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Motivating diffusion processes 
 
The most common diffusion process introduced on a network – or a graph – for the purpose of scoring the 
relatedness of all the network nodes with a set of seed nodes representing disease genes is a random 
walk with restart[1,2,3,4]. The motivation is to extend the influence of a given set of seed nodes, e.g. 
disease causing genes, to the entire network to associate each node with a score that measures its 
relevance with respect to the perturbation represented by the seed nodes. 
 
Naively, directly adjacent nodes could be chosen but it would ignore long range interactions and if a seed 
node is a hub and has a large number of neighbors, it is questionable whether it would impact all its 
neighbors as strongly as another less connected seed. Considering adding a second layer of adjacent 
nodes (the neighbors of the seed neighbors) to capture long range influences is usually meaningless since 
the topology of the human PPI network (scale-free) is such that a gigantic number are then selected and 
the specificity of the seed nodes lost completely. These considerations motivated the use of global 
methods able to take the whole network topology into account to both measure longer range synergies 
between seed nodes and address the large number of neighbor issue by reducing the impact on 
neighbors in such cases. 
 
A random walk is a diffusion process that naturally implements the above concepts of global topology 
consideration and reduction of highly connected node influence on their neighbors, See Fig. 4A, S1 in this 
file and S2A in this file. Hereafter, we introduce two additional variants of the regular random walk that 
have alternative and potentially relevant interpretation of how the influence of seed nodes diffuses in a 
biological network. 
 
 



 
 
Figure S1. The example of how a single seed diffuses information 

towards its neighbors. A, B, and C are strongly influenced as they are 
immediate neighbors of the seed and the seed does not have a large 
number of neighbors. The neighbors of C receive little influence due to 
their number, except the one shared with B that benefits from a synergy 
between B and C. The same is true for T, which is shared by A and B and 
thus, although it is a second interactor of the seed, gets more influence 
than the unique neighbors of C. When multiple seeds exist, their 
combined influence works in a similar fashion as in the synergistic 
influence of A and B on T for instance. 

 
 
 

Different diffusion processes 
 
In the case of a random walk, the matrix P of the iteration 
 

xi+1=(1-α)Pxi+αx0                                                                 (1) 
 
is obtained by computing the transpose of the row normalized adjacency matrix of the PPI network. 
Namely, let the PPI network be represented by the graph G=(V,E), V the nodes (vertices) and E the edges 
(the protein-protein interactions). The adjacency matrix A of the graph G is a binary matrix with aij=1 if and 

only if the nodes vi and vj are connected by an edge . The row normalized adjacency matrix, which 

we denote B, is obtained by modifying A such that the sum of all the elements of one row is equal to 1: 
 

 
 
and 
 

P=B
T.                                                                          (2) 

 
In their paper, Köhler et al.[1] even studied more general diffusion kernel and observed no advantage over 
the random walk with restart defined by Eq. (1) and (2). We did not repeat this study and only considered 
the random walk with restart. The choice of the restart parameter α has also been shown to have very 
limited impact on the results[5], an observation we also made (data not shown). How the random walk 
process diffuses a score present at a given node to neighbors is illustrated in Fig. S2A in this file and we 
observe that a node i diffuses its current score to its neighbors in identical proportions equal to 1/number 
of neighbors. 
 
In the regular random walk obtained with P=B

T, the diffusion depends on the number of edges of a given 
node to distribute its score – or probability – to its neighbors. Another natural alternative is to say that the 
“receiving” nodes get a score from each of their neighbors according to the number of their neighbors, i.e. 
the same logic is applied from the perspective of the target node instead of the source node, see Fig. S2B 
in this file. Biologically, one can argue that a protein regulated by many others is less influenced by each 
of its regulators compared to a protein regulated by a few others. The P matrix is computed as follows: 
 

,                                                                       (3) 

.                                                                      (4) 

 
A natural alternative to the regular random walk above is not to transpose B, i.e. to use 
 

P=B.                                                                          (5) 



 
The consequence on the diffusion is illustrated in Fig. S2C in this file and we observe that in strings of 
nodes the score diffusing from one seed node is less reduced, which might be a better model for capturing 
signaling cascades. Another consequence of Eq. (5) is that , whereas for Eq. (2) the asymptotic 

score distribution sums up to unity since it is a Markov chain. 
 
