature from year y1 to year y2 of every grid point s in Lower Saxony, [-]

- year of calculation (past, future) y1, y2:
 - grid point : s
 - : index i
 - d: day
 - number of days of the year (365 or 366) n:

Projection of bloom 14

The change in blooming date Δt_2 was calculated as the difference in the 30-year-mean for each grid point: 15

$$\Delta t_{2y1,y2,s} = \frac{1}{30} \cdot \sum_{i=-14}^{15} t_{2y2+i,s} - \frac{1}{30} \cdot \sum_{i=-14}^{15} t_{2y1+i,s} \text{ with}$$
(2)

 $\Delta t_{2y1,y2,s}$: projected change in blooming date t_2 from year y_1 to year y_2 of every grid point s in Lower Saxony, [-]: year of calculation (past, future) y1, y2grid point

- s:
- i: index
- Years with unfulfilled chilling were recorded by counting years without bloom or bloom projected for
- DOY> 200 as fraction of occurrences in a 30-year-mean: 17

18

$$\chi_{y} = \frac{1}{30} \cdot \sum_{i=-14}^{15} \mu_{i} \text{ with}$$
(3)

$$\mu_{i} = \begin{cases} 1 & \text{if} \quad t_{2,y+i} > 200 \\ 0 & \text{else} \end{cases}$$

$$\chi : \text{Fraction of years with unfulfilled chilling requirement, [-]}$$

$$t_{2,y} : \text{ onset of phenophase in year } y, \text{ [DOY]}$$

$$y : \text{ year of calculation, e.g. 1980}$$

$$i : \text{ index}$$

¹⁹ Calculation of probability mass functions

The values of probability mass functions were estimated non-parametrically by applying a Gaussian kernel:

$$pdf(x) = \sum_{s=1}^{n} \frac{1}{nh\sqrt{2\pi}} e^{-\frac{(x-\Delta\theta_{y1,y2,s})^2}{2h^2}} \text{ with}$$
(4)

$$h = 0.03$$

$$pdf(x) : \text{ probability density function value over all grid points, [-]}$$

$$\Delta\theta_{y1,y2,s} : \text{ projected change in blossom frost risk}$$

$$x : \text{ any possible value of } \Delta\theta_{y1,y2,s}, [-]$$

$$h : \text{ bandwidth of kernel smoothing window, [-]}$$

$$s : \text{ grid point}$$

$$n : \text{ number of grid points}$$

$$pmf(x) = \frac{pdf(x)}{\sum_{j=1}^{z} pdf(j)}, \text{ with}$$
(5)

$$pmf(x) : \text{ probability mass function value over all grid points, [-]}$$

$$z$$
: number of possible values of $\Delta \theta_{y1,y2,s}$, [-]

j : index

22 Model description

²³ Apple bloom was simulated using phenological models. In principle, models assume that the time of ²⁴ bloom is related to so-called temperature sums of chilling (Sc) and forcing (Sf), accumulated during

winter (chilling phase) and spring (forcing phase) by the corresponding rates of chilling (Rc) and forcing

 $_{26}$ (*Rf*). See tab. 1 for denominations.

$$Sc(t) = \sum_{i=t_0}^{t} Rc(T_i)$$
(6)

$$Sf(t) = \sum_{i=t_1}^{t_2} Rf(T_i) \tag{7}$$

Further it is assumed, that Sf is related to Sc as follows:

Sequential models:
$$Sf(t_2) = a \cdot e^{bSc(t_1)}$$
 (8)

Parallel models:
$$Sf(t_2) = a \cdot e^{bSc(t_2)}$$
 (9)

²⁷ A basic thermal-time model (model 1) was applied as described, with the rate of forcing Rf:

28 29 Model 1

$$Rf(T_i) = \begin{cases} 0 & \text{if} \quad T_i \le Tbf \\ T_i - Tbf & \text{else} \end{cases}$$
(10)

Sequential (model 2) and parallel (model 3) chilling-forcing models were applied as described in the following:

