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SUPPLEMENTARY TABLE 1

Proteome List: The following 75 organisms where used as the set of natural proteomes.

Their complete non-redundant proteome sets were downloaded from UniProt Database

(http://www.uniprot.org/) UniParc Archives [1]. The optimal growth temperatures (OGT)

in units of ◦C were obtained from [2].

Organism OGT

Acidobacteria bacterium Ellin345 25

Aeropyrum pernix 95

Anabaena variabilis ATCC 29413 35

Aquifex aeolicus 85

Agrobacterium tumefaciens C58 UWash 26

Archaeoglobus fulgidus 83

Bacillus anthracis Ames 30

Bacillus licheniformis DSM 13 37

Bordetella bronchiseptica 36

Bdellovibrio bacteriovorus 30

Campylobacter jejuni 40

Colwellia psychrerythraea 34H 8

Desulfotalea psychrophila LSv54 10

Methanococcus jannaschii 85

Methanopyrus kandleri 98

Pyrobaculum aerophilum 100

Pyrococcus furiosus 100

Pyrococcus horikoshii 98

Streptococcus thermophilus CNRZ1066 42

Sulfolobus solfataricus 80

Sulfolobus acidocaldarius DSM 639 80

Symbiobacterium thermophilum IAM14863 60

Thermoanaerobacter tengcongensis 75

Thermobifida fusca YX 57
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Thermococcus kodakaraensis KOD1 95

Thermoplasma acidophilum 59

Thermoplasma volcanium 60

Thermosynechococcus elongatus 55

Thermotoga maritima 80

Escherichia coli K12 37

Thiomicrospira crunogena XCL-2 25

Vibrio fischeri ES114 28

Psychrobacter arcticum 273-4 22

Pseudomonas fluorescens Pf-5 32

Pseudomonas putida KT2440 28

Pseudomonas syringae phaseolicola 1448A 26

Picrophilus torridus DSM 9790 60

Photobacterium profundum SS9 15

Pelodictyon luteolum DSM 273 25

Natronomonas pharaonis 41

Nanoarchaeum equitans 82

Mycobacterium avium paratuberculosis 39

Methanosarcina acetivorans 40

Methanosarcina barkeri fusaro 35

Methanosarcina mazei 36

Moorella thermoacetica ATCC 39073 57

Methanobacterium thermoautotrophicum 65

Oceanobacillus iheyensis 28

Lactobacillus acidophilus NCFM 41

Haemophilus ducreyi 35000HP 32

Geobacillus kaustophilus HTA426 60

Geobacter metallireducens GS-15 32

Deinococcus geothermalis DSM 11300 47

Chlorobium tepidum TLS 48

Carboxydothermus hydrogenoformans Z-2901 67

Leifsonia xyli xyli CTCB0 29
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Clostridium acetobutylicum 37

Pyrococcus abyssi 96

Sulfolobus tokodaii 80

Streptomyces avermitilis 27

Gluconobacter oxydans 621H 26

Staphylococcus aureus aureus MRSA252 34

Staphylococcus saprophyticus 37

Streptococcus mutans 37

Rhodopseudomonas palustris BisB18 30

Pseudomonas aeruginosa 40

Nitrosomonas europaea 26

Pseudoalteromonas haloplanktis TAC125 26

Shewanella denitrificans OS217 20

Sodalis glossinidius morsitans 28

Xylella fastidiosa 26

Yersinia pseudotuberculosis IP32953 37

Rhodospirillum rubrum ATCC 11170 27

Magnetospirillum magneticum AMB-1 30

Corynebacterium glutamicum ATCC 13032 Bielefeld 33

SUPPLEMENTARY NOTE

Importance of selection in PAM1

In this supplementary note, we first demonstrate that the form of PAM1 matrix is predom-

inantly determined by the genetic code, nucleotide mutation rates, and DNA composition

–with little selection pressure. To do so, we plot below the MPM1 matrix computed by

Nowicka et al. [3] (Fig. S1). MPM1 is computed using the empirical mutation rates for

nucleotides in the Borrelia burgdorferi genome and a Monte Carlo algorithm that induces

point mutations to achieve one-percent amino acid substitutions (same as PAM1). The two

matrices are qualitatively similar, especially in the region of interest near the diagonal.

4



 

 

C  M F  I  L V W Y A G T S N Q D E H R K P

C 
 M 

F
 I
 L
 V

 W
 Y
 A
 G
 T
 S
 N
 Q
 D
 E
 H
 R
 K
 P

-8

-7

-6

-5

-4

-3

-2

-1

0

 

 

C  M F  I  L V W Y A G T S N Q D E H R K P

C 
 M 

F
 I
 L
 V

 W
 Y
 A
 G
 T
 S
 N
 Q
 D
 E
 H
 R
 K
 P

-6

-5

-4

-3

-2

-1

0

FIG. 1. Comparison of MPM1 to PAM1. (Left) MPM1 substitution matrix. Entry (i,j) is the

logarithm of the probability of amino acid i substituting amino acid j computed using the empirical

mutation rates for nucleotides in the Borrelia burgdorferi genome in conjunction with the genetic

code [3]. (Right) PAM1 substitution matrix. Entry (i,j) is the logarithm of the probability of amino

acid i substituting amino acid j after an evolutionary distance of one accepted point mutation for

every 100 amino acids [4].

Moreover, Nowicka et al. [3] conclude that the slight differences between MPM1 and

PAM1, when extended to longer evolutionary distances, indicate that amino acids with

higher mutation probability are under lower selection pressure, which is consistent with our

conclusion on the role of the natural composition. Computing the similarity matrix Sij

using MPM1 instead of PAM1 for the natural and random occurrence frequencies, results in

the same conclusion –that the natural frequencies enhance similarity between amino acids

that are most frequency interchanged due to mutations. We present our analysis in the

main text using PAM1 due to its generality, prevalent use, and intuitive association with

mutation rates.

Similarity matrix recomputed

Herein, we establish that the improved method proposed in the first part of the paper

for estimating Ec from the interaction matrix and occurrence frequencies is indeed required

to reach the main conclusion of the paper. To do so, we compute the similarity matrix Sij

using the Ec estimate of Eq. [2] and Eq. [3] for the natural occurrence frequencies. As
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demonstrated in Fig. S2, the resulting matrix no longer exhibits the intricate structures

(such as a clear division by hydrophobicity and charge) seen in Fig. 5A. Furthermore, the

correlations computed are mostly statistically insignificant. In fact, we needed to use 18000

subsets with highest Ec (as opposed to 1000) to extract any statistically meaningful pair-wise

correlations. It is also not feasible to compare random frequencies to the natural ones using

this method. This confirms that the proposed scheme of diagonalization and introduction

of quasi-frequencies is required for a sufficiently accurate estimate of Ec.
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FIG. 2. Recomputed similarity matrix. Similarity matrix Sij computed using Ec estimated from

Eq. [2] and Eq. [3] of the main text. The detailed structure is no longer present and the correlations

are mostly statistically insignificant.
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