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APPENDIX B 
 
Knowledge Management and Eskind Biomedical Library Clinical and Translational Science 
Award (CTSA) support 
 
CYP3A5 *3 and *6 allele characterization 
 
Disclaimer: Knowledge management and library information scientists attempt to provide 
accurate, inclusive, and informative reports based on the specific questions and relevant data 
provided to them. All information is treated with strict confidentiality, in keeping with 
Vanderbilt University policies. Information specialists attempt to report all points of view 
described in the literature, selecting what they consider the most representative examples of 
each. Summaries are prepared for the convenience of the clinician, and physicians should 
consult the full text of the articles before taking action; however, the information provided is no 
substitute for clinical judgment. It is possible that any given search may omit some relevant 
information. More extensive bibliographic references for any topic are available upon request. 
 
Question. Please characterize CYP3A5 poor performer alleles *3 and *6, including functional 
significance and frequency and indicate other potential target drugs. 
 
Summary. The hepatic cytochrome P450 (CYP450) proteins are a superfamily of 
monooxygenase enzymes, which catalyze the endogenous synthesis of cholesterol, steroids, and 
other lipids; bioactivate some prodrugs; and biotransform other drugs and toxic chemicals [1]. 
Many compounds are metabolized by more than 1 cytochrome P450. The cytochrome P450 3A 
family is responsible for metabolizing approximately 37% of the 200 most commonly prescribed 
drugs, with cytochromes P450 3A4 (CYP3A4) and 3A5 (CYP3A5) accounting for the majority 
[2]. CYP3A4 and CYP3A5 are both expressed in liver and intestine, but CYP3A5 is the 
predominant form expressed in extrahepatic tissues [3] and may account for up to 50% of the 
total CYP3A activity in liver [4]. CYP3A5 is involved in the metabolism of vasodilators, 
immunosuppressants, benzodiazepines, and taxanes as well as the steroid hormones 
testosterone, progesterone, and androstenedione [1, 3]. A list of common substrates, inhibitors, 
and inducers can be found in the table at the end of this document (CYP3A5 drug table). A 
more comprehensive list can be found in the summary chapter by Rendic [5]. 
 The CYP3A5 gene is located in a cluster of cytochrome P450 genes on chromosome 
7q21.1. The cluster also includes several pseudogenes, one of which, CYP3A5P1, is very similar 
to CYP3A5 and is known to cause difficulty in cloning this gene [1]. Additionally, CYP3A5 and 
CYP3A4 share 84% sequence homology [6]. Genetic polymorphisms in metabolizing enzymes 
are a principal contributor to interindividual variation in the response to numerous drugs. More 
than 30 polymorphisms in the CYP3A5 gene have been described, many of which affect enzyme 



        
Supplemental electronic content to 

J Med Lib Assoc. Oct;101(4):DOI: http://dx.doi.org/10.3163/1536-5050.101.4.007 
www.mlanet.org 

© Giuse, Kusnoor, Koonce, Ryland, Walden, Naylor, Williams, Jerome 2013 
 

2 

activity [7]. The table below summarizes the functional significance and frequency information 
from ALFRED (the Allele Frequency Database) [8] and the National Center for Biotechnology 
Information (NCBI) short genetic variations database dbSNP [9] for the *3 and *6 alleles across 
all populations. For this gene, the nucleotide change indicated below is based on current 
knowledge of the sequence that produces a functional CYP3A5 protein. Please see the 
additional material included on page 10 for information about the reference sequence 
discrepancy [RefSeq summary]. 
 

Allele SNP(s) Δ NT 
aa 

change functional effect Fst 
Ave 
Het 

# 
Pop 

~frequency of 
SNP 

*03 rs776746 A>G - 
Severely decreased/ 
no activity 

0.296 0.285 51 A=.3313; G=.6687 

*06 rs10264272 G>A Lys208= 
Severely decreased/ 
no activity 

— — — C=.9427; T=.0573 

 
It is important to note that the frequency of CYP3A5*3 is population dependent (see CYP3A5*3 
below). What follows is a detailed synopsis of the information for the *3 [CYP3A5*3] and *6 
[CYP3A5*6] alleles, including a breakdown of the frequency in different populations. 
 
