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Reference numbering
In order to get a common referencing between the main paper and the supplementary information, we have defined an
unique list of references for the bibliography. References [1–39] thus are classified by order of appearance in the main
manuscript. References [40–46] are only present in the supplementary information and are ordered following their first
appearance in the supplementary information.

1 Introduction
This supplementary information report aims at complementing the main paper by describing in more details some of the
more technical points of the methods. Section 2.1 presents complementary details about the structure of the model. Section
2.2 is dedicated to the statistical inference of the parameters from the model. Section 2.3 makes explicit the algorithms
used for the implementation of the model and finally Section 2.4 reviews and discusses other existing methods. Section 3,
the last part of this report, presents additional results that were not included in the main text.

2 Additional methods

2.1 Details of the modelling approach
2.1.1 Diagram and coverage for the vaccination model

Figure S1 represents a diagram of the vaccination model, while in Table S1 the final coverage by age, risk group and
season used in the model can be found.

Figure S1: Diagram of the vaccination mode based on a SEIR model with vaccinated (V) and non-vaccinated (N) statuses

2.1.2 Equations of the epidemiological model

The equations of the epidemiological model are as follows (in which time dependencies have been dropped for clarity):
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Risk Group Low High
Age group <1 1-4 5-14 15-24 25-44 45-64 65+ <1 1-4 5-14 15-24 25-44 45-64 65+
1995/96 0.06 0.11 0.44 1.00 1.75 6.30 28.37 0.56 1.11 3.46 7.10 11.55 27.15 52.20
1996/97 0.06 0.11 0.42 0.95 1.60 5.95 27.94 0.83 1.67 3.74 6.55 11.00 26.50 51.14
1997/98 0.06 0.11 0.38 1.10 1.90 7.03 32.10 0.94 1.89 4.04 7.30 12.50 29.93 56.95
1998/99 0.06 0.11 0.45 0.90 1.65 6.35 27.70 0.89 1.78 3.77 6.30 11.65 28.77 50.72
1999/00 0.06 0.11 0.36 0.85 1.55 6.55 30.60 1.33 2.67 4.13 6.45 11.75 29.32 53.98
2000/01 0.06 0.11 0.35 0.90 1.75 7.75 65.80 1.50 3.00 4.80 7.50 14.20 35.38 65.80
2001/02 0.11 0.22 0.46 0.85 1.70 7.65 67.50 1.39 2.78 4.71 7.80 14.75 36.55 67.50
2002/03 0.06 0.11 0.44 0.85 1.65 7.80 69.40 1.44 2.89 4.62 7.50 14.85 37.73 69.40
2003/04 0.17 0.33 0.55 0.90 1.80 8.22 71.55 3.39 6.78 7.70 9.55 17.60 41.73 71.55
2004/05 0.11 0.22 0.48 0.87 1.72 7.89 71.40 2.73 16.10 19.64 41.65 42.81 42.81 71.40
2005/06 0.11 0.22 0.48 0.87 1.72 7.89 75.30 3.28 19.36 23.63 50.10 51.50 51.50 75.30
2006/07 0.11 0.22 0.48 0.87 1.72 7.89 73.90 2.88 16.98 20.72 43.94 45.17 45.17 73.90
2007/08 0.11 0.22 0.48 0.87 1.72 7.89 73.50 3.10 18.27 22.30 47.28 48.60 48.60 73.50
2008/09 0.11 0.22 0.48 0.87 1.72 7.89 73.50 3.10 18.27 22.30 47.28 48.60 48.60 73.50

Table S1: Final coverage by age, risk group and season used in the model. For the 0-1 age-group, only infants over 6
months receive vaccination.
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where SNik and SVik represent the number of susceptibles of age group i and risk group k with different vaccine history.
The susceptibles indexed by N are naive and the ones indexed by V have received the vaccine. E1X

ik and E2X
ik represent

exposed, but not yet infectious individuals with vaccine history X . I1X
ij and I2X

ij represent infectious individuals. RXik
represent immune individuals of age class i and risk group k with vaccine history X , and λi is the age-group specific
force of infection, given by:

λi = qσi

7∑
j=1

2∑
k=1

∑
X={N,V }

cij(I
1X
jk + I2X

jk ) (2)

where q is the transmissibility parameter, cij is the rate at which individuals in age group i make contact with those in age
group j and σi is the susceptibility of age group i; µik = νik

SNik+E1N
ik +E2N

ik +I1Nik +I2Nik +RNik
with νik the rate of immunization

of risk group k in age group i.

2.1.3 Description of the observation model using sets

We would like to stress here that the ascertainment probability εi should not be confused with the propensity to consult
among infected people. To illustrate the differences between the two, we can use a set notation to write down the different
states (which refers to the same subtype) to which an individual in age group i can belong at week j (illustrated in Figure 2
of the main paper):

• A: be infected by one given subtype of influenza;

• B: have an influenza infection detectable1 by the virological test as applied in field condition;

• C: develop ILI symptoms;

• D: go to the GP;

• E: be recorded as having ILI;

1The ability to detect influenza viruses in swabs with the virological test will depend on a certain number of factors, such as the time between
sampling and infection, it does not represent the sensitivity of the test in ideal conditions but rather in ’typical’ field conditions.
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• F : be tested virologically as part of the ILI testing scheme.

It is then possible to describe derived quantities using the "conditional" and "intersection" set operators noted respec-
tively | and ∩. These operators have both a logical and probabilistic interpretation2. A ∩D can be read as "A and D" i.e.
if event A and D are true and corresponds thus to the combined event of being infected by a specific subtype of influenza
and going to the GP. Similarly, P (B|A) refers to the probability of event B conditional on event A, so P (B|A) is the
probability to be positive to a specific subtype (event B) given than the individual has been infected by this subtype (event
A). Then, if we drop the age group and week indices for clarity, the model quantities can be written as:

m = |E|; m+ = |B ∩ E|; zoutside + zθ = |A|;
n = |F |; n+ = |B ∩ F |; (3)

and the ascertainment probability ε is equal to P (B ∩ E|A) while the probability to consult among infected people is
P (D|A). Some other common and tangible epidemiological quantities can be formulated using this set notation:

• P (B|A) is the sensitivity of the virological test against influenza cases;

• P (B|A ∩ C) is the sensitivity of the virological test against clinical influenza cases;

• P (C|A) is the proportion of symptomatic3 among influenza cases;

• P (D|A ∩ C) is the propensity to consult4 for clinical influenza infections;

• P (E|A ∩ C ∩D) is the GP ability to recognize a patient with influenza symptoms;

We can thus express ε, the ascertainment probability, by way of using these quantities. For this we start with, using
conditioning, separating the GP and virological surveillance streams:

ε = P (B ∩ E|A) (4)
= P (E|A)︸ ︷︷ ︸

GP

P (B|A ∩ E)︸ ︷︷ ︸
virology

. (5)

P (E|A) can be further broken down in terms of the elementary processes:

P (E|A) =
P (A ∩ E)

P (A)

=
P (A ∩ E)

P (A ∩ C ∩D)

P (A ∩ C ∩D)

P (A ∩ C)

P (A ∩ C)

P (A)
.

As we assume that A ∩E = A ∩ C ∩E (all individuals recorded as ILI consulting following an influenza infection have
ILI symptoms) and E ⊂ D, P (A ∩ E) = P (A ∩ C ∩D ∩ E), we have then:

P (A ∩ E)

P (A ∩ C ∩D)
= P (E|A ∩ C ∩D), (6)

i.e. the GP ability to recognize a patient with influenza symptoms. As A ∩ E = A ∩ C ∩ E, we can rewrite ε as:

ε = P (E|A ∩ C ∩D)P (D|A ∩ C)P (C|A)P (B|A ∩ C ∩ E) (7)

P (B|A ∩ C ∩ E) is the probability to have developed a (virologically) detectable influenza infection given that the
individual is infected and picked up as ILI by the GP. We can assume that B and E are independent conditional on A∩C.
That means that the probability that a symptomatic individual who goes to the GP has a detectable influenza is independent
of the assessment by the GP to record this patient as ILI5. We thus have P (B ∩ E|A ∩ C) ≈ P (B|A ∩ C)P (E|A ∩ C)
and P (B|A ∩ C ∩ E) ≈ P (B|A ∩ C).

We can finally write Equation (7) using only elementary epidemiological quantities:

ε ≈ P (E|A ∩ C ∩D)P (D|A ∩ C)P (C|A)P (B|A ∩ C), (8)

where P (E|A∩C∩D) is the GP recognition ability, P (D|A∩C) the propensity to consult among symptomatic influenza
cases, P (C|A) the proportion with symptoms among the infected and P (B|A∩C) the sensitivity of the test against clinical
influenza cases.

