SUPPLEMENTAL TABLES

	Table S1. Plasmids used in this study		
Plasmid	Description	Ref (Caviston et al., 2003)	
Yep13-GFP-Bem3	GFP-Bem3, 2µ <i>LEU2</i>		
pRS316-HA-mRFP- cSNC1	HA-mRFP-cSnc1, CEN URA3	(Robinson et al., 2006)	
PHO5pr-RFP-Vps21	RFP-Vps21 expressed from <i>PHO5</i> promoter, CEN <i>TRP1</i>	(Markgraf et al., 2009)	
pRS416-Cherry-Vps4 ^{E233Q}	Cherry-Vps4 ^{E233Q} expressed from Vps21promoter, CEN URA3	(Davies et al., 2010)	
pRS315-GFP-Sec4	GFP-Sec4, CEN LEU2	(Calero et al., 2003)	
pRS315-GFP-Rga1	GFP-Rga1, CEN LEU2	(Caviston et al., 2003)	
pRS315-Cdc24-GFP	GFP-Cdc24,CEN LEU2	Erfei Bi Lab	
Gic1-GFPx3	Gic1-GFPx3GIC1 in pRS316-P*(a derivative of pRS316) with triple GFP tag inserted in frame with construct. CEN URA3 variant		
pGAL1.416-Bem3-GFP	GFP-Bem3 expressed from a GAL1 promoter, CEN URA3	(Knaus et al., 2007)	
pYES2.1/V5-HIS-TOPO- Sec15	Sec15 expressed from the GAL1 promoter, 2µ URA3	This study	
pYES2.1/V5-HIS-TOPO- Sro7	Sro7 expressed from the GAL1 promoter, 2µ URA3	This study	
pRS315-GFP-Sec4 ^{Q79L}	G315-GFP-Sec4 ^{Q79L} GFP- Sec4 ^{Q79L} , CEN <i>LEU2</i>		
pRS315-GFP-Sec4 ^{S29N}	GFP- Sec4 ^{S29N} , CEN <i>LEU2</i>	This study	
Yep13-GFP-Bem3 ^{PHm}	GFP-Bem3 ^{R644S, R645S, K647D} 2µ <i>LEU2</i>	This study	
Yep13-GFP-Bem3 ^{K1003A}	GFP-Bem3 ^{K1003A} 2µ <i>LEU2</i>	This study	
Yep13-GFP-Bem3PX mutant	GFP-Bem3 ^{Y524W, R578S, L580W, F581M} 2µ <i>LEU2</i>	This study	
PX-PH domain-His6	pET28a HIS ₆ -BEM3 ⁴⁹¹⁻⁷⁷⁴	This study	
Yep13-HA-Bem3	HA-Bem3, 2μ <i>LEU2</i>	This study	
pGAL1.426-Bem3-HA- His6	Bem3 expressed from GAL1 promoter, 2µ URA3	This study	

pAD54-RFP-SEC4	RFP-Sec4 expressed from the ADH promoter, 2μ <i>LEU2</i>	(Aronov and Gerst, 2004)
pYES2.1/V5-HIS-TOPO- CaBem3	CaBem3 expressed from the GAL1 promoter, 2µ URA3	This study
pGAL1.426-Bem3 ^{K1003A} - HA-His6	Bem3 ^{K1003A} expressed from GAL1 promoter, 2µ URA3	This study