CYP3A5*3 
 
Functional characterization. Twelve forms of this variant exist, CYP3A5*3A-*3L, but the root 
single nucleotide polymorphism (SNP) common to all (rs776746) is in the 3rd intron of the 
CYP3A5 gene [7, 9]. The thymine (T) at chromosomal position 99,270,539 is replaced by a 
cytosine (C), which corresponds to an adenine (A) at genomic position 12,083 being replaced by 
a guanine (G) as this gene is on the negative DNA strand [9, 10]. Splice sites are located at the 
intron-exon junctions in mRNA and are recognized by a ribonuclear complex of proteins and 
RNA that control genetic splicing called the spliceosome. The spliceosome recognizes specific 
signals in the nascent RNA, part of which is the consensus splice sequence at the splice 
junctions and a pyrimidine (cytosine and thymine or uracil) rich tract [11]. Although the final 
base of the previous exon and initial base of the next exon can vary, the first and last two 
nucleotides of the intron in the mRNA are always GU and AG. This is illustrated in the image 
below [11]. 
 
 
 
 
 
 
In the CYP3A5 gene, the bases immediately surrounding the position where this mutation (in 
brackets, red) occurs in the 3rd intron are: 
 

TCTTTAAAGAGCTCTTTTGTCTTTCA[A/G]TATCTCTTCCCTGTTTGGACCACAT 
 
As the intron begins with GU, and a pyrimidine rich region (the green bases above) exists prior 
to the AG that occurs in the CYP3A5*3 allele, Kuehl et al. concluded that by changing the 
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adenine to a guanine at this location, a cryptic splice site is created [4]. The calculated individual 
weight matrix (Ri)* value increases from -3.2 to 8.2 bits at this position as a result of this 
mutation, whereas the natural acceptor site remains unchanged at 4.6 bits [12]. Thus, this new 
stronger cryptic acceptor splice site promotes the insertion of an intronic exon-like sequence 
into the mature mRNA and as a result, a premature stop codon is introduced upstream [4, 12]. 
Consequently, the majority of the mRNA is aberrantly spliced, so very little functional protein, 
if any, is produced [4, 13]. Lamba et al. [14] state that individuals homozygous for the *3 allele 
are considered CYP3A5 nonexpressors. 
 Relatively few groups have performed pharmacokinetic studies. One group found for 
the reconstituted CYP3A5*3L allele, the Vmax was reduced by 39%; the Km increased 2.7 fold, 
and the overall enzyme activity was 4.3 fold less than wild type [15]. However, as this allele also 
contains the cryptic splice site, the residual activity observed is a sole result of the Tyr53Cys 
mutation in what little CY3A5 protein is generated, rather than the defective splicing [15]. 
Others have investigated dosing requirements of tacrolimus with respect to genotype and 
independently observed that at least one wild type (CYP3A5*1) allele is sufficient for optimal 
CYP3A5 activity [4, 13, 16]. However, studies in kidney, liver, lung, heart, and renal transplant 
recipients have demonstrated that patients homozygous for the CYP3A5*3 allele required 
significantly less tacrolimus to reach target concentrations than those with at least 1 CYP3A5*1 
allele [16]. Haufroid et al. [16], in data from renal transplant patients, observed that the 
pharmacokinetic parameter that gave the most realistic idea of the global exposure to 
tacrolimus is the total area under the curve (AUC0→∞). They determined that the median 
AUC0→∞ was 2.1–2.6 fold higher (depending on statistical method used) in non-expressers 
(individuals homozygous for *3) [16]. As a result, Haufroid et al. [16] conclude that at least a 
minimum 2-fold higher tacrolimus loading dose could theoretically be administered to those 
that have at least 1 functional CYP3A5 allele (*1/*1 or *1/*3) as compared with those that do not 
(*3/*3), and propose lowering the loading dose in the latter category. 
 As mentioned above, at least twelve variations of the CYP3A5*3 allele have been 
identified and classified [7]. The table below summarizes these alternative versions of the 
CYP3A5*3 allele [4, 7, 9, 10, 13, 15, 17, 18]. 
 