2Both fundamental logic and probability can be theoretically ultimately ground to set theory.
3Given the continuous range of symptoms associated with influenza, a case definition is needed for influenza-like symptoms. We match here the

definition used for our ILI data, i.e. fever plus at least one other respiratory symptom.
4Assuming that the influenza symptoms are the cause of the visit to the GP.
5It is possible though that a more severe influenza infection would have a higher chance of being classified as ILI by the GP or result as a positive from

the virology testing. Nevertheless, as this potential bias is integrated into the chain of probabilities of the ascertainment probability ε, this assumption
does not impact on the model developed.
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2.1.4 Reproduction numbers and mixing between groups

The epidemiological potential of a pathogen is often described by way of its basic reproduction numberR0, defined as the
average number of secondary cases following the introduction of an infectious individual in a totally susceptible popula-
tion. Mathematically, R0 is defined as the biggest eigenvalue of the next generation matrix (NGM). When the population
is not entirely susceptible (presence of immunity), a similar quantity can be defined, called the effective reproduction
number and noted Re. Nevertheless, these quantities synthesize the dynamical properties of potential outbreaks using
a homogeneous mixing paradigm (all individual are equally likely to contact each other) and thus do not capture the
dynamics associated with the intra- and inter-group transmission in population stratified in non-homogeneously mixing
groups.

In the setting of targeted vaccination campaigns where interruption of transmission is aimed, summary quantities
should reflect the potential of transmission of the targeted groups. The requirement of more detail should be balanced
with the necessity for summary quantities to be simple to interpret. We thus have chosen to compute in addition to R0

and Re, the 2-by-2 NGM matrix reduced to the children (under 15 years) and adults.
The basic-reproduction number R0, the effective reproduction number Re, and the 2-by-2 reduced NGM are derived

quantities, dependent on other parameter values, rather than fitted directly in our model. R0 and Re are obtained from
the dominant eigenvalue of the next generation operator, adjusting for susceptibility, as appropriate. For a given mixing
matrix and susceptibility profile, R0 is proportional to q, the estimated transmission coefficient, which is estimated for
each strain and each year.

We investigate in the following sections, the link between this 2-by-2 reduced NGM matrix and the potential of
transmission in the whole population summarized by R0.

General formula for the 2-by-2 case The NGM of a population with two age groups C and A can be written6 as:

MR =

(
RCC RCA
RAC RAA

)
(9)

The basic reproductive number R0 is given by the dominant eigenvalue of the NGM. To calculate the eigenvalues, one
should find the roots of the characteristic polynomial:

PR(λ) = det(MR − λI) (10)

with I the 2x2 identity matrix. We need thus to solve:

PR(λ) = 0

(RCC − λ)(RAA − λ)−RACRCA = 0

λ2 − (RCC +RAA)λ+RCCRAA −RACRCA = 0[
λ− 1

2
(RCC +RAA)

]2

−
[

1

2
(RCC +RAA)

]2

+RCCRAA −RACRCA = 0[
1

2
(RCC +RAA)

]2

+RACRCA −RCCRAA =

[
λ− 1

2
(RCC +RAA)

]2

so we finally get

λ =
1

2
(RCC +RAA)±

√[
1

2
(RCC +RAA)

]2

+RCARAC −RCCRAA

and thus, assuming that RCCRAA 6= 0, we have:

R0 =
1

2
(RCC +RAA) +

√[
1

2
(RCC +RAA)

]2

+ (dR − 1)RCCRAA (11)

where dR = RCARAC
RCCRAA

the degree of assortativity of the matrix. We assume that for a disease such as influenza, where
transmission is associated with close contact, transmission RCCRAA ≥ RCARAC and thus 0 ≤ dR ≤ 1.

6In the main paper, for clarity reasons, RCC and RAA are denoted by RC and RA respectively.
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Assortative sub-populations If the transmission structure is very assortative then dR ≈ 0 and developping Equation
(11) with dR = 0 leads to

R0 =
1

2
(RCC +RAA) +

√[
1

2
(RCC +RAA)

]2

−RCCRAA

=
1

2
(RCC +RAA) +

√[
1

2
(RCC −RAA)

]2

=
1

2
(RCC +RAA) +

1

2
|RCC −RAA|

where |RCC −RAA| = RCC −RAA if RCC ≥ RAA and RAA −RCC else.

As a result, we have7 that for two fully assortative sub-populations:

R0 = max(RCC , RAA). (12)

Highly coupled sub-populations dR = 1

R0 =
1

2
(RCC +RAA) +

√[
1

2
(RCC +RAA)

]2

= RCC +RAA. (13)

Different epidemiology for the same R0 As R0 varies monotonously when dR varies between 0 and 1, we have:

max(RCC , RAA) ≤ R0 ≤ RCC +RAA. (14)

As R0 is a combination of the intra-group transmission and of the coupling between these groups, two populations with
a very different transmission structure can have the same R0. For example, both the following NGM have the same R0

(equal to 2):

A =

(
2 0
0 0.1

)
, B =

(
1 1
1 1

)
(15)

Control strategies for population A though should be target children, while control strategies for population B should
involve the whole population.

2.1.5 Estimation of the number of deaths due to influenza

Tables S2 and S3 alongside Figure S2 are presented below in order to complement the text on the estimation of the number
of deaths due to influenza in the main manuscript where they are referred to.

2.2 Statistical inference
2.2.1 Inference of the contacts

In the inference process, the advantages of basing the mixing structure on a resampled set of participants rather than
directly on the parameters contact matrix are numerous. First, each of the resampled matrices corresponds to one mixing
matrix, with the whole set of these matrices embedding the uncertainty resulting from the contact survey. Secondly, two
similar datasets of participants are likely to lead to similar mixing matrices. This means that this structure defines some
sort of distance in the matrix space. A ’random-walk’ in this matrix space can thus be performed by resampling a certain
number of participants from the current matrix to obtain a proposal mixing matrix.

7Equation (12) can also be derived more directly by coming back to the mathematical definition of R0 as, when the matrix is triangular (as one of
the off-diagonal value must be equal to zero if dR = 0), the eigenvalues will be the diagonal values.
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Table S2: Annual number of deaths attributable to influenza by age-group (mean and 95% CI) estimated from generalized
linear models using the model of Hardelid et al. [1].

season 0 - 14 y 15 - 44 y 45 - 64 y 65+ y

1999/00 0 [0 - 43] 268 [11 - 525] 1175 [334 - 2016] 23567 [16187 - 30947]

2000/01 29 [0 - 120] 105 [0 - 293] 442 [21 - 864] 6523 [4661 - 8385]

2001/02 37 [0 - 143] 41 [0 - 244] 421 [0 - 844] 9434 [6079 - 12789]

2002/03 168 [54 - 283] 14 [0 - 261] 320 [0 - 799] 9908 [8043 - 11773]

2003/04 104 [0 - 218] 0 [0 - 205] 997 [504 - 1491] 10984 [8072 - 13896]

2004/05 85 [0 - 196] 112 [0 - 299] 1355 [907 - 1803] 16659 [14280 - 19037]

2005/06 66 [0 - 167] 110 [0 - 291] 912 [506 - 1318] 10185 [7414 - 12956]

2006/07 0 [0 - 0] 63 [0 - 306] 1039 [505 - 1573] 11914 [9700 - 14129]

2007/08 0 [0 - 82] 219 [11 - 428] 700 [279 - 1121] 9481 [6975 - 11988]

2008/09 0 [0 - 75] 157 [0 - 416] 1132 [588 - 1676] 15959 [13738 - 18179]

Table S3: Age-specific risk ratio of the CFRs for acute respiratory infection obtained from analysis of HES hospitalization
data

age group RRa (sd)

0 - 14 y 20.78 (2.50)

15 - 44 y 18.45 (1.24)

45 - 64 y 6.02 (0.21)

65+ y 1.04 (0.01)
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Figure S2: Distribution of the case fatality ratio (CFR) for the low risk group by age and strain estimated by generalized
linear model.

2.2.2 Identifiability of the variables

Examination of Equation (2) for the force of infection λi among age group i shows that it is impossible to identify both
the transmissibility q and the susceptibility profile {σi} from transmission events only. Indeed, for any set {q, σi}, the
family of parameters {q/a, aσi} (for any constant a such that aσi ≤ 1 for all i) would give the same value for the force
of infection leading to the same dynamic of transmission for the disease. To avoid this identifiability problem some other
sources of data are required to inform the priors of these two parameters. In the next section, we present the methods used
to derived priors on susceptibility, transmissibility and the ascertainment probabilities using some serology data existing
from one of the season and subtype of the study.

2.2.3 Derivation of the priors

After the season 2003/04, serology assays were performed for antibodies of the A/H3N2 subtype in sera taken before and
after the influenza season [19]. This allows us to derive informative priors on susceptibility at the start of the season and
the ascertainment probabilities {εi} for this particular year. For the other years, we use the information gained on this
particular year to inform the transmissibility q and the {εi}.

