## Supplementary Information:

## Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance

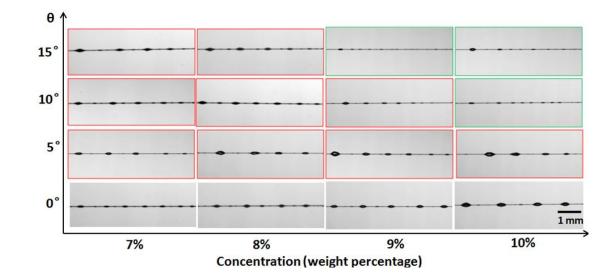
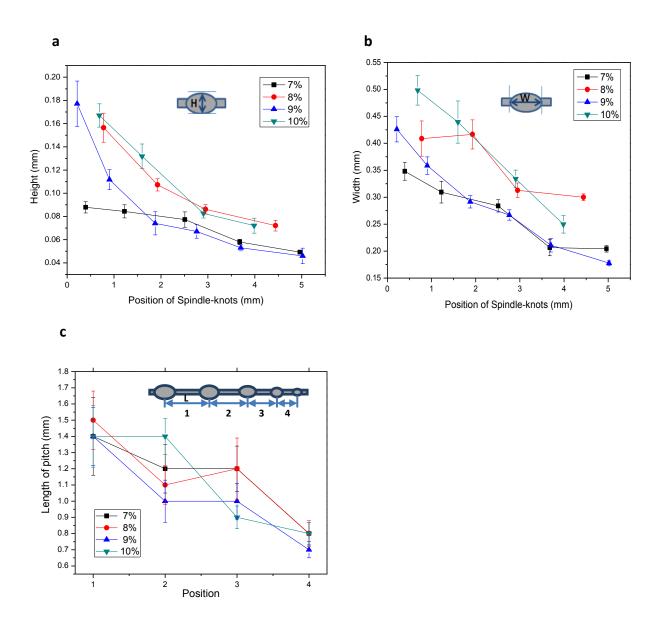
Yuan Chen, Lin Wang, Yan Xue, Lei Jiang & Yongmei Zheng\*

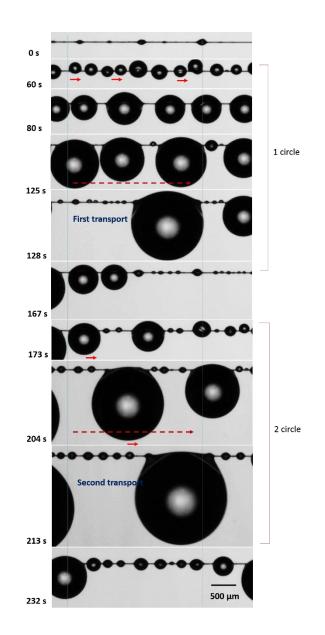
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191 (P. R. China). Corresponding author: e-mail: <a href="mailto:zhengym@buaa.edu.cn">zhengym@buaa.edu.cn</a>

Content:

Figure Legends (Figs. S1-S5) Tables (Tab. S1-3) Movie (Movie S1).

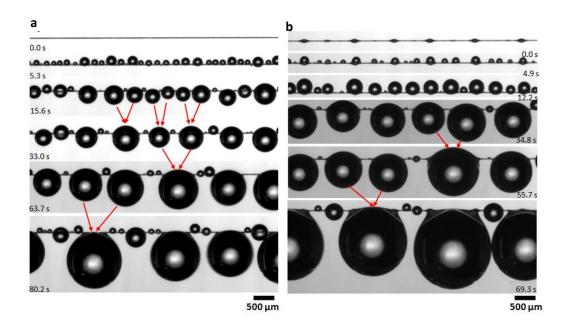
## Supplementary Figure Legends: (Figs. S1-S5)



Figure S1:

**Figure S1** | **Optical images of BFGS fabricated at different conditions by drawing the nylon fibers out of the PVDF/DMF solution.** The concentration of the polymer solution is 7%, 8%, 9%, or 10%(weight percentage) and the angle to the horizontal line is 0°, 5°, 10°, or 15° with the same drawing-out velocity ~200 mm/min. In the green frame images, there are no obvious gradient structures on the spindle-knots. In the images with red frame, the obvious gradient spindle-knots appear. At 0° angle to the horizontal line condition, there are uniform spindle-knots. Under 5° and 8% or 9% condition, the bioinspired gradient fibers are the most suitable for water transport because of the height gradient and pitch of two spindle-knots. At high title angle, e.g., 15°, the largest pitch of two spindle-knots is more than 2 mm, which is not conducive to water transport. In our experiment, we choose the pitch close to 1.5 mm to observe the water transport.




