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Appendix S1: Proof of the Probabilistic Pumping Lemma

Statement of Lemma. For any probabilistic finite-state process, any initial distribution over initial states,
and any word w, if there exists a p such that for all k > p, P (wk) > 0 [possibility condition], and the
process is not simply a deterministic repetition of a single word w, there exists a positive real number ε,
0 < ε < 1, such that exp[limk→∞ sup (1/k) logP (wk)] = ε as k becomes large.

Proof. We will assume the Mealy machine formalism (observed symbols are emitted upon transitions
between internal states [1]). Let A be the transition matrix for the process; an element Aij(σ) gives the
conditional probability of a transition to state j, emitting symbol σ, given that one was previously in
state i. If the process is reducible, we will assume that sufficient time has passed for the process to reach
irreducible subspace of this matrix, and we confine our attention to that subspace.

We may extend the definition of A(σ) to words, as

Aij(w) =
∑

a1,...,a|w|

A(w0)ia1A(w1)a1a2 · · ·A(w|w|)a|w|j ,

where wi is the ith symbol in word w. We have, further,

0 < Aij(w) ≤ A|w|ij , (1)

or, in words, the probability to go from state i to state j and emit the word w is less than or equal to
that of simply going from i to j in the same number of steps.

By the Perron-Frobenius theorem, the inequality of Eq. 1 implies that all eigenvalues, βi, of Aij(w)
are within the unit circle (|βi| ≤ 1 for all i) with equality obtaining only in the case that Aij(w) is

identical to A
|w|
ij . We neglect this latter, trivial case, which only obtains when w is shift-invariant and the

all observation runs are given by repeated instances of w. Conversely, the possibility condition amounts
to the condition that the matrix Aij(w) is not nilpotent, and there exists a non-zero eigenvalue.

If the system (or our knowledge of it) is distributed over its internal states according to probability
vector πi, we can write the probability of observing a repeated string w as a trace,

P (wk) =

n∑
i,j=1

πiA
k
ij(w). (2)

While we have assumed for simplicity that Aij is irreducible, this will not usually be the case for Aij(w).
This latter matrix will in general contain both essential and inessential “self-communicating” classes1

along with a set of nuisance indices that connect to no other class (i.e., i for which Aij(w) is equal to
zero for all j) [3].

The structure of Aij(w) may be visualized as a directed acyclic graph. Inessential classes may have
non-zero out-degree, while essential classes, and nuisance indices, are the terminal nodes. Self-loops are
permitted, and exist for both inessential and essential classes; these will be crucial to our argument below.

1An index i leads to an index j (written i → j) iff there exists a k such that Ak
ij(w) > 0. Indices i and j communicate

if i → j and j → i. Communication is an equivalence relation, so that classes can be built that contain indices that
communicate with each other. Essential classes (sometimes called “final” classes [2]) are those which do not lead to any
index outside the class; inessential classes are those which may.
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Because the initial distribution π may have zero entries, we consider only the part of Aij(w) corre-
sponding to descendants of the non-zero part of π in the associated directed acyclic graph. Transitions
among the set of nuisance indices, by definition, can not repeat an index. Thus their structure is not
relevant to the asymptotic behavior of P (wk), and we may focus on the essential and inessential classes.

We are particularly interested in the classes that will dominate the P (wk) probability as k becomes
large. Consider the restriction of Aij(w) to a particular class α: i.e., construct a submatrix from Aij(w)
using only i, j ∈ α. Call this restriction αij(w). Consider, similarly, the restriction of the distribution π
to this class.

Assume first that αij(w) is diagonalizable. Then, the probability of producing k copies of w, while
remaining in the class α, is

P (wk|α) =

|α|∑
i,q=1

βkq π
(q)v

(q)
i , (3)

where βq is the qth eigenvalue of α(w), and

πi =

|α|∑
q=1

π(q)v
(q)
i . (4)

By construction of the equivalence classes, α is irreducible. Then, by the Perron-Frobenius theorem, the
largest eigenvalue of this matrix, β1, is real, has a strictly positive eigenvector, and π(1) is necessarily
greater than zero.