Susceptibility at the start of season 2003/04 In order to use the serology data for the derivation of susceptibility
levels for the start of the 2003/04 season, we need to implement a way of deriving level of protection from infection by
the influenza virus as a function of the titre of haemagglutination inhibition (HI) antibodies. The most commonly used
model [40] is based on an inverse logit function of the logarithm of the titre and two parameters α and β:

π(T, α, β) =
eβ(log(T )−α)

1 + eβ(log(T )−α)

where 0 ≤ π(T, α, β) ≤ 1 is the protection conferred by a HI titre of T . If the baseline risk for an individual to develop
influenza is λ in absence of protective antibodies, the risk to develop influenza with antibodies is λ(1− π(T, α, β)). The
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Figure S3: Serology for 2003/04 season. (left) Reverse Cumulative Distributions curves of antibody titres in the 0-14,
15-64 and 65+ year old and (right) Change in proportion of individuals with antibody ≥ 40 as presented in [19].

parameter α is the logarithm of the titre giving 50% protection and β is linked with the shape of the function. Different
studies [41, 42] have shown than this relationship does not appear to depend on the nature (arising from vaccines or
infection) or the subtypes of the antibodies (at least not being statistically significant). Nevertheless, Black et al. [42] have
demonstrated that age was important as younger individuals need higher titres to experience the same levels of protection.
Given αi and βi the parameters of the protection equation corresponding to the age group i, the link between the protective
antibodies of the individuals belonging to the age group and the susceptibility σi at the population level in this age group
is given by the following equation:

σi = 1− 1

Ni

Ni∑
j=1

π(Tj , αi, βi)

with Ni is the number of individual in age group i and Tj the titre of the jth individual in this age group.
To establish a prior on the three inferred susceptibility levels σ0−14, σ15−64 and σ65+ at the start of the season

2003/04, we use titres from a study by Johnson [19] (Figure S3). The values for the protection function are sampled using
the methodology8 and values from Coudeville et al. [41] for the age-group 1-4 year old and from Black et al. [42] for
individuals older than 15 years. For the age group of the 5-14 year old for which we do not have found studies measuring
the range of the α and β (the Coudeville study is restricted to the range of 6 to 72 months children), we use an intermediate
value by sampling from a broad distribution encompassing the two distributions. The obtained distributions allow us to
derive an estimate of the susceptibility levels of σ0−14, σ15−64 and σ65+ assuming to be normally distributed (truncated
to [0,1]). The values found for the susceptibility priors are summarised in Table S4.

Age group Samples Susceptibility (mean) Susceptibility (s.d.)
0 to 14 y.o. 286 0.688 0.083
15 to 64 y.o. 483 0.529 0.122

65+ y.o. 106 0.523 0.175

Table S4: Derivation of the susceptibility priors

Ascertainment probability Using the set-based definition of the ascertainment probability ε, an estimator can be de-
rived from the data. Indeed, as

ε = P (B ∩ E|A) =
P (B ∩ E)

P (A)
,

8Values of the means and standard deviations of the α and β are sampled from uniform distribution using the values given in Coudeville et al. [41]
and then used to generate values for α and β from normal distributions.
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ε is the ratio of the number of people recorded as ILI and potentially positive for the virological test (|B ∩E|) by the total
number of people infected by influenza A/H3N2 during the season 2003/04 (|A|).

To calculate an estimator m̂+
i,tot of

∑52
j=1m

+
ij during the year 2003/04, the number of people in the age group i who

were recorded for ILI and who would have been positive to influenza A/H1N1 if tested, we summed over the season to

get m̂+
tot =

∑52
j=1

n+
ij

nij
mij . To get an estimate Ẑi,tot of the total number of infection in age group i over the season, we

use the number of individual who seroconverted during this season, as defined in [19] by the difference of the proportion
of people with a titre ≥40.

Age group m̂+
tot Ẑi,tot (C.I.) in 000’s εi (mode) Lower bound Upper bound Meanlog S.D.log

0 to 14 y.o. 37174 3603 (2449,4596) 0.0103 0.00809 0.0152 -4.49 0.286
15 to 64 y.o. 64372 4952 (2303,7503) 0.0130 0.00858 0.0279 -4.12 0.475

65+ y.o. 9507 1104 (39, 2119) 0.00861 0.00449 0.243 -2.98 1.33

Table S5: Derivation of the ascertainment probability priors

As an important proportion of children seroconverted, we have a good estimate of ε0−14 while for the elderly, there is
a lot of uncertainty regarding individuals who actually seroconverted.. This is reflected by the upper bound of ε65+ which
is very high. To reflect the skewness of the data, we use lognormal distributions, with a mode in m̂+

tot/Ẑi,tot and a mean
at half of the boundaries.

Transmissibility of the virus Susceptibility levels in a population are changing due to antibody dynamics (immunity
built up from past season and by decay), demographic renewal and drift of the virus. It is difficult thus to infer immunity
from another season especially if distant in time or measured for a different subtype. Transmissibility, though probably
not constant every year, is much more likely to remain similar from one year to another. The value of transmissibility
from one year is likely to be a good prior for other year.

As susceptibility levels and transmissibility are intimately linked and cannot be measured independently, we use the
value of the transmissibility inferred for the season 2003/04 in H3N2 as a prior for the other seasons and strains, while
employing an uninformative prior on the susceptibility. To account for uncertainty, we have chosen as a prior for the
transmissibility for the other years a normal distribution with the same mean as the posterior of season 2003/04 and 1.5
times the standard deviation.

2.2.4 Derivation of the likelihood

We start by deriving the likelihood for the full model and then derive the likelihood for the simplified model that we used
for the implementation.

Likelihood of the full model with augmented data Let D be the set of the observable variables (i.e. our data). We
are interested in inferring the parameters of the dynamical system θ, the ascertainment probabilities ε and the outside
infection probability ψ. At the same time, we need to account of the m+ which appear in the hierarchical component of
the observation model and which can be considered as "nuisance parameters". Two options exist, the first is to treat them
as normal parameters and then consider the marginal distributions from the posterior; the second is to integrate them out.
These two options lead to two different possible "likelihood" functions.

In a Bayesian framework the first approach would be favoured as it allows to define for example a prior distribution
on these parameters. Nevertheless, the second is equivalent, as integrating out the m+ can be done using a prior. In term
of computation, the former results in a more complex parameter space to explore while the latter leads to a more complex
likelihood to compute. We present both versions of the likelihood, while we have chosen to use the second version of our
likelihood which is equivalent to assuming a flat prior on the m+ but simplify the dimension of our parameter space.

The first likelihood function L1 is derived from the hierarchical structure of the observation part of our model (see
Figure 1 of the main paper) by breaking down the virological and GP attendance parts of the model:

L1(D|m+, ε, θ, ψ) = L(D1|m+, θ)︸ ︷︷ ︸
V irology

L(D2|ε, ψ,m+, θ)︸ ︷︷ ︸
GP

, (16)

with D = {D1,D2}.
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The virological testing is independent of θ so the first part of Equation (16) is given by the hypergeometric distribution
of n+

ij , the probability of getting exactly n+
ij positive among the nij samples drawn at week j among age group i is:

L(D1|m+, θ) = P (D1 = {mij , n
+
ij , nij}|m

+)

=

5∏
i=1

52∏
j=1

(m+
ij

n+
ij

)(mij−m+
ij

nij−n+
ij

)
(
mij
nij

) (17)

The second part of the likelihood, describing the model of attendance to the GP and test sensitivity is a sum of two random
variables and thus its distribution is the discrete convolution of the two distributions B(zθij , εi) and P(ψεiN

mon
ij ):

P (D2|ε,m+, θ, ψ) =

5∏
i=1

52∏
j=1

m+
ij∑

h=hminij

[(
zθij

m+
ij − h

)
ε
m+
ij−h

i (1− εi)z
θ
ij−m

+
ij+h

(ψNmon
ij εi)

h

h!
e−ψN

mon
ij εi

]

=

5∏
i=1

52∏
j=1

m+
ij∑

h=hminij

[(
zθij

m+
ij − h

)
ε
m+
ij

i (1− εi)z
θ
ij−m

+
ij+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

]
, (18)

with hminij = max(m+
ij − zθij , 0) and zθij the number of cases in age group i predicted in week j by the model given the

parameters θ. Hence, by combining (17) and (18) in (16), we obtain the complete likelihood for one season:

L1(D|m+, ε, θ, ψ) =

5∏
i=1

52∏
j=1

(m+
ij

n+
ij

)(mij−m+
ij

nij−n+
ij

)
(
mij
nij

) m+
ij∑

h=hminij

[(
zθij

m+
ij − h

)
ε
m+
ij

i (1− εi)z
θ
ij−m

+
ij+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

]
.

(19)

Likelihood of the full model with summation over m+
ij It is possible to derive a likelihood function free from the m+

ij

by summing them over all the values they can take, for this we need to find first the lower and upper boundaries of all
possible m+

ij .
Using the set notation with the indices i and j denoting respectively the age-group and the week, we have:

Eij = (Eij ∩Bij) ∪ (Eij ∩ B̄ij) (20)

As Bij ∩ B̄ij = ∅, we can combine the values from (3) with Equation (20) to get:

mij = m+
ij + |Eij ∩ B̄ij | (21)

and, from (Fij ∩ B̄ij) ⊆ (Eij ∩ B̄ij) we have the inequality:

mij ≥ m+
ij + |Fij ∩ B̄ij |. (22)

Using the same decomposition for Fij than (20) for Eij

Fij = (Fij ∩Bij) ∪ (Fij ∩ B̄ij), (23)

we obtain, plugin in the values from (3) and Bij ∩ B̄ij = ∅:

|Fij ∩ B̄ij | = nij − n+
ij . (24)

Then, by combining (22) with (24) we obtain the first upper boundary for m+
ij :

m+
ij ≤ mij − nij + n+

ij . (25)

Finally using (Bij ∩ Fij) ⊆ (Bij ∩ Eij), and thus n+
ij ≤ m

+
ij , we get the final boundaries for m+

ij :

n+
ij ≤ m

+
ij ≤ min(zθij ,mij − nij + n+

ij) (26)

Hence, if we define kmaxij = min(zθij ,mij − nij + n+
ij), the complete likelihood for one season is equal to:

L2(D|ε, θ, ψ) =

5∏
i=1

52∏
j=1

kmaxij∑
k=n+

ij

( kn+
ij

)( mij−k
nij−n+

ij

)
(
mij
nij

) k∑
h=hminij

[(
zθij
k − h

)
εki (1− εi)z

θ
ij−k+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

] (27)

with zθij the number of cases in the monitored population in age group i predicted in week j by the model given the
parameters θ.
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2.3 Implementation
We present here some details about the implementation of our study. Though the work has been coded in C for speed and
flexibility, we describe the used algorithm using pseudo-code. Transcription in other programming languages should be
easy.