 
 

Convergence of the iteration 
 
The convergence of (1) can be proved for all 3 variants above at once. We have: 
 

                                                     , 

                                                      

and hence by induction 

.                                              (6) 

 
 
 
 

 
Figure S2. Three variants of a random walk. (A) The regular random walk, where at every iteration the probability to 

move from node P to another node is equal to 1/degree(P). (B) A modified version where the transition probabilities 
from node P are proportional to the degree of each connected node (sum of transition probabilities is 1). (C) A 
diffusion process that is no longer a true Markov chain and where the transition probabilities are equal to the 1/degree 
of the target nodes but with summing to one. Comparing A, B, and C, we see that they model “signal transmission” 
differently. A means that a hub does not influence its neighbors strongly, which is likely to be wrong. B means that 
highly connected (regulated) proteins are more difficult to influence, which is more plausible. C has some potential to 
send a signal without excessive attenuation, which also provides a plausible model and – in our hands – gave better 
results repurposing compounds, e.g. as illustrated in Table S1in this file. 

 
 
 
Now, since all norms are equivalent in a finite dimensional real-valued vector space, we chose the infinite 
norm and obtain 

 
.       (7) 

 

For the infinite norm,  (for each 3 variants of the iteration) and . Therefore 

 

(7) ,                                           (8) 

 

which can be made arbitrarily small provided m is large enough and , i.e. proving that the 
sequence xi is Cauchy and thus convergent. 



 
 

Diffusion process used in the manuscript 
 
To analyze the kinase inhibitor target profiles discussed in the paper we selected the variant without 
transpose (P=B) since we have observed that it ranks disease network models against a drug treatment 
network model better (known application areas ranked higher), see hereunder. 
 
By comparing each drug treatment network model against a set of diseases [1] distinct from Ph+ ALL, we 
obtained for each compound a null distribution used to estimated P-values for the relevant cell lines, see 
Figure S3 in this file. In Table S1 in this file, we report the best 20 P-values for the Ph+ ALL cell lines, the 
Köhler et al. list, and two CML models [4] we added (with and without LYN) to cover the most prominent 
area of application of the four compounds (CML). The “LYN-resistant” patient model achieves a better P-
value for these second generation BCR-ABL inhibitors, except in the case of nilotinib that does not 
perform well in general. We note the prevalence of cancers at the top of the list, which makes sense, with 
some known case of drug efficacy [6] and plausible new indications, e.g. Noonan syndrome where other 
kinase inhibitors are in clinical trials. 
 
 

 
Figure S3. Computation of the P-values. A Gamma distribution (blue solid line) is fit on the non related disease 

models of the Köhler list (histogram) to determine the P-values of the 5 relevant cell lines. 

 
 
 



 
Table S1. Disease network model P-values sorted in ascending order for dasatinib (first 20 entries). Significant P-

values (<5%) are in red. 

Disease dasa.pval nilo.pval bosu.pval bafe.pval 

CML (LYN) 7.63E-09 1.27E-01 1.30E-05 1.15E-04 

CML 5.66E-05 3.00E-01 3.58E-03 2.95E-03 

CCLE/BV-173 5.34E-04 2.69E-01 1.27E-02 5.03E-03 

Lung cancer 1.64E-03 4.87E-03 6.54E-03 3.50E-03 

avgpat/both 2.92E-03 3.17E-01 2.93E-02 1.80E-02 

Noonan Syndrome, Costello syndrome, Cardiofaciocutaneous 
Syndrome (Noonan Syndrome) 

3.38E-03 8.06E-02 2.02E-02 1.84E-02 

Hepataocellular carcinoma 5.23E-03 1.56E-03 2.24E-02 2.08E-03 

CCLE/SUP-B15/both 2.07E-02 4.42E-01 7.74E-02 7.03E-02 

Breast cancer familial (Familial breast cancer (somatic mutation)) 5.11E-02 2.74E-02 9.28E-02 3.56E-02 

Atypical mycobacteriosis, familial 5.85E-02 6.19E-02 5.67E-02 5.33E-02 

Medulloblastoma 5.88E-02 6.50E-02 9.85E-02 6.00E-02 

Juvenile myelomonocytic leukemia 6.69E-02 2.35E-01 1.14E-01 1.21E-01 

Elliptocytosis 7.80E-02 2.39E-01 1.42E-01 2.47E-01 

Systemic lupus erythematodes (Susceptibility to SLE) 8.43E-02 5.12E-01 1.17E-01 1.80E-01 

Glioma of brain, familial (Hereditary disorders characterized by 
occurence of glioma and other disorders) 

8.63E-02 5.71E-02 1.17E-01 6.09E-02 

Pheochromocytoma (Somatic mutations associated with isolated 
pheochromocytoma) 

1.03E-01 5.08E-02 1.47E-01 4.33E-02 

Pancreatic carcinoma 1.05E-01 4.70E-02 1.32E-01 5.99E-02 

Esophageal carcinoma 1.08E-01 5.82E-02 1.49E-01 6.91E-02 
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