                                                           
* Nucleic acid binding sites are analyzed based on information theory weight matrices derived from a 
comprehensive set of aligned functional sites. The frequencies of nucleotides at each position are used to 
calculate an individual information weight matrix, (Ri(b, l), where b is the base, and l is the location of the 
base. Individual information weight matrices are calculated for wild type and mutant sequences and 
compared to evaluate the effect of splicing mutations. Functional binding sites have Ri values greater than 
zero. 
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Alternatively spliced versions of CYP3A5*3 [4].

CYP3A5*3 protein

134 4B 5 5B ----- 7 8 9 10 11 12

12

splice variant 1 (SV1)

splice variant 2 (SV2) 13

splice variant 2 (SV2) 1 2 3 3B

6 7 8 9 10 11

12 13

1 2 3 3B 4 4B 5

3B 4 5 6 7 8 9 10 111 2 3

10 12CYP3A5*1 protein (wild type)

CYP3A5 gene

2 4 6 8

2 3 4 5 6 13

1 3 5 7 9 11 13

7 8 9 10 11 121

Gene changes Additional changes In vivo In vitro

CYP3A5*3B NG_007938.1:g.12083A>G g.36708C>T, His30Tyr, Lys34X1 rs776746,  rs15524, rs28383468 Splicing defect; H30Y Severely decreased 13

CYP3A5*3C NG_007938.1:g.12083A>G rs776746 Splicing defect Severely decreased 13

CYP3A5*3D NG_007938.1:g.12083A>G Leu82Arg rs776746, rs56244447 Splicing defect; L82R Severely decreased 17

CYP3A5*3E NG_007938.1:g.12083A>G g.36708C>T, g.32147A>G rs776746,  rs15524, rs28365094 Splicing defect Severely decreased 17

CYP3A5*3F NG_007938.1:g.12083A>G g.36708C>T, Ile488Thr rs776746,  rs15524, rs28365085 Splicing defect; I488T Severely decreased 18

CYP3A5*3G NG_007938.1:g.12083A>G g.36708C>T, g.18049T>C rs776746,  rs15524, rs55965422 Splicing defect Severely decreased 18

CYP3A5*3H NG_007938.1:g.12083A>G g.36708C>T, g.18205T>C rs776746,  rs15524, n/a Splicing defect Severely decreased 18

CYP3A5*3I NG_007938.1:g.12083A>G g.36708C>T, g.22000A>G rs776746,  rs15524, rs72552790 Splicing defect Severely decreased 18

CYP3A5*3J NG_007938.1:g.12083A>G g.36708C>T, Ile456Val rs776746,  rs15524, n/a Splicing defect; I456V Severely decreased 18

CYP3A5*3K NG_007938.1:g.12083A>G g.36708C>T, Phe446Ser rs776746,  rs15524, rs41279854 Splicing defect; F446S   Decreased 17

CYP3A5*3L NG_007938.1:g.12083A>G Tyr53Cys rs776746, rs72552791 Splicing defect; Y53C   Decreased 15

*To produce the normal CYP3A5 protein, a T is found at chromosomal position 99,720,539, corresponding to an A at position 12,083 in the genomic sequence, and a G is found at chromosomal 
position 99,245,914, corresponding to a C at position 36,708 in the genomic sequence 

Allele
Nucleotide changes dbSNP ID                    

(if available) Effect
Enzyme _ activity

Reference

4

1Variant results in a frameshift, ultimately leading to premature termination

Severely decreasedCYP3A5*3A rs776746, rs15524 Splicing defect DecreasedNG_007938.1:g.12083A>G g.36708C>T

 Despite the additional mutations found in many of these versions of the CYP3A5*3 
allele, the critical mutation common to all the CYP3A5*3 alleles is the aberrant splicing caused 
by the rs776746 mutation in intron 3 [4, 13, 15, 17, 18]. 
 Kuehl et al. discovered two other alternatively spliced versions of CYP3A5*3 that 
include not only part of intron 3, but also introns 4 and 5 (the included pseudo exons are labeled 
3B, 4B, and 5B respectively) [4]. 
 