If αij(w) is acyclic then P (wk|α) can be written

P (wk|α) = A1β
k
1

(
1 +

α∑
i=2

Ai

(
βi
β1

)k)
, (5)

where A1 > 0, β1 is real, and |βi| < β1 for all i > 1, and

exp

[
lim
k→∞

(
1

k
logP (wk|α)

)]
= β1. (6)

If αij(w) is diagonalizable, but the period, d, is greater than one, we will have additional eigen-
vectors associated with complex rotations of β1, β1 exp 2πik/d, k = {1 . . . d − 1}. These will lead to
additional oscillatory terms in the leading order term; these oscillations of will be governed by an overall
exponentially-decaying envelope, so that

exp

[
lim
k→∞

sup

(
1

k
logP (wk|α)

)]
= β1, (7)

regardless of the period of αij(w).
Finally, consider the case of non-diagonalizable αij(w). In this case, the matrix can be brought into

Jordan normal form, with m blocks, each of size ni and associated with an eigenvalue βi. Assume that
the matrix is aperiodic. By the Perron-Frobenius theorem, n1 is equal to one [4]. The kth power of
αij(w) can then be written (see, e.g., Ref. [5]),

P (wk|α) = A1β
k
1 +

m∑
i=2

ni−1∑
j=0

Aij

(
k

j

)
βk−ji

 , (8)

where A1 > 0, β1 is real, and |βi| < β1 for all i > 1 as before. When k is greater than the largest block
size, we can write

P (wk|α) = A1β
k
1

(
1 +

m∑
i=2

fi(k)

(
βi
β1

)k)
, (9)
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where fi(k) is a polynomial function of k, of degree ni − 1. Eq. 8 thus obeys Eq. 6; for a non-aperiodic
α, an argument identical to the above gives the convergence of Eq. 7.

Having understood the single-class case, we now consider wk strings generated by multiple classes.
Any particular string wk may be generated by a set of transitions within and between classes. Because

these transitions are governed by the directed acyclic graph structure, there will be a finite number of
transitions between states. Thus, as k becomes large, the probability of P (wk) for a particular set of
transitions will be governed by the self-transitions, given by terms of the form Eq. 7.

In particular, P (wk) is the sum of a finite number of terms; each term in the sum is a product of
at most p transitions between classes, and at least k − p terms of the form P (wn|α), for different α.
Explicitly,

P (wk) =
∑
i∈p(G)

Ti

N∏
j=1

P (wni,j |αj), (10)

where i indexes the paths of length k through the graph G representing the underlying Aij(w) structure,
Ti is a prefactor governing the probabilities of transitions between classes, N is the number of classes,
and the total number of within-class transitions is forced to grow with k,

N∑
j=1

ni,j ≥ k − p (11)

for all possible paths i.
For large k, the growth in the number of possible paths (i.e., the growth of the |p(G)|) is bounded by

the growth in the number of ways to partition the sum in Eq. 11. In particular, for large k, the number
of possible paths relevant to P (wk) can increase only polynomially in k.2

Meanwhile, each term in the sum of Eq. 10 is decreasing exponentially, governed by products of the
βi,1, the largest eigenvalues for the classes that have self-transitions for that term. The dominant terms
in the sum will be those for which the exponential decline is slowest. By the Perron-Frobenius theorem,
the largest eigenvalue of a submatrix associated with a class of Aij(w) is equal to the spectral radius of
the matrix as a whole. If P (wk) is greater than zero for k larger than p, the pigeonhole principle invoked
in the ordinary pumping lemma [6] allows us to assume the existence of at least one self-communicating
class; this then means that the spectral radius is equal to that of Aij(w) itself.

0 < exp

[
lim
k→∞

sup

(
1

k
logP (wk)

)]
= ρ(Aij(w)) < 1, (12)

which was to be proved.
While our paper presents the first explicit application of this form of reasoning to human social

systems, we note in passing the use of this kind of reasoning in the study of bird song. Once regarded as
strictly finite-state [7], the sound sequences produced by songbirds are now recognized to show features
of non-finite-state computation. A recent, compact model of song production in the Bengalese finch
(Lonchura striata domestica) [8], demonstrates the need for a self-modifying (and thus non-finite-state)
Markov process.

An analysis of data on a different species, the Zebra finch (Taeniopygia guttata), shows that the prob-
ability of an additional repetition, the analog of this paper’s P (Ck+1)/P (Ck), decreases exponentially [9].
This is, of course, the other way to violate the probabilistic pumping lemma (under the assumption of
having reached an aperiodic final class)—the exponential of the lim-sup, Eq. 7, goes to zero as opposed to
unity. It is just as much evidence against finite-state computation, but found in the anomalous absence,
rather than presence, of extreme events.