**Figure S2** | The statistical data of the height (a), width (b) of the gradient spindle-knots respectively and four pitches of two spindle-knots (c) along the gradient fibers. At high concentration (10%), the slope rate is bigger than low concentration (7%) with height and width. At low concentration (7%), the height is from 0.09~0.05 mm, the width gradient from 0.35~0.21 mm, while the height and width range from 0.17~0.07 mm and 0.50~0.24 mm at high concentration (10%), respectively. However, the distance of two spindle-knots has no obvious difference with the concentration for the relative position. In our experiment, the most pitch is close to ~ 1.5 mm, which is suit for the water transport.

### Figure S3:



**Figure S3** | **Images of repeatability of droplet transport process.** From 0 s to ~ 128 s, the water drops complete the first transport process. Then the biggest drop falls down from the bioinspired fiber. At ~ 167 s, the small drops continuously grow on the spindle-knots and start the second transport. At ~ 213 s, the second transport process finishes. Then the third transport process begins at ~ 232 s. These images show the repeatability of drop transport process. The bioinspired fiber can continuously transport the water drops.

Figure S4:



**Figure S4** | **Optical images show water drops coalescence on the uniform nylon fiber and uniform spindle-knots fiber.** The uniform nylon fiber is coated with PVDF. Two fibers are horizontally placed under a humidity of more than 90% via fog flow at rate of ~ 30 cm/s. There are no obvious movements of water drops for a long distance. The water drops are coalesced with surrounding drops and stay on the original position (on the uniform nylon fiber (a) or stably hang on two spindle-knots on the uniform spindle-knots fiber (b).

### Figure S5:

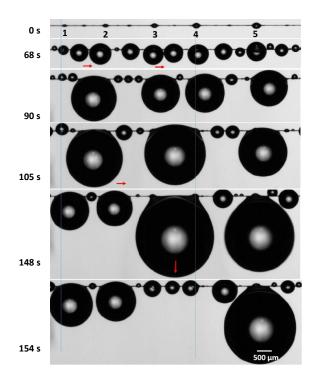



Figure S5 | Water transport affected by too big pitch. A gradient fiber is fabricated by title angle dip-coating with 15° and 8% concentration solution. A gradient spindle-knot fiber with five spindle-knots (marked with number 1 $\rightarrow$  number 5, height: ~ 57 µm, ~ 76 µm, ~ 148 µm, ~ 246 µm, ~ 286 µm; width: ~ 89 µm, ~ 106 µm, ~ 256 µm, ~ 296 µm, ~ 348 µm respectively) is selected. The pitches of two adjacent spindle-knots (from 1 to 5) are ~ 1.4 mm, ~ 1.5 mm, ~ 1.4 mm and ~ 1.8 mm, respectively. The largest pitch is too big to water transport. The movement distance of water drops is limited by the last pitch (between 4 and 5).

## Supplementary Tables

| Concentration | Viscosity (η) | Viscosity (η) Surface tension (γ) |  |
|---------------|---------------|-----------------------------------|--|
| (weight %)    | (mPa·s)       | (mN/m)                            |  |
| 7%            | 144           | 36.379±0.124                      |  |
| 8%            | 216           | 36.612±0.115                      |  |
| 9%            | 316           | 36.729±0.242                      |  |
| 10%           | 460           | 36.823±0.213                      |  |

#### Table S1. Viscosity ( $\eta$ ) and surface tension ( $\gamma$ ) of PVDF solutions with different concentration

#### Table S2. The length of largest pitch of two spindle-knots

| Length (mm) | 7%  | 8%  | 9%  | 10% |
|-------------|-----|-----|-----|-----|
| 15°         | 2.0 | 1.4 |     |     |
| 10°         | 1.5 | 1.5 | 0.9 |     |
| 5°          | 1.4 | 1.5 | 1.4 | 1.2 |

# Table S3. Result of fitting relationship between Height (H) of spindle-knot and Velocity (V) of drop coalescence via analyst of Origin software.

| Equation    |                | $V=A1 \cdot exp(-H/t1)+V_0$ |                |  |
|-------------|----------------|-----------------------------|----------------|--|
| Adj. R-Squr | 0.96318        |                             |                |  |
|             |                | Value                       | Standard Error |  |
|             | V <sub>0</sub> | 0.15707                     | 0.02249        |  |
|             | A <sub>1</sub> | -0.14478                    | 0.02002        |  |
|             | t <sub>1</sub> | 204.6485                    | 52.8495        |  |

## Supplementary Movie (Movie S1).

In-situ observation of the water collection and drop transport are focused on the BFGS with three gradient spindle-knots observed under humidity of ~ 95% via fog flow at velocity of ~ 30 cm s<sup>-1</sup> at room temperature, which was recorded by CCD camera. The dynamic process can be seen in Supplementary Movie S1.

Movie S1: Water collected quickly by the transport of coalesced drops.