 
 
 The additional SNP (rs6977165) that results in SV2 is a substitution of adenine with a 
guanine base at genomic position 13,225 (chromosomal position 99,269,397T>C) [9, 12]. This 
creates a 3.5 bit donor site (wild type donor site is 0.1 bits), which in combination with a 
preexisting 5.4 bit acceptor site results in inclusion of the cryptic exon 4B in the final transcript 
[12]. The incorporation of exon 5B occurs concomitantly with the skipping of exon 6 as a result 
of the overlapping stronger 5B donor site (3.8 bits) with the weaker downstream acceptor site 
(3.4 bits) of the adjacent exon 6 [12]. 
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 Not only do the CYP3A5*3 alleles yield little to no protein, but the transcribed 
alternatively spliced RNAs are degraded faster than wild type mRNA [19]. Busi and Cresteil 
note that splice variants that contain exon 3B are more unstable than wild type CYP3A5 mRNA 
[19]. 
 
Allele frequency. As CYP3A5*3 is the most common form of CYP3A5 in several populations 
(table below), many have reported frequency information. Below is a breakdown of the 
frequency distribution for this allele. 
 

CYP3A5*3 (A>G); rs776746 

Population 

Hustert et al. [13] Makeeva et al. [20] DPDR* [21] HapMap [22] 
Sample 

size Frequency 
Sample 

size Frequency 
Sample 

size Frequency 
Sample 

size Frequency 

European/Caucasian 366 95.1% 3,538 92.3% 88 97.7% 796 95.7% 

African-American 90–100 27%   60 36.7% 768 44.8% 

Japanese 90–100 71% 1,304 75.5%   344 73.3% 

Chinese 90–100 73% 576 76.0%   672 73.2% 

Koreans 90–100 70% — 78.0%     

Asian     96 68.8%   

African     48 12.5% 812 14.3% 

Hispanic/Mexican     88 75.0% 200 74.0% 

American Indian         352 75.6% 

* DNA Polymorphism Discovery Resource. 
 
 From the table, the CYP3A5*3 allele appears to be the dominant form of the gene in most 
populations, with most groups reporting the frequency in European and Caucasian populations 
to be over 90%. The groups with the lowest frequencies are from African origin. Park et al. [23], 
in determining SNP frequencies in a Korean population, found that the overall frequency of the 
*3 allele was 76.5% in the 194 Koreans genotyped, 185 (95.3%) of which had at least 1 CYP3A5*3 
allele. Of those, 112 of the 185 individuals (60.5%) were homozygous for the allele, and the other 
73 (39.5%) were heterozygous. In addition, when examining diplotype, Park et al. [23] 
discovered 4 of the 12 versions of the *3 allele in the Korean population, the most common 
being CYP3A5*3A (94.6% of *3 alleles; 72.4% of all alleles), followed by *3C (4.4% and 3.4%, 
respectively), *3G (0.7% and 0.5%), and *3F (0.3% and 0.3%). 
 Kuehl et al. also found complete concordance between the CYP3A5*3 and CYP3AP1*3 
genotypes in Caucasians [4]. 
 
CYP3A5*6 
 
Functional characterization. The CYP3A5*6 variant (rs10264272) is a result of a single 
nucleotide polymorphism in the 7th exon, in which a cytosine (C) is replaced by a thymine (T) 
at position 99,262,835 [9]. Due to the redundancy in the genetic code, this substitution does not 
alter the lysine at position 208. However, as a result of this synonymous mutation, the entire 
exon 7 is deleted from the final mRNA, and the translated protein is found to have reduced 
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catalytic activity [4]. The silent mutation may cause exon 7 skipping by disrupting an exonic 
splicing enhancer, as proposed by Kuehl et al. [4], but information analysis by Rogan et al. [12] 
with models of serine-arginine (SR) rich protein binding sites failed to reveal any difference in 
the strengths or distribution of the splice sites as a result of this mutation. In examining weight 
matrices, Rogan et al. [12] indicate that this mutation is predicted to have only a minor effect on 
splicing, strengthening a cryptic acceptor splice site 22 nucleotides upstream of exon 7 by 0.7 
bits to 3.6 bits. Consequently, the mutation would not be expected to activate these splice sites, 
as they contain less information than either natural donor or acceptor sites [12]. A confirmed 
mechanism by which CYP3A5*6 induces exon 7 skipping has not been elucidated to date. 
 When determining transcript levels in *1/*6 heterozygotes, Kuehl et al. [4] found that 
the wild type transcript was considerably more abundant, which Rogan et al. [12] indicated 
may be consistent with incomplete splicing of exon 7 rather than complete exon skipping. 
 