2For any set of transitions between classes, the number of self-transitions is bounded by k, and the number of distinct
classes to assign those self-transitions to is bounded by p, the number of states in the machine. The number of ways p terms
can sum to k is

(k−1
p−1

)
, which is bounded by the polynomial kp.
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Figure 1. Numerical study of convergence of repeated word frequencies to exponential decay, with
cutoff predicted by the spectral radius. Shown here is the measured decay rate to the asymptotic limit
predicted by Eq. 12, for irreducible finite-state processes with ten states, two output symbols {C,R}, w
equal to C, and a uniform distribution over values of ρ(Aij(w)), the spectral radius and asymptotic
decay rate, between 0 < ρ < 1. Light blue shows 2σ, and dark blue 1σ ranges about the median value.
For empirical work, convergence is much faster when considering [P (wq+k)/P (wq)]1/k, with q larger
than the (assumed) number of states.

Appendix S2: Numerical Tests of Convergence Properties

With a view towards determining how the lemma of the previous section applies to actual finite-state
processes, we study a restricted class of machines numerically. We sample from the space of probabilistic
unifilar machines with p states over a two-symbol alphabet. Such a system can be represented by a
weighted, directed graph, with each node having at least one, and at most two outgoing edges, each of
which is associated with one of the two symbols, and whose weights sum to unity.

For small p, the underlying graph-theoretic space can be described completely: for each node, we have
a choice of one vs. two outgoing edges; in the case of only one outgoing edge, we must choose between
the two symbols. Neglecting the possibility of equivalent machines, we then have the number of such
machines, as a function of p, as

N(p) = (2p+ p2)p, (13)

which grows rapidly: there are 12 billion such machines with six states, and more than 10400 with one
hundred states.

We are most interested in how quickly the statistics of an actual machine approaches the limiting value
given by Eq. 12. For any particular Aij(w), we can compute the spectral radius and compare that to the
ratio P (wk)/P (wk−1) found for distributions over initial conditions that include a self-communicating
class as a function of k.

In Fig. 1 we show convergence to the limit by sampling the space of strongly-connected ten-state
machines, and considering the frequency of a single repeated symbol. We take a uniform prior over
ρ(Ai(w)), the spectral radius and limit established by the lemma of the previous section, and show the
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Figure 2. Convergence to exponential cutoff as seen with Ĉ(q, k) (Eq. 15), for the same system as in
Fig. 1. Here we take q equal to ten, the number of states. For the same amount of data, convergence is
faster for Ĉ than C; here convergence for Ĉ to the asymptotic value (at 1σ confidence), is achieved for k
equal to thirty.

convergence ratio, i.e.,

C(k) =
[P (wk)]1/k

ρ(Aij(w))
, (14)

to provide a numerical example of the limiting process established in the previous section. For small k,
P (wk) may be dominated by movement through nuisance states and inessential classes, and by contribu-
tions from essential classes that have small self-communication probability. Convergence to the spectral
radius thus occurs much faster when considering

Ĉ(q, k) =
[P (wq+k)/P (wq)]1/k

ρ(Aij(w))
, (15)

where q is longer than the relevant scales of the transient phenomena (e.g., at least as large as the assumed
number of states.) This is shown explicitly in Fig. 2, where we take q to be the number of states in the
system.

Appendix S3: Details on Coarse-Graining and Analysis of Wikipedia
Behavior

Our coarse-graining of behaviors on any particular page aims at locating where one user reverts (undoes)
the contributions of another editor completely. We locate reversion edits in two distinct ways. Firstly, fol-
lowing Ref. [10], we can identify reversion edits by the presence of keywords, such as rv and revert, in the
edit summaries; we do so with the following regular expression: /([Rr][v]+[\ \n]|[Uu]ndid|[Rr]evert)/.
Secondly, following analyses such as those of Ref. [11], we can look for versions of a page with identical
SHA1 checksums; the version with the later timestamp may thus be considered a revert to the earlier
page. In general, these two metrics align very well, although not perfectly; in this work, we focus on the
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latter method as a more objective one that does not rely on editors self-reporting. We do not include
self-reverts, or edits that do not alter any aspect of the page (i.e., that would otherwise look like “reverts
to the current version”).

The probabilistic pumping lemma works in terms of P (wk), and our analysis considers the probability
of repeated cooperation. However, the measurement of P (Ck) in the data, if done naively, leads to
unacceptable results. In particular, estimating P (Ck) for a particular page by counting the number of
times the string Ck appears in the time-series, leads to strong bin-to-bin correlations, since an observation
of a string Ck necessarily leads to observations of strings of the form Ck−1, Ck−2, . . . , Ck−bk/2c+1, and
then two observations of the form Ck−bk/2c, and so on. This would lead to excessive complications in
the likelihood analysis; conversely, if the correlations are neglected, it leads to claims of heavy-tailed
distributions that spuriously rule out exponential decay.

Instead, we count prefix- and suffix-free strings that do not have this shift problem—in particular, we
consider the quantity N(RCkR). As long as N(RCkR) is significantly less than N, counts of RCkR and
RCmR are independent of each other and we can write

P (RCkR) ≈ N(RCkR)

N
.

