Supplemental Table 1: Hydroxylating activity of CYP52M1 against various fatty acids.

Fatty acid	Activity
C12:0	-
C14:0	-
C16:1	++
C16:0	++
Δ6, Δ9, Δ12 C18:3	++
Δ9, Δ12, Δ15 C18:3	++
C18:2	++
C18:1 ^{Δ9}	++
C18:0	++
Δ5, Δ8, Δ11, Δ14 C20:4	+
C20:1	+
C20:0	-
C22:0	-

(- no hydroxylation; + <10% substrate conversion, ++ 10–25% substrate conversion).

Fig. S1. Examples of sophorolipids produced by *S. bombicola*. (A) diacetylated lactonic sophorolipid, (B) non-acetylated open-chain sophorolipid.

	10	20	30	40	50	60	70	80	90	100
СҮР52М1	 MLIKDIILTPMSESA	. Vagllpllfva	. FLVLHEPIWLI	 Lwyryaarrhk		. SFPLGIQRTMI				 Dapl
CYP4A11 CYP4F2	MSVSVLSPSRL-LGD	VSGILQAASLL	ILLLLLIKAV	QLYLHRQWL-L	KALQQFPCP	P-SHWLFGHIG	ELQQDQE		TFPSACPHWI	
CIF4FZ	MSQUSUSWIG				, ANHACIAP QP .			MCUIQUV	III PQGPRVM	1911
	110	120	130 ••• ••• •	140 ••• •••• ••	150	160 ••• ••• •	170 	180	190	200 ••••
CYP52M1 CYP4A11	QYQIFTIEPENIKTI KVBVOLYDPDYMKVI	LATKFN-DFGL	GARFHTVGKVI	FGQGIFTLSGN LCYCLLLLNCC	IGWKQSRSMLI DTWFOHRBML	REQETKDQVCE TRADHYDTLKE	RIDQISSHAAE	LIKEMNRAME	CVDQFIDVQ	2HYF FOHV
CYP4F2	SPLLSLCHPDIIRSV	INASAAIAPKD	KFFYSFLEPWI	LGDGLLLSAGD	KWSRHRRML	rpafhfnilki	PYMKIFNESVN	IIMHAKWQLLA	SEGSACLDMI	FEHI
	210	220	230	240	250	260	270	280	290	300
CYP52M1	 HKLINIDTATEFLEGE		. CIVARDGSEI	 TAEQFVESYNF	. 'LLNYAFKRT	SSKVYWLFNS	 SKEFRDHKKRA	 QSYIDYYVDR		 Ensi
CYP4A11 CYP4F2	SLMTIDTIMKCAESH SLMTIDSLOKCVESE	QGSIQVDRNSQ	SYIQ-AISDL	NNLVFSRVRNA SALVSKRHHET	FHQNDTIYS	TSAGRWTHR	CQLAHQHTDQ CBLVHDFTDA	VIQLRKA		-LEK
011 112				240	25.0		070			
	310 <u>.</u> . <u>.</u>		330 •• <u>• </u> • <u>•</u> •• •	340 ••• <u> </u> •••• ••	<u> .</u>	360 • <u>••</u> •••• <u>•</u> •	370 . <u>.</u>	380 •• • <u>•</u> • • <u>•</u>	390 	400 •••
CYP52M1 CYP4A11	AEKDAAAESSGIYVF IKRKRHLDFLDILLL	SLEMAKVTRDP AKMENGSILSD	VTIRDQIFNII KDLRAEVDTFN	LIAGRDTTAAT MFE <mark>GH</mark> DTTASG	'LSFAIHFLA ISWILYALA'	RNPDVFNKLRF THPKHQERC <mark>R</mark> F	EDVLDHFGTKE	EQRPLSFELI ASITWNH	KQAPYLKQV: DQMPYTTMC:	INDV IKDA
CYP4F2	KAKSKTLDFIDVLLL	SKDEDGKKLSD	edi <mark>r</mark> aeadtfi	MFE <mark>G</mark> H <mark>DTTA</mark> SG	LSWVLYH <mark>LA</mark>	KHPEYQERCRO	PEVQELLKDRE	-PKEIEWDD	AHLPFLTMC	1KDS
	410	420	430	440	450	460	470	480	490	500
CYP52M1	LRLAPVLPLNFRTAV		 EQKDPIF <mark>V</mark> EK(GTAVYY <mark>SIY</mark> MV	∣		 ENLKLDNVW	AFLPFNGGPF	ICLGQQFAL	··· FisLS
CYP4A11 CYP4F2	LRLYPPVPGIGRELS LRLHPPVPVISRHVT	TPVTFPDGRS- QDIVLPDGRV-	LPK0 IPK0	GIMVLLSIYGL GIICLISVFGT	HHNPKVW-P HHNPAVW-P	NPEVFDPFRF# DPEVYDPFRFI	APGSAQHSH OPENIKERSPI	AFLPFSGGSF AFIPFSAGPF	NCIGKQFAMI NCIGQTFAM2	NDLK ADMK
	510	520	530	540	550					
CYDE 2M1										
CYP4A11	VATALT	PTRIPIPI-AR	LVLKSKNGIH	LRLRRLPNPCE	DKDQL					
CYP4F2	VVLALT	HT-EERRK-PE	LVIRAEGGLWI	LRVEPLS						

Fig. S2. Alignment of the CYP52M1 protein (Genbank Accession Number EU552419) with human CYP4A11 (Genbank Accession Number AAA58436) and CYP4F2 (Genbank Accession Number AAI36300). Multiple sequence alignments were made with the CLUSTAL W program.

Fig. S3. 19- and 20-HETE show characteristic signals at δ 3.6-3.9 ppm.

Fig. S4. 20-HETE increased endothelial cell proliferation in HUVECs after 18 h treatment. The HUVECs were serum-starved for 24h, then treated with 20-HETE in basal medium for 18 h, cell viability was assessed by a MTT assay.