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S1 Converting the rate equation to a differential equation

The rate equation in the manuscript Eq.(3) is hard to treat analytically, primarily due to the
presence of the joint probabilities πk,k′ and pk,k′ . This can be simplified, however, if we make
the assumption that our network lacks degree correlations (or has vanishingly small values for the
correlation). In this case, pk,k′ can be factorized as pkpk′ , while

∑
j ek,j = kpk/〈k〉, therefore Eq.

(3) can be written as,

pk = δkc + cπk−1pk−1 − cπkpk + 2mfk−1pk−1 − 2mfkpk (S1)

+

(
r +

2qm

〈k〉

)
(k + 1)pk+1 −

(
r +

2qm

〈k〉

)
kpk.

Defining the generating functions,

f(z) =

∞∑
k=0

πkpkz
k, g(z) =

∞∑
k=0

pkz
k and h(z) =

∞∑
k=0

fkpkz
k,

multiplying by zk, summing over k and inserting the attachment kernels from Eqn. (1) and (2) we
arrive at the differential equation,

g(z)

(
1

1− z
+ θ

)
− β(α− z)g′(z) =

zc

1− z
, (S2)

where,

θ = (1 + r)

(
ac

2b[c+m(1− q)] + a(1 + r)
+

2sm

2t[c+m(1− q)] + s(1 + r)

)
,

β = (1 + r)

(
bc

2b[c+m(1− q)] + a(1 + r)
+

2tm

2t[c+m(1− q)] + s(1 + r)

)
,

α =
cr +m(q + r)

c+m(1− q)
× 1

β
. (S3)

S2 Solving for the degree distribution pk

The expression in Eq. (S2) can be solved via numerical methods. However, we are interested in
the explicit form of pk. Unfortunately the equation in its complete form does not lend itself well
to analytical techniques. We can make progress however by considering specific cases. We start by
neglecting deletion processes, and consider the case of pure growth, which can be solved exactly.
Following this, we will resort to approximation methods to solve the evolution process including
deletion.
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S2.1 Pure growth

When vertices and edges are added but never removed, we have both r, q = 0 and thus α = 0. With
this modification, and using (z/(1− z))1/β × zθ/β as an integrating factor, g(z) is provided by

g(z) =
1

β

(
z

1− z

)−1/β
z−θ/β

∫ z

0

tc−1+(1/β)(1+θ)

(1− t)1+1/β
dt. (S4)

Changing variables to y = t/z we have,

g(z) =
1

β
(1− z)1/βzc

∫ 1

0

yc−1+(1/β)(1+θ)

(1− yz)1+1/β
. (S5)

Expanding in powers of z and isolating the coefficients we find that,

pk =
B
(
k + θ

β , 1 + 1
β

)
B
(
c+ θ

β ,
1
β

) , (S6)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function. For large x, we have B(x, y) ≈ x−y and
thus asymptotically,

pk ∼ (k + k0)
−γ ,

a shifted power-law, where,

γ = 1 +
1

β
= 2 +

s[a+ b(c+ 2m)] + 2tc[a+ b(c+m)]

bsc+ 2atm+ 2bt(c+m)(c+ 2m)
, (S7a)

k0 =
θ

β
=

4bms(c+m) + as(c+ 2m) + 2ac(c+m)t

bsc+ 2atm+ 2bt(c+m)(c+ 2m)
. (S7b)

S2.2 Growth with deletion

We have established that the pure growth process leads to a power law distribution. Previous work
[27, 45] indicates that the presence of deletion can potentially induce a transition from a power law
to an exponential regime. To account for both regimes, we assume pk follows a power-law with an
exponential correction, pk = Ck−γΩk. Next, we simplify the expression for the attachment kernels
by setting b, t = 1, such that πk = A(a + k) and fk = B(t + k) and solve for γ and Ω in the limit
k >> 1. To do so, we employ a high-degree expansion of the telescoping product pk/pk−1 to leading
orders in 1/k thus,

pk
pk−1

= Ω
(

1− γ

k

)
+O

(
1

k2

)
,

pk+1

pk−1
= Ω2

(
1− 2γ

k

)
+O

(
1

k2

)
. (S8)
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Multiplying Eq.(3) by 1/pk−1, substituting this expansion and ignoring terms in 1/k, yields the
equation,

k(1− Ω)(Ac+ 2mB − (r + 2qm/〈k〉)Ω] + (Aca+B2mt)(1− Ω)−Ac−B2mt

− Ω + (r + 2qm/〈k〉)Ω2 + γ[Ω(Ac+ 2mB − 2Ω(r + 2qm/〈k〉) + (r + 2qm/〈k〉)] = 0. (S9)

Since (S9) must be true for all k, we can set the coefficient of k to zero, which gives two solutions
for Ω, namely Ω = 1 and

Ω =
Ac+ 2mB

r + 2qm/〈k〉
. (S10)

If Ω < 1 then the solution (S10) is normalizable and pk decays exponentially (with a power-
law correction). However if the ratio is greater than 1, it does not correspond to a normalizable
probability distribution and therefore the correct solution must be Ω = 1, leading to a purely power
law distribution pk ∼ k−γ .

To determine the expression for the power-law exponent γ, we set Ω = 1, the k-independent
term in (S9) to zero, finding

γ = 2 +
(1 + r)[c(c+m(1− q)) + a(c+m)(1 + r)]

c2(1− r) + c[m(1− q)(3− r)− ar(1 + r)] +m[2m(1− q)2 − a(1 + r)(q + r)]
. (S11)

S2.3 Stretched exponential at the critical point ac

At the critical point ac (Eq. (9)), pk follows a stretched exponential. Making the ansatz,

pk = Ck−γBke−ζ
√
k,

and once again employing the high-degree expansion, but this time expanding to order k−3/2, we
have

pk
pk−1

= Ω

(
1− ζ

2
√
k
− γ − ζ2/8

k
− γζ/2− ζ/8− ζ3/48

k3/2

)
+O

(
1

k2

)
,

pk
pk−1

= Ω

(
1− ζ

2
√
k
− γ − ζ2/8

k
− γζ/2− ζ/8− ζ3/48

k3/2

)
+O

(
1

k2

)
. (S12)

As before we substitute this into Eq. (3) and find that for ζ 6= 0, the terms of order k and
√
k force

B = 1 and r+ 2qm/〈k〉 = A(c+ 2m). Thus ζ can be non-zero only at the critical point. The term
of order 1 gives,

ζ = 2

(
c+m(1− q)
cr +m(q + r)

)1/2

(S13)

and the term of order k−1/2 gives

γ = −3

4
+
a

2
,

which reduces to the work of [27] in the special case a = 0,m = 0 and r = 1.
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