2.3.1 Implementation of the epidemic model

We implement the epidemic model using a simple Euler integration with a time step of 0.25 days.

2.3.2 Proposal for the contact matrix

The Metropolis-Hastings algorithms works efficiently when the proposed set of parameters at each step leads to a reason-
able acceptance rate in order to provide good mixing. A trade off needs to be found between high acceptance of proposed
parameters close to the current ones, leading to slow mixing, and low acceptance of more distant values leading to poor
efficiency of the algorithms and high correlation of the sampled values. For this, one needs to be able to define a metric
on the parameter sets to determine if the proposed values are close or far from the current ones and adapt them (whether
manually or using more sophisticated approaches). It is relatively easy to define such a distance for real valued parameters
(though tuning the actual proposal for high dimensional parameters remains a challenging problem). Here, we propose
a way of efficiently producing proposals for contact matrices "near" the current matrix in a reversible way (condition
necessary for the validity of the resulting Markov chain). The aim of this section is not to define formally the proposed
solution in terms of distance9 in a discrete matrix spaces but to explain our approach and allow reproducibility of our
results.

Instead of tracking the transmission matrix itself (or a contact matrix of some sort), we track a representative set
of contacts. The update is done on the set of contacts rather than the transmission (or contact) matrix coefficients by
resampling the original contact survey (POLYMOD) with replacement. The more similar the set of contacts, the more
similar the transmission will be, and one can tune the extent of possible change at each step by allowing j substitution
with a probability pj . When this selection is done with a flat likelihood, the random walk on the matrices resulting from
progressively updating the set of contacts produces a sampled of transmission matrix with the expected matrix being
the POLYMOD matrix and a variance being the one of the original survey. This method allows for the inclusion of
the transmission matrix into the inference process, with the transmission matrix effectively representing an additional
parameter of the model.

2.3.3 Implementation of the likelihood

To shorten the computation time, we need to optimize the calculation of the likelihood function. We start by reordering
the terms in Equation (27):

L2(D|ε, θ, ψ) =

5∏
i=1

52∏
j=1

kmaxij∑
k=n+

ij

k∑
h=hminij

( kn+
ij

)( mij−k
nij−n+

ij

)
(
mij
nij

) (
zθij
k − h

)
εki (1− εi)z

θ
ij−k+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

 .
In order to be used by the Metropolis-Hasting algorithm, the likelihood function needs to be defined up to a multiplicative
constant. This means that the computation of any multiplicative factors not depending on ε, θ or ψ can be omitted in order
to speed up the calculation. As

(
mij
nij

)
is only dependent on the data, we have:

L2(D|ε, θ, ψ) ∝
5∏
i=1

52∏
j=1

kmaxij∑
k=n+

ij

k∑
h=hminij

[(
k

n+
ij

)(
mij − k
nij − n+

ij

)(
zθij
k − h

)
εki (1− εi)z

θ
ij−k+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

]

which can be expanded using factorials:

L2(D|ε, θ, ψ) ∝
5∏
i=1

52∏
j=1

kmaxij∑
k=n+

ij

k∑
h=hminij

[
k!(mij − k)!zθij !

n+
ij !(k − n

+
ij)!(nij − n

+
ij)!(mij + n+

ij − k − nij)!(k − h)!(zθij − k + h)!

εki (1− εi)z
θ
ij−k+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

]
(28)

9We refer here only loosely to the notion of distance, in an intuitive way and for explanatory purposes, without trying to defining any rigorous
metrics.
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and can be further simplified noticing that n+
ij and nij are observable (and thus constant):

L2(D|ε, θ, ψ) ∝
5∏
i=1

52∏
j=1

kmaxij∑
k=n+

ij

k∑
h=hminij

[
k!(mij − k)!zθij !

(k − n+
ij)!(mij + n+

ij − k − nij)!(k − h)!(zθij − k + h)!

εki (1− εi)z
θ
ij−k+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi

]
. (29)

The computation of the likelihood function involves the summation of the "elementary" terms inside the square brackets
in two directions to get a factor which is part of a bigger product involving each week and age group. Figure S4 depicts
the surface of summation for one week and age group.

Figure S4: Surface of summation of the likelihood function for a given week i and age group j. The red dot is giving the
position of aijkh. The calculation of the likelihood involves the summation of all the blue squares of the corresponding aijkh
for each week and age group.

Each of the blue squares represents one of the term of the double sum in Equation (29) for a given i and j. If we call
aijkh the term at position (k, h), we have:

aijkh =
k!(mij − k)!zθij !

(k − n+
ij)!(mij + n+

ij − k − nij)!(k − h)!(zθij − k + h)!
εki (1− εi)z

θ
ij−k+h

(ψNmon
ij )h

h!
e−ψN

mon
ij εi (30)

From a practical point of view, the summation can be made in any order as soon as all the "blue squares" are integrated.
Equation (27) suggests a summation by columns (by varying first the h) but any other scheme is valid. For example, the
likelihood can be computed by summing over the lines (h constant, k varying) or the diagonals (h − k constant, h and k
varying). The summation scheme will exploit that neighbouring aijkh will share an important number of factors in common
and thus passing from one to another will only involves relatively simple calculations based on a recursive scheme.
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For example, the following system, presenting respectively vertical, horizontal and diagonal increments allows to
compute all the aijkh: 

aijk,h = k−h+1
zθij−k+h

ψNmonij

h (1− εi)aijk,h−1

aijk,h =
k(mij+n

+
ij−k−nij+1)(zθij−k+h+1)

(mij−k+1)(k−n+
ij)(k−h)

εi
1−εi a

ij
k−1,h

aijk,h =
k(mij+n

+
ij−k−nij+1)

(mij−k+1)(k−n+
ij)

ψNmonij εi
h aijk−1,h−1

(31)

starting from any value of aijkh for example aij
n+
ij ,n

+
ij

:

aij
n+
ij ,n

+
ij

=
(mij − n+

ij)!

(mij − nij)!
ε
n+
ij

i (1− εi)z
θ
ij (ψNmon

ij )n
+
ije−ψN

mon
ij εi . (32)

The sum aijsum of the aijk,h

aijsum =

kmaxij∑
k=n+

ij

k∑
h=hminij

aijk,h (33)

allows us to derive the likelihood

L2(D|ε, ψ, θ) ∝
5∏
i=1

52∏
j=1

aijsum

which is equivalent to the more computing-friendly form:

log(L2(D|ε, ψ, θ)) =

5∑
i=1

52∑
j=1

log aijsum + constant. (34)

The value of the constant is equal to
5∑
i=1

52∑
j=1

log

(
mij !

nij !(mij−nij)!nijp!(nij−n+
ij)!

)
which is typically extremely big. The use

of the log-likelihood rather the likelihood allows to avoid numerical problems.

Approximation of the likelihood In order to speed up the computation of Equation (34), we use an approximation of
the aijsum. For this, we start by reordering the terms in Equation (33):

aijsum =

mij−nij+n+
ij∑

h=0

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h, (35)

which, given a constant d, the RHS of Equation (35) can be broken into two parts:

aijsum =

htruncij∑
h=0

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h

+ bij (36)

with htruncij = min(d,mij − nij + n+
ij) and

bij =
mij−nij+n+

ij∑
h=d+1

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h if d < mij − nij + n+
ij ,

bij = 0 if d ≥ mij − nij + n+
ij .

Equation (36) splits the summation surface (Figure S4) into an upper (h > d) and a lower (h ≤ d) part. By definition
of the observation process, the height (indexed by h) of a cell represents the outcome of the random variablemoutside

ij (see
description of the observation model in the main paper) i.e. the number of people recorded as ILI who have been infected
outside of the main modelled epidemic. The upper part of the summation surface corresponds thus to the outcomes where
moutside
ij > d and, as the sum over the entire surface is defined in Equation (33) as being equal to aijsum, bij can be

expressed as:
bij = aijsumP (moutside

ij > d) (37)
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By combining Equations (36) and (37), we thus get:

aijsum =

htruncij∑
h=0

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h

1− P (moutside
ij > d)

. (38)

As moutside
ij is Poisson distributed with coefficient ψNmon

ij εi � 1, we have P (moutside
ij > d) ≈ 0 and:

aijsum ≈
htruncij∑
h=0

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h. (39)

We thus can define the truncated likelihood Ld3 by:

Ld3(D|ε, ψ, θ) =

5∏
i=1

52∏
j=1

htruncij∑
h=0

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h

 (40)

with htruncij = min(d,mij − nij + n+
ij).