The quantity P (RCkR) itself can be written as

P (RCkR) = P (R)P (Ck|R)P (R|RCk) = P (R)P (Ck|R)
[
1− P (C|RCk)

]
= P (R)

[
P (Ck|R)− P (Ck+1|R)

]
. (16)

In the case that P (Ck|R) is the sum of exponentials in k, we have

N(RCkR) ∝ P (Ck|R) ∝ P (Ck), (17)

or, in words, that if P (Ck) is a sum of exponentials, so is N(RCkR). The relationship between these
two quantities is not always so simple; in the collective state (CS) case, Eq. 16 implies that the quantity
N(RCkR) has a different functional form from P (Ck). In particular, we have

PCS(RCkR) =
Ap

(k + 1)α

k∏
i=1

(
1− p

iα

)
, (18)

which is the functional form we fit and display in Fig. 1 of the Main Article.

Appendix S4: Details on Model Selection

In this section we describe in greater detail our methods for distinguishing between the asymptotic and
exponential models.

Computation of the likelihood ratio requires an error model for the distributions of N(RCkR). Since
we lack an explicit model for the errors themselves, as a first approximation, we take measurements of
N(RCkR) to be identically and independently distributed. For N(RCkR) � N , N the total number of
observations, this is a reasonable assumption. Given this, the Poisson distribution of counts follows, and
computation of L, the log-Likelihood, or logP (D|~w,M), for any particular model M with parameters ~w,
can be written as

∆L =

kmax∑
k=1

N(RCkR) log λ(~w, k)− λ(~w, k), (19)

where we drop model-independent constants. Given sufficiently flat priors, P (~w|M), around the peak of
this function, this is sufficient to estimate many quantities of interest, including the maximum a posteriori
values of ~w and the error bars on those estimates.
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Our main goal, however, is not parameter estimation, but rather model selection, where one compares
models with different parameter spaces. In our particular case, one class of models (nEXP) can approxi-
mate, by superposition of exponentials, the other class (CS). As the number of exponentials in the sum
increases, the approximation becomes increasingly good. We would like to know when we are justified in
preferring the more parsimonious model.

Two main frameworks for the resolution of this question exist. On the one hand, the Aikiake Infor-
mation Criterion (AIC) can be used to estimate the expected KL divergence between the predictions of
a model and the true process. In the limit of large amounts of data, it prescribes a constant penalty of
k, the number of parameters, to the likelihood.

This penalty is sometimes taken as an “Occam penalty,” but the correct interpretation is as a guide for
prediction out of sample. Prediction out of sample is a conceptually distinct problem, since a complicated
approximation to the true model may work very well in a limited range, particularly in the presence of
experimental noise. In Monte Carlo testing, AIC tends to prefer complicated approximations, even
in cases where the underlying model is more parsimonious [12]; a related formal result is that AIC is
“dimensionally inconsistent,” meaning that even in the limit of infinite data, use of the AIC will lead to
non-zero probability of choosing an (incorrect) approximation [13].

On the other hand, one can compute (or approximate) what is called the Evidence3, which requires
knowledge of both the likelihood, P (D|~w,M), and the prior expectation of parameter ranges, P (~w|M),

E = P (D|M) =

∫
P (D|~w,M)P (~w|M) dkw, (20)

where k is the number of parameters (dimensionality of ~w). Formally, the Evidence is proportional to “the
probability of the model M , given the data observed,” if equal prior probability is given to the models
under consideration. As in all model selection cases, absolute values of the Evidence are irrelevant. One
considers only ratios and phrases the question, as in Table 1, as to whether (for example) “model A is at
least a factor of 103 more likely than model B.”

In this work, we take the latter approach, operating entirely within the Bayesian framework. This
is because our contrasting model classes have small numbers (less than ten) of parameters, all of which
have clearly specifiable priors, P (~w|M). Computation of the full posterior is now common when these
circumstances obtain, as is often the case in the exact sciences [14–16].