Allele frequency. CYP3A5*6 is rarely found in populations outside of those of African origin, as 
indicated in the table below. 
 

CYP3A5*6 (G>A); rs10264272 

Population 

Hustert et al. [13] Roy et al. [24] DPDR* [21] HapMap [22] 
Sample 

size Frequency 
Sample 

size Frequency 
Sample 

size Frequency 
Sample 

size Frequency 
European/Caucasian 366 — 308 — 84 — 588 0.3% 

African-American 90 13.0%   52 11.5% 768 13.3% 

Japanese 90–100 —     340 0.6% 

Chinese 90–100 —     336 0.6% 

Koreans 90–100 —       

Asian   96 — 92 —   

African   400 22.0% 32 25.0% 812 20.4% 

Hispanic/Mexican     84 — 196 3.1% 
* DNA Polymorphism Discovery Resource. 
 
 In comparing the frequencies of the CYP3A5*3 allele with those of the CYP3A5*6 allele, 
one can surmise why this variant is rarely found in populations that primarily express the 
CYP3A5*3 allele. 
 
CYP3A5 drug tables 
 
The tables below summarize information from the Indiana University Clinical Pharmacology 
website (Flockhart table) [25] and the literature for some of the more common medicines that 
interact with the CYP3A proteins. Many drugs are substrates for both CYP3A4 and CYP3A5 
and as such, can be metabolized by either enzyme [26]. Below, drugs are classified based on the 
primary CYP3A family member believed to be involved. 
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CYP3A5 Substrates Evidence
Other Substrates:

dexamethasone 5, 25, 49
dextromethorphan 5, 25, 26
irinotecan (antineoplastic) 5, 25, 50
lidocaine 25, 26
ondansetron 25, 51

oxycodone 52
quinine 25, 53
retinoic acid 5, 54

risperidone 25, 55
sildenafil (Viagra) 25, 56
sirolimus 25, 57
sunitinib 25, 58
tamoxifen→N-DMT 25, 59
taxol (paclitaxel) 25, 60

vincristine 25, 61, 62
udenafil 56
vardenafil 56

CYP3A5 Inhibitors Evidence
Strong Inhibitors

HIV Antivirals:
nelfinavir 25, 69, 70
ritonavir 25, 69, 70
saquinavir 25, 69

Other strong inhibitors
fluconazole 25, 71
itraconazole 25, 71

voriconazole 25, 71

Moderate Inhibitors
fluconazole 25, 72
grapefruit juice 25, 41
verapamil 25, 73

diltiazem 25, 74

Weak Inihbitors
cimetidine 25, 75

indinavir 25, 69
amprenavir 25, 69

Unclassified Inhibitors
NOT azithromycin 25
imatinib 25, 76

lapatinib 77

CYP3A5 Inducers Evidence
HIV Antivirals:

efavirenz 25, 63
nevirapine 25, 64

Glucocorticoids
beclomethasone 5, 25, 65

budesonide 5, 25, 65
dexamethasone 5, 25, 65
dipropionate 25, 65

Unclassified Inducers:
carbamazepine 25, 66
cyclosporin 66
oxcarbazepine 25, 67
phenobarbital 5, 25, 68

phenytoin 25, 66
rifampin 25, 66

CYP3A5 Substrates Evidence
Macrolide antibiotics:

NOT azithromycin 25

Benzodiazepines:
alprazolam 25, 27
diazepam→3OH 5, 25

midazolam 5, 25, 26 
triazolam 25, 28

Calcium Channel Blockers:
nifedipine 15, 25, 29
verapamil 5, 25, 30

HMG CoA Reductase Inhibitors:
atorvastatin 5, 25, 31

lovastatin 25, 31
NOT pravastatin 25, 32
NOT rosuvastatin 25, 33
simvastatin 25, 31, 34

HIV Antivirals:
indinavir 25, 35
saquinavir 25, 36

Immune Modulators:
cyclosporine 25, 37, 38
tacrolimus (FK506) 25, 39

Steroid 6beta-OH:
aldosterone 40
hydrocortisone 25, 41
progesterone 5, 25, 42
testosterone 5, 25, 42