Relationship between L2(D|ε, ψ, θ) and Ld3(D|ε, ψ, θ) Given the range of values taken by ψ and εi during the in-
ference, computing log(Ld3(D|ε, ψ, θ)) is equivalent in practice (and much quicker) than computing log(L2(D|ε, ψ, θ)).
More precisely, by plugging in (38) into (34) we have:

log(L2(D|ε, ψ, θ)) =

5∑
i=1

52∑
j=1

log

htruncij∑
h=0

min(zθij+h,mij−nij+n
+
ij)∑

k=max(n+
ij ,h)

aijk,h

− log
(
1− P (moutside

ij > d)
)

+

5∑
i=1

52∑
j=1

log

(
mij !

nij !(mij − nij)!nijp!(nij − n+
ij)!

)

= log(Ld3(D|ε, ψ, θ))−
5∑
i=1

52∑
j=1

log
(
1− P (moutside

ij > d)
)

+

5∑
i=1

52∑
j=1

log

(
mij !

nij !(mij − nij)!nijp!(nij − n+
ij)!

)

As
5∑
i=1

52∑
j=1

log

(
mij !

nij !(mij−nij)!nijp!(nij−n+
ij)!

)
is constant and

5∑
i=1

52∑
j=1

log
(
1− P (moutside

ij > d)
)
≈ 0,

in the range of values considered, we get:

log (L2(D|ε, ψ, θ)) ≈ log(Ld3(D|ε, ψ, θ)) + constant. (41)

Algorithm to compute the approximate likelihood To compute the approximate likelihood functionLd3(D|ε, θ, ψ), we
need to define an initial value and a summation path over the reduced surface of summation. For computational reasons,
as the values of the terms in the sum decrease quickly as h increases, it is best to start with the lowest line, and then sum
line by line until reaching the line at height d. The height of the lowest line is given by:

hinit = max(n+
ij − z

θ
ij , 0). (42)
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If hinit > d then the surface of summation is empty and Ld3(D|ε, θ, ψ) = 0. Otherwise, the first value (k = n+
ij) on the

line can be computed using the following set of equations:
aijinit = aij

n+
ij ,0

=
(mij−n+

ij)!

(mij−nij)!
zθij !

(zθij−n
+
ij)!
ε
n+
ij

i (1− εi)z
θ
ij−n

+
ije−ψεiN

mon
ij , if hinit = 0,

aijinit = aij
n+
ij ,n

+
ij−zθij

=
(mij−n+

ij)!

(mij−nij)!
n+
ij !

(n+
ij−zθij)!

ε
n+
ij

i (ψNmon
ij )n

+
ij−z

θ
ije−ψεiN

mon
ij , if hinit = n+

ij − zθij .
(43)

The calculation of the initial seeding value from System (43) not explicitly calculating the factorial function will depend
on the different possible values of nij , n+

ij and zθij . We can break down the different element of aijinit and evaluate them
for each of the different possibilities:

aijinit = BijCijDijε
n+
ij

i e−ψεiN
mon
ij (44)

with the values of Bij , Cij and Dij as follows:

Bij Cij Dijn+
ij = nij n+

ij 6= nij zθij = n+
ij zθij 6= n+

ij

n+
ij ≤ zθij

n+
ij = 0 n+

ij > 0

(hinit = 0) 1
nij−1∏
g=n+

ij

(mij − g) n+
ij !

1
n+
ij−1∏
g=0

(zθij − g) (1− εi)z
θ
ij−n

+
ij

n+
ij ≥ zθij

zθij = 0 zθij > 0(
hinit = n+

ij − zθij
)

1
zθij−1∏
g=0

(n+
ij − g) (ψNmon

ij )n
+
ij−z

θ
ij

Algorithm 1 Calculation of INIT_SUM(i,j), the first value of the sum for age group i, week j

a← ε
n+
ij

i e−ψεiN
mon
ij

if n+
ij < nij then

for g = n+
ij to nij − 1 do

a← a ∗ (m− g)
end for

end if
if (zθij = n+

ij) and (zθij > 0) then
for g = 1 to n+

ij do
a← a ∗ g

end for
end if
if (n+

ij > 0) and (n+
ij < zθij) then

for g = 0 to n+
ij − 1 do

a← a ∗ (zθij − g)
end for

end if
if (zθij > 0) and (n+

ij > zθij) then
for g = 0 to zθij − 1 do
a← a ∗ (n+

ij − g)
end for

end if
if n+

ij > zθij then
a← a ∗ (ψNmon

ij )n
+
ij−z

θ
ij

end if
if n+

ij < zθij then
a← a ∗ (1− εi)z

θ
ij−n

+
ij

end if
return a
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When the seed value for the first line is calculated (see Algorithm 1), it is possible to start calculating and summing
over the values of the first line by iteration of the k’s between n+

ij and min(zθij + hinit,mij − nij + n+
ij) using the

relationship given in the System (31) (horizontal increment). Once all the values of the first line are summed up, the
initial seed is used to calculate the value of the seed for the upper line. The vertical increment of System (31) is used
if h ≤ n+

ij , else the diagonal increment is used. Then the calculation and summing of the values of the second line are
performed. The same process is repeated to calculate iteratively the values on the lines above until reaching the height
d. Figure S5, depicts the summation surface and paths for the truncated likelihood calculation and in Algorithm 2, some
code is provided.

Figure S5: Surface of summation of the truncated likelihood function for a given week i and age group j. The red dot is
giving the starting position of recursive calculation.

In practice Even extremely small values of d’s give good results for the inference. For example, for our dataset, even a
value of d = 0 works for most seasons. Only for the season 2008/09, with a huge increase in sampling due to the testing
for the new pandemic strain, a value of d = 2 was chosen.

2.3.4 Implementation of the Markov chain Monte Carlo

Reduction of the dimension of the parameter space The use of the likelihood with summation over them+
ij (Equation

(27) simplified in (40)) rather than the original likelihood (19) allowed us to reduce the dimension of the parameter space
to explore by 260 for each of the years considered (52 weeks in 5 age groups). Furthermore, to avoid overfitting and
stabilise estimates, susceptibility was grouped into three age bands, children (<15), adults (15-64), and the elderly (65+),
as was the ascertainment probability, εi.

The dimension of the final model used for the inference is thus considerably lower than the original model (Table S6).
While we would have need to estimate 11,466 parameters in the original model (273 * 3 subtypes * 14 seasons) and 42
sets of contacts, this has dropped to 378 parameters with 42 sets of contacts in the simplified model. This considerably
simplifies the parameter space to explore even if its geometry remains complex with highly correlated variable and banana
shaped10 connected parameters.

In the rest of the section, we use the notation Θ = {ε0−14, ε15−64, ε65+, ψ, q, σ0−14, σ15−64, σ65+, l} to describe the
set of inferred parameters.

Proposal mechanism and adaption We are interesting in drawing from the posterior of Θ and the set of resampled
contacts. For this, we used a proposal mechanism combining an Adaptive Metropolis type proposal [43] for Θ with the
replacement of 1 contact in the current set A at probability 0.1.

The proposal function Q(x, .) for the Adaptive Metropolis is defined as follow:

Qn(x, .) = (1− ζ)N
(
x, (2.38)2 Σn

d

)
+ ζN

(
x, (0.1)2 Id

d

)
(45)

10By this we mean that some pairs of parameters presents banana-shaped likelihood function if projected in the plane of these parameters (this can be
visualised by making a scatterplot of the concerned sampled parameters), making the exploration of this region of the parameter space difficult.
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Algorithm 2 Calculation of the truncated log-likelihood log(Ld3)

LL← 0
for i = 1 to 5 do

for j = 1 to 52 do
hinit ← max(n+

ij − zθij , 0)
if hinit > d then

return -10,000
end if
hmax ← min(d,mij − nij + n+

ij)
for h = hinit to hmax do

if h = hinit then
kseed ← n+

ij

aseed ← INIT_SUM(i,j) {Calculation of the first value of the sum}
end if
if h > n+

ij then
kseed ← kseed + 1

aseed ← aseed ∗
k(mij+n

+
ij−k−nij+1)

(mij−k+1)(k−n+
ij)

ψNmonij εi
h {Diagonal increment}

end if
if 0 < h ≤ n+

ij then

aseed ← aseed ∗ k−h+1
zθij−k+h

ψNmonij

h (1− εi) {Vertical increment}

end if
a← aseed
asum ← asum + a
kmax ← min(zθij + h,mij − nij + n+

ij)
if kmax > kseed then

for k = kseed + 1 to kmax do
a← a ∗ k(mij+n

+
ij−k−nij+1)(zθij−k+h+1)

(mij−k+1)(k−n+
ij)(k−h)

εi
1−εi {Iterative calculation of the elements of the hth line}

asum ← asum + a
end for

end if
end for
LL← LL+ log(asum)

end for
end for
return LL

where Σn is the empirical variance-covariance matrix defined as the unbiased estimator of the variance-covariance matrix:

Σn =
1

n− 1

n∑
k=1

(
Θk − Θ̄

) (
Θk − Θ̄

)T
(46)

with Θ̄ = 1
n

∑n
k=1 Θk the empirical mean of the samples Θk. The chain {Θk}1≤k≤n loses the Markov property it has

with other proposal functions (e.g. for symmetric random walks), but fulfill the Diminishing Adaptation and Bounded
Convergence conditions [43] which guarantees the ergodicity and asymptotic convergence of the chain towards the correct
target distribution.