Table S2. Strains used in this study			
Name	Genotype	Source	
W303	Mata ade2-1 his3-1 leu2-3112 trp1-1 ura3-1 can1-100	Laboratory Strain	
SEY6210	MATa leu2-3,112 ura3-52 his3-200 trp1-901 lys2-801 suc2-9	Laboratory Strain	
BY4741	$MATa\ his 3\Delta 1\ leu 2\Delta 0\ met 15\Delta 0\ ura 3\Delta 0$	Invitrogen	
RH4344 (rcy1∆)	Mata yjl204c::kanMX his4 leu2 ura3 lys2 bar1	(Wiederkehr et al., 2000)	
RLY 3090	$Mat a BEM3-GFP::HIS5 his 3\Delta 1; leu 2\Delta 0; met 15\Delta 0; ura 3\Delta 0$	(Huh et al., 2003)	
$vps29\Delta$	<i>vps29::kanMX</i> in W303	This study	
Bem3-GFP (Diploid)	$MATa/\alpha$ his $3\Delta 1$ /his $3\Delta 1$ leu $2\Delta 0$ /leu $2\Delta 0$ lys $2\Delta 0$ /lys $2\Delta 0$ met $15\Delta 0$ /met $15\Delta 0$ ura $3\Delta 0$ /ura $3\Delta 0$ transformed with Yep 13-GFP-Bem 3	This study	
<i>sla2</i> ∆ [see Note1]	MATa sla2:: HisMX leu2-3,112 ura3-52 his3-200 trp1-901 lys2-801 suc2-9	(Stefan et al., 2005)	
<i>BWY2595</i> (ent1∆, ent2∆, yap1801∆, yap1802∆) [see Note2]	Mata leu2-3 ura3-52 his3-Δ200 trp1-Δ901 lys2-801 suc2- Δ9 ent1::LEU2 ent2::HIS3 yap1801::HIS3 yap1802::LEU2+ pBW0778 (ent1ENTH domain, CEN)	Wendland lab	
bem3∆	$MATa$ bem3::kanMX his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$	Hazbun Lab	
DAO2C	Mata ura3, leu2, met1,cdc3-6	Haarer Lab	
sec4-8	Mat <i>a</i> sec4-8 ura 3-52	Novick Lab	

<u>Note1</u>: *sla2*Δ: Sla2 knockout strain defective for endocytosis and proper actin cytoskeleton organization. Formation of actin comet tails associated with endocytic sites in these cells has been reported. (Kaksonen et. al., *Cell* **115**, 475–48 (2003).

<u>Note2</u>: Quadruple mutant strain with deletions of ENT1, ENT2, YAP1801, and YAP1802. The ENTH domain of Ent1 is expressed from a plasmid to maintain viability. These cells are defective in endocytosis and are inviable at 37° C.

	Table S3. Antibodies used in this study			
Host	Antigen	Clone	Source	Dilution
Mouse	HIS ₆	6XHIS	Clontech, CA	1:5000
Mouse	HA	HA.11	Covance, NJ	1:2000
Rabbit	Bgl2	9937F	Schekman Lab	1:10,000
Mouse	Pma1	40B7	Encor Biotechnology Inc., FL	1:5000

SUPPLEMENTAL REFERENCES

Aronov, S. and Gerst, J. E. (2004). Involvement of the late secretory pathway in actin regulation and mRNA transport in yeast. *Journal of Biological Chemistry* **279**, 36962–36971.

Calero, M., Chen, C. Z., Zhu, W. Y., Winand, N., Havas, K. A., Gilbert, P. M., Burd, C. G. and Collins, R. N. (2003). Dual prenylation is required for Rab protein localization and function. *Molecular Biology of the Cell* 14, 1852–1867.

Caviston, J. P., Longtine, M., Pringle, J. R. and Bi, E. (2003). The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. *Molecular Biology of the Cell* **14**, 4051–4066.

Davies, B. A., Azmi, I. F., Payne, J., Shestakova, A., Horazdovsky, B. F., Babst, M. and Katzmann, D. J. (2010). Coordination of Substrate Binding and ATP Hydrolysis in Vps4-Mediated ESCRT-III Disassembly. *Molecular Biology of the Cell* **21**, 3396–3408.

Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K. (2003). Global analysis of protein localization in budding yeast. *Nature* **425**, 686–691.

Knaus, M., Pelli-Gulli, M. P., Van Drogen, F., Springer, S., Jaquenoud, M. and Peter, M. (2007). Phosphorylation of Bem2p and Bem3p may contribute to local activation of Cdc42p at bud emergence. *Embo Journal* **26**, 4501–4513.

Markgraf, D. F., Ahnert, F., Arlt, H., Mari, M., Peplowska, K., Epp, N., Griffith, J., Reggiori, F. and Ungermann, C. (2009). The CORVET Subunit Vps8 Cooperates with the Rab5 Homolog Vps21 to Induce Clustering of Late Endosomal Compartments. *Molecular Biology of the Cell* 20, 5276–5289.