32

33 Models 2,3

$$Rc(T_{i}) = \begin{cases} 0 & \text{if } T_{i} \leq 0 \text{ or } T_{i} \geq 10 \\ \frac{T_{i}}{T_{bc}} & \text{if } 0 < T_{i} \leq T_{bc} \\ \frac{T_{i}}{T_{bc-10}} & \text{if } T_{bc} < T_{i} < 10 \end{cases}$$
(11)

$$Rf(T_i) = \begin{cases} 0 & \text{if } T_i \le Tbf \\ \frac{28.4}{1 + e^{(-0.185(T_i - Tbf - 18.4))}} & \text{else} \end{cases}$$
(12)

34

³⁵ The Modified Utah model was applied for mean daily temperature values (model 4). Following a different

 $_{36}$ approach, this model is a sequential model with Rc as in eq. 11 and with Rf being:

37

38 Model 4

$$Rf(T_i) = \begin{cases} 0 & \text{if } T_i \le Tbf \\ (T_i - Tbf) \cdot \left[1 + \left(\frac{Sf(T_{i-1})}{Sf(t_2)}\right)^2\right] & \text{else} \end{cases}$$
(13)

39

⁴⁰ Due to findings for better performance when relating bloom additionally to radiation, models taking into ⁴¹ account the length of the day were further included (models 5-7). Model 5 was applied in the version ⁴² described, and being an extension of model 1 the rate of forcing is calculated as follows:

43 44 Model 5

$$Rf(T_i) = \begin{cases} 0 & \text{if} \quad T_i \le Tbf \\ (T_i - Tbf) \cdot \left(\frac{D}{10}\right)^c & \text{else} \end{cases}$$
(14)

⁴⁵ Models 6-7 are new variations of the sequential and parallel chilling-forcing models. These varied models ⁴⁶ also assume, that bloom is influenced by radiation only during the forcing phase. For both Rc was cal-⁴⁷ culated as in eq. 11 and Rf was calculated as follows:

48

49 Model 6,7

$$Rf(T_i) = \begin{cases} 0 & \text{if} \quad T_i \le Tbf \\ \frac{28.4}{1 + e^{(-0.185(T_i - Tbf - 18.4))}} \cdot \left(\frac{D}{10}\right)^c & \text{else} \end{cases}$$
(15)

Table 1. Denomination of variables and parameters

Notation	Description	Unit
Т	Air temperature	°C
Tbc, Tbf	Base temperature for chilling, forcing	$^{\circ}\mathrm{C}$
t	Time	hour [h], day [d] or year [a]
t_0	Start of the chilling period (dormancy)	day of the year (DOY)
t_1	Chilling requirement completed, start of forcing	day of the year (DOY)
t_2	Forcing completed (BBCH 60, BBCH 65)	day of the year (DOY)
Sc, Sf	State of chilling, state of forcing	
Rc, Rf	Rate of chilling, rate of forcing	
D	Daylength	h
a, b, c	Calibration parameters	
i,s,z	Index variables	
θ	Blossom frost risk	
β	Temperature threshold for blossom frost	°C

50 Model parameters

Model	Tbc	Sc	Tbf	a	b	c	t_1	t_2
	$[^{\circ}C]$	[-]	$[^{\circ}C]$	[-]	[-]	[-]	[DOY]	[DOY]
1			5.8					122.6
2	3.0	36.9	5.0	220.9	-0.0248		12.1	120.4
3	2.5	37.8	3.1	201.3	-0.0029		17.4	121.9
4	4.2	37.7	7.4				17.4	121.9
5			0.7			1.3	^a 30.1	122.9
6	4.8	33.4	5.2	232.1	-0.0063	4.4	3.0	120.4
7	5.1	35.7	5.7	215.9	-0.0033	5.7	8.0	119.2

Table 2. Model parameters (early ripeners, BBCH 65, area mean)

^{*a*}This model does not calculate the fulfillment of dormancy, but optimizes t_1 as starting date for heat summation.