This algorithm, with the (2.38)2 Σn
d variance for the adaptive bit, the (0.1)2 Id

d variance for the fix part and ζ = 0.05,
leads to poor acceptance rates due to the shape of the posterior distribution of our parameters and for some seasons,
"learning" problems as the fix bit at the start of the chain does not lead to any valid values. For this we used an improvement
of the algorithm [44]. By adding another adaptive element, to "learn" the scale of the proposal in order to lead to an
acceptance rate close to the theoretical 0.234 value. For this we define:

Q′n(x, .) = (1− ζ)N (x, ξnΣn) + ζN (x,∆) (47)
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Parameter Description Dimension
Original Final

m+
ij Number of individuals with detectable influenza among the total

number of people consulting for ILI in age group i in week j
260 -

εi Ascertainment probability of an infectious individual 5 3
ψ Probability to become infected outside of the main epidemic 1 1
q Transmissibility of the virus 1 1
σi Susceptibility in age group i due to pre-existing immunity 5 3
l Initial infectious seed for the epidemics 1 1
A Set of participants representative of contacts leading to transmis-

sion in the population
- -

Table S6: Parameters to infer for each of the 14 seasons and 3 strains.

where ∆ is a suitably chosen fixed diagonal matrix and ξn is updated as follows:{
ξn+1 ← ξn − 0.234 ∗ δn, if the proposal is rejected,
ξn+1 ← ξn + 0.766 ∗ δn, if the proposal is accepted,

(48)

with limn→∞ δn = 0 to keep the Diminishing Adaptation property. The use of this adaptive scaling factor allows the
algorithm to learn the optimal scaling for the proposal distribution and gives in practice very good results.

From an implementation point of view, to avoid storing the whole history of the chain {Θk}1≤k≤n with n potentially
very big (several millions for long chains), we use that, as Σijn the element at row i and column j is equal to:

Σijn =
1

n− 1

n∑
k=1

(
Θk
ij − Θ̄ij

) (
Θk
ji − Θ̄ji

)
=

1

n− 1

n∑
k=1

[
Θk
ijΘ

k
ji −Θk

ijΘ̄ji −Θk
jiΘ̄ij − Θ̄ijΘ̄ji

]
=

1

n− 1

n∑
k=1

[
Θk
ijΘ

k
ji

]
− nΘ̄ijΘ̄ji, (49)

we only need to store at each step the matrix
n∑
k=1

[
Θk(Θk)T

]
and Θ̄ = 1

n

∑n
k=1 Θk. Both are easily stored and updated

on the fly.

Coding methodology To reduce the chances of coding errors, the functions used in the inference algorithm have been
coded using three parallel routes:

1. the built-in statistical functions available in R [35],

2. "fast" functions using the algorithms presented in this supplementary document implemented in R,

3. these "fast" functions implemented in C.

For each functions, the results from the "fast" algorithms coded in R were compared with the results from the built-in
functions from the R package (usually being the same up to a constant). Then the results from the C code were compared
to the results given by the "fast" functions implemented in R. The parallel development of three codes, though more time
consuming, reduces the chances of coding errors.

The C code for the transmission model and the inference algorithm are available from the corresponding author on
request.

Performance of the algorithm The inference presented in this work has been produced using 11 million length chains
(1 million for the burn-in), with a thinning of 10,000. This took ≈ 4 hours on a cluster for the 14 seasons and 3 subtypes
of the study.
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Performance of the algorithm on simulated data Additionally, we checked whether we could retrieve parameters from
simulated epidemics using associated (simulated) data. Inputting the simulated data, the inference algorithm managed to
estimate the correct values and propagate the corresponding uncertainty associated with the sample scheme adopted to
generate the mock sets of data. As in any Bayesian analysis though, the accuracy of the resulting posterior to retrieve
the "true" values is a combination of the quality of the data and the assumptions made for the prior estimation. Strong
informative priors distant from the "true" values will bias the estimates. This is true for the real valued parameters but
also for the inferred structure of contacts.

To illustrate this and demonstrate how our inference algorithm works on simulated data, we have chosen to present the
following example. We simulated an epidemic peaking at a similar time than the 1997/98 season for H3N2. We assumed
that the background of ILI (from different pathogens) mirrors the epidemiology of the influenza virus considered (the
simulated influenza epidemic is thus assumed to be at a constant 10% of the total ILI). The value of the ascertainment
probabilities and transmissibility are chosen near the median of the prior distribution. We assumed a non informative prior
on the susceptibility parameters and a contact matrix distant from the POLYMOD mean matrix (the algorithm infers which
contacts are likely to describe best the epidemics and uses the POLYMOD data for this). The results of the inference can
be seen in Figure S6 with the "true" values marked with a dashed line (panels C, D and E) and the posteriors in red. The
contact matrix resulting from the "true" set of resampled contacts used to simulate the epidemic and the mean POLYMOD
matrix are represented for comparison in panel B of the figure.
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Figure S6: Inference results from a simulated dataset. A: Comparison of the fit of the model to the age-specific time-
series of positive ILI cases (m+

ij) generated from the simulated epidemic. For the model, the mean (red line) with 50
and 95% CI (shaded areas) for m+

ij are based on the binomial process m+
ij ∼ Binom(Zθij , εi). For the "data", since

n+
ij ∼ HyperGeo(nij ,m

+
ij ,mij), the unbiased estimator for m+

ij is n+
ij ×mij/nij (black dots) whereas its 95% CI can

be computed using the R function hypergeo.conf (error bars). B: Comparison of the contact matrix used to simulate the
data (left panel) to the Polymod contact matrix resulting from the contact survey used as a prior for the structure of contact
in the population (right panel). C: Age-specific probability of being recorded as ILI and positive if tested and infected
(εi). D: Age-specific susceptibility at the begining of the flu season (σi). E: Transmission coefficient (q, left panel) and
derived quantities: basic (R0, middle panel) and effective (Re(t = 0), right panel) reproduction numbers. For C−E:
The prior distribution is shown in blue and the posterior distribution in red.

Results show that the algorithm is "learning" from the data. The algorithm is able to estimate the parameters correctly,
in particular the ones with no prior information (initial susceptibility). Also, the correlations between susceptibility and
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ascertainment probabilities in a given age group appears clearly together with the "banana" shape of the likelihood function
(see Figure S7).
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Figure S7: Values (posterior distributions) of the ascertainment probabilities and susceptibility for age groups 0-14 year
old, 15-44 year old and 65+ year old. The dashed lines indicate the position of the "true" values used to generate the data.

However, the actual epidemic curves underestimate the number of cases in the 0-4 year old children and overestimate
the infections among the 5-14. As the two age group share the same ascertainment probability and the same susceptibility
profile, the estimation relies on the contact matrix to adjust the mixing accordingly to the patterns observed in the data. A
closer examination of (for example) the posterior distribution of the dominant eigen values of the inferred contact matrices
(used as a summary statistics) shows that the resulting distribution "moves" away from the prior towards the "true" value
but still largely covers the prior spectrum of values (Figure S8).

If, for the same dataset, the priors (apart the one on the contacts) are tighten towards their "true" values, then the
inferred matrices move towards the "true" matrix. It is illustrated in Figure S9 where the posterior of the dominant eigen
values can be seen moving toward its "true" value.

Tests of the algorithm on simulated data suggest that the algorithm is able to infer correctly both real valued parameters
with their uncertainty and correlation structure, but also the structure of relevant epidemiological contacts inside the
population.

2.4 Comparison of our statistical framework with other approaches
Our study is the first to combine, at the scale of 14 seasons and for the three subtypes circulating in human populations,
an evidence synthesis with dynamical modelling. We utilize this analysis to assess the impact of a change of vaccination
policy. It takes into account the health care scope by including the risk structure of the population as well as the age
mixing. One of the most difficult parts of such a project is to propose a coherent framework to combine rigourous
statistical inference with dynamical modelling.

The main difficulty of the statistical modelling is to manage to link accurately the set of infectious individuals (used
in the transmission model) with the set of people recorded by GP as presenting with ILI (the observation variables). In
simple words, one needs to assess how many of the cases recorded by the GPs as ILI are actually consulting following
infections by influenza viruses. The observation process can be seen as the intersection of sets (see Venn diagram in
Figure 2 of the main paper). The accurate linkage of these two quantities is the keystone of the approach and is performed
in our study by the following model: {

m+
ij ∼ B(zθij , εi) + P(ψεiN

mon
ij )

n+
ij ∼ H(nij ,m

+
ij ,mij)

(50)

This equation mechanistically describes the drawing process of sampling and thus represent as faithfully as possible the
observation process. The inclusion of an hypergeometric distribution makes the numerical implementation of the problem
computationally challenging. Our approach to implement our model is described in Section 2.3.