Robinson, M., Poon, P. P., Schindler, C., Murray, L. E., Kama, R., Gabriely, G., Singer, R. A., Spang, A., Johnston, G. C. and Gerst, J. E. (2006). The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. *Molecular Biology of the Cell* **17**, 1845–1858.

Stefan, C. J., Padilla, S. M., Audhya, A. and Emr, S. D. (2005). The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. *Molecular and Cellular Biology* **25**, 2910–2923.

Takahashi, S. and Pryciak, P. M. (2007). Identification of novel membrane-binding domains in multiple yeast Cdc42 effectors. *Molecular Biology of the Cell* **18**, 4945–4956.

Wiederkehr, A., Avaro, S., Prescianotto-Baschong, C., Haguenauer-Tsapis, R. and Riezman, H. (2000). The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. *Journal of Cell Biology* **149**, 397–410.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. (A) sla2Δ cells expressing GFP-Bem3 and RFP-tagged Ede1/Abp1,
(B) GFP-Bem3-expressing ent1Δ/ent2Δ /yap1801Δ/yap1802Δ cells or (C) WT cells expressing GFP-Rga1, GFP-Cdc24 and GFPx3-Gic1 from their respective endogenous promoters, were imaged at 100X using a FITC filter. Scale bars: 5µm

Figure S2. GFP-Bem3 was expressed from the indicated promoters and copy numbers in W303 WT cells (except RL 3090=endogenous promoter, single copy) and grown overnight at 30°C in the appropriate selective media containing 2% glucose and imaged at 100X using a FITC filter. High levels of Bem3 expression from the *GAL1* promoter were achieved by growing cells in 2% galactose containing media for 4 hours prior to imaging. Arrows and arrowheads point to Bem3 at polarized cap and intracellular Bem3-containing compartments, respectively. Scale bar: 5μm

Figure S3. Intracellular compartments marked by Yep13-GFP-Bem3 were visualized in W303 WT cells expressing empty vector (EV) control or overexpressing Ypt31^{N126I} from a *GAL1* promoter. Cells were grown overnight in galactose containing selective media at 30°C and imaged at 100X using a FITC filter. The total area of Bem3-containing compartments is significantly larger in cells overexpressing Ypt31^{N126I} compared to EV control. The total area of the Bem3-containing compartment present within a cell was measured using ImageJ (see material and methods) and plotted as a function of bud/mother area ratio. Scale bar: 5µm

Figure S4. (A) Wild-type W303 cells expressingGFP-Bem3 were grown at 24°C (permissive temperature) overnight or shifted to 37°C for 6h (restrictive temperature) before imaging at 100X using a FITC filter. Quantification of the Bem3-compartment area was performed using ImageJ. No significant

difference in Bem3-compartment area was observed when wild-type cells were grown at the restrictive temperature.

(B) Cells overexpressing GFP-Bem3^{K1003A} (mutant unable to bind Cdc42) were imaged at 100X using a FITC filter and DIC.

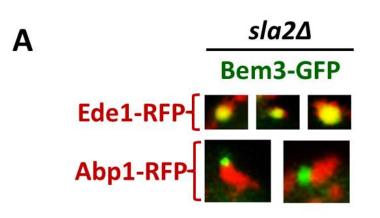
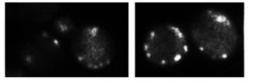
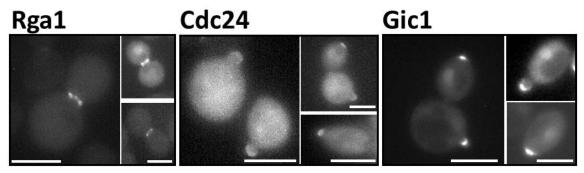

(C) Cells expressing Sec4-GFP and transformed with either Bem3 full-length, Bem3 PX-PH fragment or empty vector were imaged at 100X using a FITC filter.