Other Substrates:
aconitine 43
alfentanil 25, 44, 45

boceprevir 25, 46

carbamazepine 26

cilostazol 25, 47

codeine 25, 48
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CYP3A4/CYP3A7 substrates 1o CYP Evidence
Other Substrates:

amiodarone 3A4 25, 96
aprepitant 3A4 25, 97
aripiprazole 3A4, 2D6 25, 98
arteether (antimalarial) 3A4 5, 99
buspirone 3A4 5, 25, 100
cafergot 25
caffeine→TMU 1A2, 3A4 5, 25, 101
Chloroquine 3A4 102
cinacalcet 3A4 25, 103
cocaine 3A4 5, 25, 104
codeine-N-demethylation 3A4 5, 25, 105
cyclosporin 3A4 5
dapsone 3A4 5, 25, 106, 107
docetaxel 3A4 5, 25, 108
domperidone 3A4 25, 109
eplerenone 3A4 25, 110
ergotamine 3A4 5, 25, 111
erythromycin 3A4 25, 26
estradiol 3A4 5, 25, 94, 112
etoposide (antineoplastic) 3A4 5, 113
ezlopitant (antiemetic) 3A4 5, 114
fentanyl 3A4 5, 25, 115, 116
finasteride 3A4 5, 25, 117
gleevec (imatinib) 3A4 25, 118
halofantrine (antimalarial) 3A4 5, 119
haloperidol 3A4 5, 25, 120, 121
levo-alpha-acetylmethadol (LAAM) 3A4 5, 25, 122
losartan (Angio II recp antagonist) 3A4 5, 123
methadone 3A4, 3A7 5, 25, 124
naphthalene 3A4 125
nateglinide 3A4 25, 126
pimozide 3A4 5, 25, 127
NOT pravastatin 25, 128
propranolol 2D6, 3A4 25, 129
quetiapine 3A4 5, 25, 130
salmeterol 3A4 5, 25, 131
telaprevir 3A4 25, 132
telithromycin 3A4 25, 133
teniposide (antineoplastic) 3A4 5, 134
terfenadine 3A4 5, 25, 26
torisel (temsirolimus) 3A4 25, 135

trazodone 3A4 5, 25, 136

zaleplon 3A4 25, 136
ziprasidone 3A4 25, 137
zolpidem 3A4 25, 138
zonisamide 3A4 5, 139
zotepine (antipsychotic) 3A4 5, 140

  Color denotes only CYP3A4 or CYP3A checked in literature

CYP3A4/CYP3A7 substrates 1o CYP Evidence
Macrolide antibiotics:

clarithromycin 3A4 5, 25, 79

Antihistamines:
astemizole (FDA removed 1999) 3A4 25, 80
chlorpheniramine 2D6, 3A4 5, 25
terfenadine 3A4 5, 25, 26

HIV Antivirals:
amprenavir 3A4 5, 81
nelfinavir 3A4 5, 25, 82
ritonavir 5, 25, 83, 84

Prokinetic:
cisapride 3A4 5, 25, 85

Calcium Channel Blockers:
amlodipine 3A4 5,25, 86, 87
diltiazem 3A4 5, 25, 88
felodipine 3A4 5, 25, 86, 89
lercanidipine 3A4, 2D6 5, 25, 86
nisoldipine 3A4 5, 25, 90
nitrendipine 3A4 5, 25, 86, 91

HMG CoA Reductase Inhibitors:
cerivastatin 3A4 5, 25, 92, 93

Steroid 6beta-OH:
estradiol 3A4 5, 25, 94

Kinase Inhibitors
dasatinib 3A4 95
erlotinib 3A4 95
gefitinib 3A4 95
lapatinib 3A4 25, 95
imatinib 3A4 95
nilotinib 3A4 95
sorafenib 3A4 25, 95

  Color denotes only CYP3A4 or CYP3A checked in literature

Several groups either only tested CYP3A4, examined CYP3A or 
CYP3A4/5 metabolism of various compounds, or did 
pharmacokinetic testing in human liver microsomes without 
genotyping. Consequently, these drugs (listed in red) were placed 
on the CYP3A4/CYP3A7 list. As CYP3A5 is the predominant 
CYP3A expressed outside the liver, some medications 
metabolized outside the liver will be metabolized by CYP3A5, 
even if CYP3A4 is the primary enzyme involved in metabolism 
[78]. This is not a comprehensive list. 
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CYP3A4/CYP3A7 Inducers 1o CYP Evidence
Barbiturates

cyclobarbital 161
hexobarbital 161
mephobarbital 161
N-methylbarbital 161
phenobarbital 161