To circumvent the difficulties of its implementation, it could be tempting to approximate the hypergeometric distri-
bution with a simpler distribution such as the binomial distribution. For the approximation to work well, the size of the
sample should be much smaller than the population from which it is drawn and the probability of success must not be
too close to 0 or 1. Unfortunately, under typical surveillance-oriented sampling, these conditions are constantly violated.
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Figure S8: Prior (blue) and posterior (red) distributions of the dominant eigen values of the contact matrices. The solid
vertical line represents the mode of the distribution of the eigen values of the contact matrices obtained by resampling the
POLYMOD data. The dashed line represents the ’true’ eigen value of the contact matrix used to generate the mock data
set.

For example, at the beginning of the epidemics when ILI cases are sparse in the population monitored and surveillance
high, the number of virological samples can be close to the number of people consulting. If other pathogens are low,
the positivity might be high in the course of the epidemics. The binomial approximation is likely to introduce biases,
especially during the beginning of the epidemics, the period on which the estimation of R0 is highly dependent.

Two recently published studies (both with pandemic data) present the objective of coupling statistical inference from
health care associated data and dynamical models [45, 46]. Both have adopted a binomial approximation which has lead
these studies to add further layers to enable the inference (negative binomial distributions to introduce overdispersion,
strong priors on some of the paramters, etc.).

In the first study, Birrell et al. [45] combined age-specific daily ILI, virological, confirmed cases and serological data
collected during the 2009 influenza pandemic in London. Thus, in comparison with our study, the authors benefited of
two additional type of data as well as a finer temporal resolution. Focusing only on the type of data we have in common,
Birrell et al. [45] assume that the ILI (mij) and the virological (n+

ij) data are generated as follows:
m+
ij = pGPij

∑j
k=0 p

symptzθi,j−kflag(k)

mij ∼ negB
(
m+
ij +m−ij , ηj

)
n+
ij ∼ B

(
nij ,

m+
ij

m+
ij+m

−
ij

)
,

(51)

where m−ij is the age-specific daily number of non-flu ILI cases (background consultation), ηj is a dispersion parameter,
psympt the probability, given infection, to become symptomatic, pGPij the probability, given symptomatic infection, to
consult a GP and be recorded as ILI (age and time dependent probability and the lag between infection and GP report,
which is assumed to be gamma distributed with fixed mean (µlag = 4.1 days) and standard deviation (σlag = 3.5 days)
where flag(k) gives the probability that the gamma random lag lies in the interval [k, k + 1[.
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Figure S9: Prior (blue) and posterior (red) distributions of the dominant eigen values of the contact matrices. The solid
vertical line represents the mode of the distribution of the eigen values of the contact matrices obtained by resampling the
POLYMOD data. The dashed line represents the "true" eigen value of the contact matrix used to generate the mock data
set.

Thus, in addition to the choice of the binomial for the virological sampling, Birrell’s model differs from ours as a
deterministic approach for the mean number of people consulting among the infected combined with a negative binomial
integrating the background consultation rate. The deterministic part of the process includes a time lag in ILI reporting
by GP. Though we could have included it in our model, little effect is expected on weekly aggregated ILI data as the
time-scale of this lag is likely to be less than one week. Thus, in our context, the computationally expensive evaluation of
this equation (as noted by Birrell et al. [45]) doesn’t appear fully justified.

This model is coupled with strongly informative priors on the m−ij . For this, the background consultation rate (m−ij) in
London is assumed to follow the relation:

log(m−ij) = αj + βi + γij (52)

where the time (αj), age (βi) and interaction (γij) terms are obtained by regressing this log-linear model (52) on empirical
estimates of m̂−ij = (1−n+

ij/nij)mij obtained from the regions outside London. More precisely, the log-linear regression
provides means and covariance matrix for these parameters, which are then used as priors in the Bayesian framework of
Birrell et al. [45].

The second paper, by Dorigatti et al. [46], combined age-specific weekly ILI data with weekly virological data col-
lected during the 2009 influenza pandemic in Italy. In contrast to our study, the weekly virological data were only available
at the population level. Put another way, the authors had to use the age-aggregated weekly number of tested (n̄j =

∑
i nij)

and positive (n̄+
j =

∑
i n

+
ij) samples.

Dorigatti et al. [46] introduce the weekly true positivity in the entire ILI population: πj =
∑
im

+
ij∑

imij
and assume that

m+
ij and n̄+

j are generated by the following processes:

23




m+
ij ∼ B(zθij , εi),

n̄+
j ∼ B(n̄j , πj)

m−ij ∼ negB(m+
ij , 1− πj),

(53)

The use of the negative binomial to generate the m−ij is mathematically convenient as it allows to use a conjugate beta
prior to simplify the calculation of the associated likelihood. It is nevertheless not appropriate in terms of representation
of the sampling mechanism, and, as noted by Dorigatti et al. the process can generate situations where the inferred m−ij
are bigger than the monitored populations.

3 Supplementary results

3.1 Inference for 14 seasons and 3 subtypes
3.1.1 Season 2003/04 with serology

Figure S32 gives the serological data for the 2003/04 season. Reasonable convergence of the Markov chain was achieved
and the model gives sensible best-fitting parameter estimates. For instance, the best fit gives a value of R0 = 1.8 and
Re(t = 0) = 1.35, which are consistent with other estimates for influenza (e.g. Ferguson et al. 2005). The transmissibility
q is estimated as 0.165 with a 95% credible interval of [0.132, 0.205]. We thus have chosen for the other years a normal
prior where q follows a normal distribution N (0.165, 7.69 × 10−4) distribution (so the prior of the other year have the
same mean and a standard deviation 1.5 times bigger than the posterior of the 2003/04 season in H3N2).

3.1.2 Other seasons

Figures S10 to S51 compare the fit of the model to the age-specific swabbing data (left 4 panels), and show posterior
distributions for some of the estimated model parameters, and the derived quantities R0 and Re (bottom row), for H3N2,
H1N1 and influenza B and each of the year of the period. The comparison of the predicted positivity with the observed
one suggests that the model is able to capture the timing and magnitude of the strain-specific epidemic peaks, as well as
the age-specific positivity. It also highlights the wide credibility intervals on the swabbing data, which are derived from
relatively small sample sizes taken in any given week for any given age group.

In general, for a given strain, in years in which there were significant numbers of positive cases, then the expected
pattern of susceptibility with age is observed, with higher levels of susceptibility in the younger age groups, declining into
adulthood and the elderly (see for instance H3N2 1996/97, H1N1 2000/1 and B 2000/01). In these years, the effective
reproduction number at the outset of the epidemic, (Effective reproduction number, middle of panel D) is estimated to
be well above one, as expected. In years in which there were very few positive samples, the model cannot accurately
distinguish between low numbers of initial seeds (which is related to low importations) with perhaps relatively high
susceptibility, or higher number of seeds and lower susceptibility. Hence, in these years there are wide credibility intervals
on the estimates of age-specific susceptibility (see for instance, H1N1 1996/97). However, even in these years very high
levels of susceptibility are not well supported by the data, and the distribution for the reproduction number only just
exceeds one. Examining the pattern of susceptibility over time for a given strain, it is clear that the model suggests that
susceptibility is generally higher at the outset of an epidemic year, and lower in years in which there is no epidemic (see
for instance, for influenza B, comparing the posterior distribution on susceptibility around the epidemic years of 1996/97,
2000/01 and 2005/06).

Estimates of the contact patterns (top right panel for Figures S10 to S51) are relatively tight and consistent from one
year to the next and between strains; with contact within and between age group 3 (5-14) and other age groups being
consistently estimated as the highest. The exception to this is the mixing within the first age class (under 1), in which
there are very wide CIs on the underlying contact rate. This is due to a combination of very small sample size in the
original POLYMOD dataset for this age group, and no age-specific epidemiological data (no swabs were taken from the
under 1s).

3.1.3 Strain: H1N1
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Figure S10: Inference results for H1N1 during the 1995-96 season. A: Comparison of the fit of the model to the age-
specific time-series of positive ILI cases (m+

ij) estimated from the data. For the model, the mean (red line) with 50
and 95% CI (shaded areas) for m+

ij are based on the binomial process m+
ij ∼ Binom(Zθij , εi). For the data, since

n+
ij ∼ HyperGeo(nij ,m

+
ij ,mij), the unbiased estimator for m+

ij is n+
ij ×mij/nij (black dots) whereas its 95% CI can

be computed using the R function hypergeo.conf (error bars). B: Comparison of the contact matrix of the Polymod study
(left panel) to the resampled matrix of the maximum likelihood MCMC sample (right panel). C: Age-specific probability
of being recorded as ILI and positive if tested and infected (εi). D: Age-specific susceptibility at the begining of the flu
season (σi). E: Transmission coefficient (q, left panel) and derived quantities: basic (R0, middle panel) and effective
(Re(t = 0), right panel) reproduction numbers. For C−E: The prior distribution is shown in blue and the posterior
distribution in red.
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Figure S11: Inference results for H1N1 during the 1996-97 season. See the legend of the Figure S10 for more details.