In order to calculate E, we use the Laplace (or saddle point) approximation; in log-units,

E = logE ≈ L(~wmax) + logP (~wmax|M)

−1

2
log detA+

1

2
k log 2π,

where L is the log-likelihood, ~wmax are the parameters that maximize the likelihood, and A is the Hessian,
equal to

Aij = − ∂2L
∂wi∂wj

∣∣∣∣
~wmax

. (21)

We refer the reader to Ref. [17] for details on this approximation.
It remains to specify the priors P (~wmax|M) for the two models. The nEXP class has 2n parameters;

the CS class has 3. The parameters are of two kinds.
Both nEXP and CS have parameters corresponding to the one-step decay of the underlying quantity

P (Ck). In the case of nEXP, there are n such parameters, bi, that play this role. In the case of CS, there
is only one, p. We take a uniform prior in p (CS) and bi (nEXP). We allow all p to range independently

3A common rough approximation to this function gives the BIC, or “Bayesian Information Criterion,” which prescribes
a penalty of n log |D|, where |D| is the amount of data.
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between zero and 0.995; the high end corresponds to an exponential cutoff of order 200 repeats, much
longer than seen in the data.

We then have normalizations of terms (n normalizations for nEXP, one for CS). These are fixed by
the value of P (C1), the overall cooperative fraction.

N(C) ≈ NP (C). (22)

The maximum value of P (C) is unity. This then leads to an overall area factor of

Nn

n!
, (23)

for nEXP, where the factor of n! is because the overall sum of all normalizations is confined to the interior
of an N-dimensional simplex. In the case of CS, P (C1) is equal to A(1 − p). We thus have to integrate
over the range of p values to find the area associated with the CS normalization prior,

N

∫ 0.995

0

1

1− p
dp ≈ 5.29832N. (24)

Finally, CS has a third parameter, α. For each value of 1−p, we allow this to range between zero (pure
exponential) and α(p), where α(p) is set to give a 1/e cutoff at 200 repeats. As an example, α(0.995) is
zero; if α were greater than zero, the overall function would have an exponential cutoff longer than 200
repeats. Given these, the area factor for nEXP is 0.995n, and for CS is it∫ 0.995

0

α(p) dp ≈ 1.28841. (25)

Putting together all these area factors, we can then pre-compute − logA, equal to logP (~wmax|M),
a constant independent of ~w. For the George W. Bush article, for example, we have − logA equal to
−12.6 for the CS case, and −10.3 (1EXP), −18.7 (2EXP), −27.4 (3EXP). Note that prior areas are not
directly comparable between different models; “change of units” (e.g., working in terms of P (RCkR) vs.
N(RCkR)) will scale A. This scaling, however, is directly compensated for by the Hessian determinant
term.

Together with the max log-likelihood, the determinant of the Hessian, and the +k log 2π, these are
sufficient to compute the (Gaussian approximation to) the relative log-Evidence for the two model classes
∆E , reported in Table 1 (Table 2 in the Main Paper). In general, the highest evidence member of the
nEXP class is either 3EXP or 4EXP. Table 1 gives the results for the top thirty most-edited pages.



9

sig. page name history length ∆E collective state index
CS vs. nEXP α

< 10−8 George W. Bush 45,220 18.5 0.576± 0.005
< 10−6 World War I 14,808 15.9 0.521± 0.009

Islam 18,054 14.9 0.592± 0.007
< 10−5 Iraq War 15,143 12.8 0.60± 0.01

Scientology 14,584 12.2 0.595± 0.009
United States 31,919 12.3 0.545± 0.006
Global warming 19,541 12.1 0.602± 0.008

< 10−4 Australia 13,815 11.4 0.679± 0.009
Wikipedia 31,927 11.3 0.638± 0.006
September 11 attacks 17,253 11.3 0.530± 0.008
Gaza War 14,764 11.3 0.45± 0.01
Israel 16,319 11.1 0.523± 0.008
Super Smash Bros. Br 15,343 11.1 0.451± 0.008
Turkey 14,384 11.1 0.501± 0.009
List of Omnitrix ali 16,263 10.6 0.450± 0.008
Michael Jackson 26,977 10.4 0.572± 0.007
Canada 17,670 9.4 0.632± 0.008
Blink-182 14,419 9.4 0.461± 0.009

< 10−3 2006 Lebanon War 19,656 9.1 0.486± 0.009
Blackout (Britney Sp 15,714 7.9 0.348± 0.009
Deaths in 2009 20,902 7.7 0.416± 0.009

< 10−2 Heroes (TV series) 14,060 6.6 0.353± 0.009
Xbox 360 16,598 6.4 0.498± 0.009
Lost (TV series) 14,714 5.1 0.387± 0.008
Paul McCartney 16,649 4.7 0.72± 0.01

(no det.) Eminem 17,417 4.3 —
Pink Floyd 15,730 2.9 —
Deaths in 2006 14,072 0.8 —

> 104 Deaths in 2007 18,215 -11.5 —
> 107 Deaths in 2008 19,072 -17.5 —

Table 1. log-Evidence ratios for the thirty most-edited pages on Wikipedia. Computed from data last
accessed 15 July 2013.
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