Benzimidazole derivatives
lansoprazole 3A4 162
omeprazole 3A4 162
pantoprazole 3A4 162
rabeprazole 3A4 162

Unclassified Inducers:
clotrimazole 3A4 5, 66
mifepristone 3A4 5, 66
modafinil 3A4 5, 163
nifedipine 3A4 66
pioglitazone 3A4 164
rifabutin 3A4 5, 165
rifampicin 3A4 5, 66
ritonavir 3A4 166
rosiglitazone 3A4 164
St. John's wort 3A4 5, 167, 168
troglitazone 3A4 164

 Color denotes only CYP3A4 or CYP3A checked in literature

CYP3A4/CYP3A7 Inhibitors 1o CYP Evidence
Strong Inhibitors

HIV Antivirals:

amprenavir 3A4 5, 69
indinavir 3A4 5, 25, 69

Other strong inhibitors

clarithromycin 3A4 5, 141
ketoconazole 3A4 5, 25, 28, 109
telithromycin 3A4 25, 133
nefazodone 3A4 5, 25, 142

Moderate Inhibitors
aprepitant 3A4 25, 143
erythromycin 3A4 25, 144
fluoxetine 3A4 145
fluvoxamine 3A4 25, 146

Unclassified Inhibitors
amlodipine 3A4 5, 25, 87
boceprevir 3A4 25, 147
chloramphenicol 3A4 25, 148
ciprofloxacin 3A4 25, 149
cyclosporin 3A4 5, 150, 151
delaviridine 3A4 25, 145, 152
gestodene 3A4 25, 145
mibefradil 3A4 25, 153
mifepristone 3A4 25, 154, 155
norfloxacin 3A4 25, 156
norfluoxetine 3A4 5, 25, 157
starfruit 3A4 25, 158
telaprevir 3A4 25, 159
verapamil 3A4 160

  Color denotes only CYP3A4 or CYP3A checked in literature
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Additional information about the reference sequences for CYP3A5 
 
For the CYP3A5*3 allele, the variant (rs776746) is found in the middle of intron 3 at position 
g.99,270,539 [9]. The reference sequences indicate that the nucleotide at this position in the gene 
that produces a functional CYP3A5 enzyme is a guanine (G), and the variant is an adenine (A): 
 

NC_000007.13:g.99270539C>T* 
NG_007938.1:g.12083G>A 
NM_000777.3:c.219-237G>A 

 
* Chromosomal DNA (NC_##) always references the positive strand. The CYP3A5 gene is 
on the negative strand, thus the complementary bases are found in the genomic (NG_##) 
and cDNA (NM_##) reference sequences [169]. 

 
 According to Kuehl et al. [4], the nucleotide base at position 22,893 in the CYP3A5 *3 
sequence (Bacterial artificial chromosome [BAC] AC005020) is a G; it is the causative mutation. 
The authors state that a G at this position creates a cryptic splice site, which results in inclusion 
of the remaining portion of the intron in the final mRNA. A prematurely truncated, 
nonfunctional protein is translated as a result. 
 Given this conflicting information, a Basic Local Alignment Search Tool (BLAST) search 
was performed [170]. Position 22,893 in AC005020 aligned to position 12,083 in reference 
sequence NG_007983 (100% sequence identity in the gene region). The base is listed as a G at 
that position in both, further confirming the reference sequence and the *3 variant sequence as 
reported by Kuehl et al. are the same. 
 After contacting several experts, a final clarification email to a reference sequence 
curator resulted in a resolution. An adenine at this position results in a fully functional protein; 
the guanine creates the cryptic splice site responsible for the nonfunctional protein. The 
Genome Research Consortium was contacted by the curator to make them aware of this issue 
and suggest that the reference genome sequence represent the CYP3A5 *1 allele (A present at 
this position). 
 As this variant is found in approximately 80% of Europeans and Asians and only 
roughly 5%–20% of individuals of African origin, the majority non-African populations will test 
positive for this SNP [171]. 
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