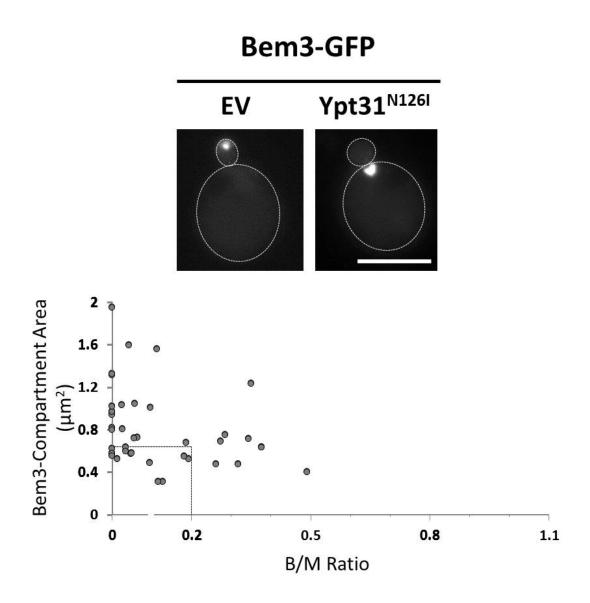
Figure S5. (A) Wild-type W303 cells expressing GFP-Sec4 and *Candida albicans* CaBem3 from a *GAL1* promoter were grown overnight in media containing 2% glucose at 30°C with shaking at 250 RPM, transferred to 2% galactose containing selective media for 4h and imaged at 100X using a FITC filter. Arrows point to clustered GFP-Sec4. Scale bar: 5μ m. (B) *sec4-10* cells expressing GFP-Bem3 were imaged at 100X using a FITC filter.

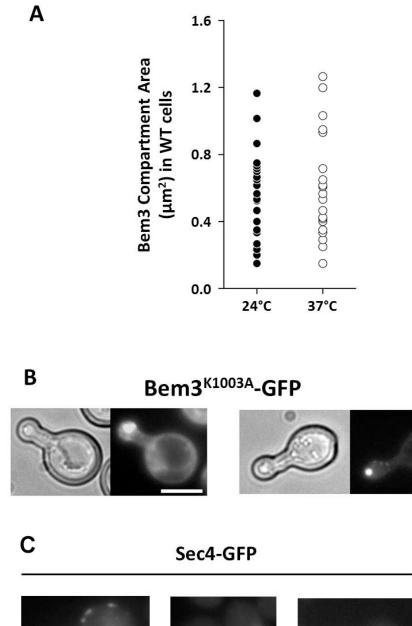

Supplementary Movie 1. Dynamics of the Bem3-containing compartment.

W303 yeast cells transformed with Yep13-GFP-Bem3 (2μ , *LEU2*) were grown overnight in selective media, spotted on media-embedded agarose beds the next morning and imaged with a FITC filter using a 100X objective at 10 second intervals. The cell outline is marked. Movie playback rate: 7 frames/second. Scale bar: 5μ m.


Supplementary Figure 1

B ent1 Δ /ent2 Δ /yap1801 Δ /yap1802 Δ

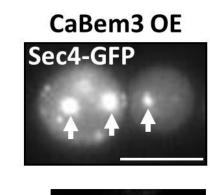

С

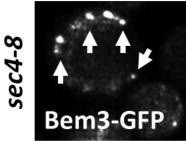

Mukherjee et al., Supplementary Figure 2

Promoter	Copynumber	- Bem3-GFP
Endogenous	Single	Bellis-GPP
Endogenous	High	
GAL1	High	

Supplementary Fig. 3

Supplementary Figure 4




Bem3 FL Bem3 PX-PH Empty vector

Α

В

Supplementary Figure 5

Movie 1. Dynamics of the Bem3-containing compartment. W303 yeast cells transformed with Yep13-GFP-Bem3 (2μ , *LEU2*) were grown overnight in selective media, spotted on media-embedded agarose beds the next morning and imaged with a FITC filter using a $100 \times$ objective at 10 second intervals. The cell outline is marked. Movie playback rate: 7 frames/second. Scale bar: 5 μ m.