Figure S12: Inference results for H1N1 during the 1997-98 season. See the legend of the Figure S10 for more details.
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Figure S13: Inference results for H1N1 during the 1998-99 season. See the legend of the Figure S10 for more details.

Figure S14: Inference results for H1N1 during the 1999-00 season. See the legend of the Figure S10 for more details.
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Figure S15: Inference results for H1N1 during the 2000-01 season. See the legend of the Figure S10 for more details.

Figure S16: Inference results for H1N1 during the 2001-02 season. See the legend of the Figure S10 for more details.
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Figure S17: Inference results for H1N1 during the 2002-03 season. See the legend of the Figure S10 for more details.

Figure S18: Inference results for H1N1 during the 2003-04 season. See the legend of the Figure S10 for more details.
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Figure S19: Inference results for H1N1 during the 2004-05 season. See the legend of the Figure S10 for more details.

Figure S20: Inference results for H1N1 during the 2005-06 season. See the legend of the Figure S10 for more details.
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Figure S21: Inference results for H1N1 during the 2006-07 season. See the legend of the Figure S10 for more details.

Figure S22: Inference results for H1N1 during the 2007-08 season. See the legend of the Figure S10 for more details.
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Figure S23: Inference results for H1N1 during the 2008-09 season. See the legend of the Figure S10 for more details.
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3.1.4 Strain: H3N2

Figure S24: Inference results for H3N2 during the 1995-96 season. See the legend of the Figure S10 for more details.

Figure S25: Inference results for H3N2 during the 1996-97 season. See the legend of the Figure S10 for more details.
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Figure S26: Inference results for H3N2 during the 1997-98 season. See the legend of the Figure S10 for more details.

Figure S27: Inference results for H3N2 during the 1998-99 season. See the legend of the Figure S10 for more details.
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Figure S28: Inference results for H3N2 during the 1999-00 season. See the legend of the Figure S10 for more details.

Figure S29: Inference results for H3N2 during the 2000-01 season. See the legend of the Figure S10 for more details.
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Figure S30: Inference results for H3N2 during the 2001-02 season. See the legend of the Figure S10 for more details.

Figure S31: Inference results for H3N2 during the 2002-03 season. See the legend of the Figure S10 for more details.
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Figure S32: Inference results for H3N2 during the 2003-04 season. See the legend of the Figure S10 for more details.

Figure S33: Inference results for H3N2 during the 2004-05 season. See the legend of the Figure S10 for more details.
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Figure S34: Inference results for H3N2 during the 2005-06 season. See the legend of the Figure S10 for more details.

Figure S35: Inference results for H3N2 during the 2006-07 season. See the legend of the Figure S10 for more details.
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Figure S36: Inference results for H3N2 during the 2007-08 season. See the legend of the Figure S10 for more details.

Figure S37: Inference results for H3N2 during the 2008-09 season. See the legend of the Figure S10 for more details.
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3.1.5 Strain: B

Figure S38: Inference results for B during the 1995-96 season. See the legend of the Figure S10 for more details.

Figure S39: Inference results for B during the 1996-97 season. See the legend of the Figure S10 for more details.
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Figure S40: Inference results for B during the 1997-98 season. See the legend of the Figure S10 for more details.

Figure S41: Inference results for B during the 1998-99 season. See the legend of the Figure S10 for more details.
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Figure S42: Inference results for B during the 1999-00 season. See the legend of the Figure S10 for more details.

Figure S43: Inference results for B during the 2000-01 season. See the legend of the Figure S10 for more details.

42



Figure S44: Inference results for B during the 2001-02 season. See the legend of the Figure S10 for more details.

Figure S45: Inference results for B during the 2002-03 season. See the legend of the Figure S10 for more details.
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Figure S46: Inference results for B during the 2003-04 season. See the legend of the Figure S10 for more details.

Figure S47: Inference results for B during the 2004-05 season. See the legend of the Figure S10 for more details.
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Figure S48: Inference results for B during the 2005-06 season. See the legend of the Figure S10 for more details.

Figure S49: Inference results for B during the 2006-07 season. See the legend of the Figure S10 for more details.
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Figure S50: Inference results for B during the 2007-08 season. See the legend of the Figure S10 for more details.

Figure S51: Inference results for B during the 2008-09 season. See the legend of the Figure S10 for more details.
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3.2 Detailed time series by subtype and age group

H1N1

0

1

2

3

0.0

2.5

5.0

7.5

0

5

10

15

20

0

5

10

15

20

0

5

10

15

0 - 4 y
5 - 14 y

15 - 44 y
45 - 64 y

65+
 y

01Jan1995 01Jan2000 01Jan2005 01Jan2010
Time

N
um

be
r 

of
 p

os
iti

ve
 IL

I c
as

es
 (

in
 th

ou
sa

nd
)

Figure S52: Inference results for H1N1 for the whole 14 years.

3.3 Posteriors of the contact matrices
The distribution of the posterior matrices during the epidemic year are very close from the POLYMOD prior distribution.
This indicates the consistency of POLYMOD data with the observed epidemics but also illustrates the uncertainty present
in the data. Little is learnt in terms of contact structure beyond the information contained in the POLYMOD survey. To
illustrate the similarity between the posterior distributions of the inferred contact matrices and the POLYMOD prior, we
have plotted the posterior of the dominant eigenvalues of these matrices for the seasons where a particular strain was
circulating (Figure S55). The posterior of the contact values overlap almost entirely with the prior POLYMOD matrix.

3.4 Assortativity and reproduction numbers
Figure S56 shows the values of the specific reproductive numbers (RCC and RAA) and the assortativity (dR) computed
from the posterior distributions of the model for the 23 strain-specific seasonal outbreaks observed during the 14 seasons
of the study. Figure S56 shows the values of the specific effective reproductive numbers (ReCC and ReAA ).
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Figure S53: Inference results for H3N2 for the whole 14 years.

3.5 Pairwise significance of differences between strategies
Due to the structure of correlations, the posterior distributions of some of the outcomes measured to compare the different
vaccination strategies might present overlapping credibility intervals. This is particularly true for the deaths due to the
important uncertainties surrounding some of the CFRs. In order to assess the significance of the differences between
strategies when analysed jointly (rather than comparing marginals), we computed in Tables S58 and S59 the p-values of
the differences in term of cases and deaths averted per dose between each pairs of strategies.

3.6 Sensitivity analysis
To assess the robustness of our study, we tested the stability of the results to two variations from the original assumptions
of our model.

3.6.1 Prior on transmissibility

We tested the sensitivity of the results to the choice of variance for the transmissibility prior (chosen to be 1.5 times the
variance of the posterior of transmissibility for the year for which we had serology). For this we have chose to scale our
prior by 1.2 and 1.8 instead of the 1.5 value. It can be seen in Figure S60 that the results are not affected by the change of
variance of the transmissibility prior.
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Figure S54: Inference results for B for the whole 14 years.

3.6.2 Improved vaccine efficacy in elderly

As a base case for the study, we assume based on Fleming at al. [28] that the vaccine efficacy is lower for the 65+ age
group. Here we measure the impact of a possible improvement in vaccine efficacy for older age groups. We thus have
tested the robustness of our conclusions to the assumption than the vaccine efficacy in 65+ year old is the same than for
other age group. Results are shown in Figure S61. As expected, strategies involving vaccination of the elderly becomes
more efficient, nevertheless the conclusions than vaccination targeting children is the most efficient strategy (in term of
reducing infections and deaths) remains true.
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Figure S57: Values (posterior distributions) of the specific effective reproductive numbers for children and adults ReCC
and ReAA during the study period for all strains present at an epidemic level during the season.
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Figure S58: Computation of the pairwise significance of the differences observed between strategies in term of cases
averted. Strategies are ordered by increasing number of doses given. A circle indicates that the tested strategy averts
cases compared with the reference strategy. The size of circle gives the range of the difference, the colour indicates the
significance of the difference between the two posterior distributions of the strategies. Red disks show high significance
with p-values < 0.01, green disks show significance with p-values < 0.05, and blue disks show non significant differences
with p-values between 0.05 and 0.5. The black diagonal line represents the bisector, tested strategies appearing below the
bisector are very effective: they involve less doses than the reference with which they are compared but results in a greater
number of cases averted per dose.
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Figure S59: Computation of the pairwise significance of the differences observed between strategies in term of deaths
averted. Strategies are ordered by increasing number of doses given. A circle indicates that the tested strategy averts
deaths compared with the reference strategy. The size of circle gives the range of the difference, the colour indicates the
significance of the difference between the two posterior distributions of the strategies. Red disks show high significance
with p-values < 0.01, green disks show significance with p-values < 0.05, and blue disks show non significant differences
with p-values between 0.05 and 0.5. The black diagonal line represents the bisector, tested strategies appearing below the
bisector are very effective: they involve less doses than the reference with which they are compared but results in a greater
number of deaths averted per dose.
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Figure S60: Computation of the number of infections and deaths averted by vaccination is not sensitive to the change of
variance in the transmissibility prior.
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Figure S61: Effectiveness of the alternative programmes when assuming that the vaccine efficacy of the 65+ is the same
than the one of the other age groups.
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Figure S62: Effectiveness of the alternative programmes when taking into account the epidemiological uncertainty for
each year.
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