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ABSTRACT We argue that given even an infinitely long
data sequence, it is impossible (with any test statistic) to
distinguish perfectly between linear and nonlinear processes
(including slightly noisy chaotic processes). Our approach is
to consider the set of moving-average (linear) processes and
study its closure under a suitable metric. We give the precise
characterization of this closure, which is unexpectedly large,
containing nonergodic processes, which are Poisson sums of
independent and identically distributed copies of a stationary
process. Proofs of these results will appear elsewhere.

1. Preliminary Description of Problems and Results

It has long been known, though perhaps not always appreci-
ated, that it is impossible to test whether a set of observations
comes from a "linear" ergodic or nonergodic Gaussian process
since any nonergodic Gaussian process can be arbitrarily well
approximated in a suitable metric by ergodic Gaussian pro-
cesses, which are necessarily linear. We will present here a
novel result that essentially any stationary process cannot be
sharply distinguished from a linear process. Loosely, we con-
sider the following problem: Given a partial realizationx1, . . ..
x, of a strictly stationary stochastic process {Xt}Jtz, where Z
= {O, ±1, ±2, ... }, when can we conclude that the process is
linear?

In recent years there has been a considerable interest in
nonlinear time series analysis in the statistical, econometric,
and engineering literatures (1-3). "Nonlinear" corresponds to
many subclassifications, such as "bilinear" or "threshold au-
toregressive." Also, noisy chaotic processes defined by

Xt =f(Xt-1) + et (t E Z),

where e, i.i.d. with E[st] = 0 andf: R -> RF, define a subclass
of nonlinear processes (for general f). But, at least linearity is
fairly unambiguously specified. A linear stationary process
(Xt),Ez is usually described by

xt = tpst_j (t EE Z), 11
j=0

where st i.i.d. with E[st] = 0, El ,j2 < oo and lj`=_Oi < oo. Such
processes are also called moving-average (MA) processes.
Here, we always assume existence of second moments. There
is no loss of generality in assuming E[Xt] = 0. Note that causal
(minimum phase) autoregressive orARMA processes are also
representable as MA processes.

Given a finite stretch of a realization of a stationary process,
one can try and test the hypothesis of linearity as stated in Eq.
1.1. Such omnibus tests have been proposed, mainly by looking
at higher order spectra (4, 5). But this hypothesis can be
rejected only if alternatives are not well approximated by
processes satisfying the hypothesis. The problem of testing Ho
about MA representation as in Eq. 1.1 leads then to the
problem of studying the closure of the set of probability
distributions ofMA processes as given in Eq. 1.1 (MA closure).

The notion of a closed set requires the specification of a
topology. We work here with the Mallows metric (6), also
known as the Wasserstein metric, and with the stronger total
variation metric. (For details, see sections 2.1 and 2.2.) We
always identify real-valued stochastic processes, indexed by Z,
with their corresponding probability distributions; we then
prefer to state our results in terms of stochastic processes.
We will argue in section 1.3 that the Mallows MA closure is

exhausted by three types of processes. The first type is the set
of stationary Gaussian processes with mean zero, i.e.,

Si = {(Xt)tz; (Xt)t stationary Gaussian process with

E[Xt] = O}.

The second type is the set of genuine MA processes, i.e.,

S2 = {(Xt)tEz; Xt as defined in Eq. 1.1}.

The third type which arises is more surprising. We essentially
can get Poisson sums of independent and identically distrib-
uted copies of stationary processes in the following sense.
Denote by

((t;1)tE7L, ((t;2)tEE .. v

a sequence of independent, real-valued, stationary processes
with mean zero and finite second moments EI(t;112 = i.1,
E|I ;212 = Oi;29.. Moreover, we construct for every i E N=
{1, 2,... } a sequence of independent copies of ((t;i)tE-,
namely

Thus we have constructed a sequence of processes

{( t;i,j)tE-z}i]jEN independent processes over the index set

isj E iJ(t;j1)tE-,((t;j2)tE, 1. i. d.,E[(t;j,j] = O,EI t;,jjj2

-2 <o. [1.2]

Let

N1, N2, . . . independent, Ni - Poisson(Ai), A. 2 0

for all i E NJ. [1.3]

Then the third type is given by the following set of processes,

i x Ni

S3 = (Xt)tC=Z; Xt = I I (t;i,J7 (t;i,j)tEz@
t ~~~i=1 j= 1

Ni satisfying 1.2, 1.3, and>Aio.2 <Ko
i=l

Abbreviation: MA, moving average.
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We make the convention that x%i-1 6t;i,j = 0. Elements of S3 are
typically nonergodic processes whose finite dimensional dis-
tributions are infinitely divisible non-Gaussian.

1.1. Nonergodic Limits and Separation Dilemma. In an
informal way, the ergodic hypothesis postulates the equality of
time-averages with averages over the elements in a probability
space (in statistical mechanics, "phase-averages" in the phase
space of a mechanical system). But the distinction between
ergodic and nonergodic processes can be blurred.
Example 1.1: Consider the sequence of finite order MA

processes,

n

tXn) = #j; IUt j,nZt j,n (t E Z)
j=1

with U, i.i.d., P[Ut = 1] = 1 - P[U, = 0] = A/n (A > 0), Zt
i.i.d. -t5, Student's t distribution with 5 degrees of freedom,
and coefficients (6j;1)jsN which are a fixed realization of the
Gaussian AR(1), fj;j = 0.9fj-i;i + 71j, 71j i.i.d. X(0, 1).
For every n E N+, these are ergodic MA processes of finite

order n. But they exhibit a behavior which can be interpreted
as nonergodic and "nonstationary," and which seems far from
what one expects of a linear process. The reason is that they
are close to a nonergodic member in S3.
To illustrate the nonergodic phenomenon, we show in Fig.

1A nine realizations of sample size 500 of the process in
Example 1.1 with n = 50. Fig. 1A tells in a quite impressive
manner how different such realizations can be, and thus
indicates that time-averages are not compatible with phase-
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averages over different realizations-i.e., nonergodic behav-
ior. Fig. 1B shows one realization of sample size 5000 of the
MA process in Example 1.1 with n = 200, now indicating
nonstationarity. Different stretches of the sequence exhibit
very different behaviors. This is the typical pattern for a time
series with innovation outliers (7). Indeed, our model is an
extreme case with innovations being either zero with proba-
bility 1 - A/n or being a realization from a long-tailed
distribution with probability A/n. Note that outliers are with
reference to the Gaussian distribution; it is the nonnormality
of innovations which can lead to MA processes being close to
a process in 53.
Example 1.1 is a special case of a very disturbing subclass of

MA processes close to S3. Given any, even infinitely long,
realization ( from any stationary process, consider the
process (X,)1,z E S3, where Xt = AEX I (t;j (t E Z) with N -

Poisson(1) and ((t;1)tEz = ()tE:EZ (6t;2)tE7-Z, independent
identically distributed copies. It can be shown that this process
is an element of the MA closure, compare also with Fact 1.4
in section 1.3. Since P[N = 1] = e-1 > 0.36, we obtain P[Xt
= (t for all t E ZI((t)tE=z > 0.36. Summarizing, we have the
following separation dilemma.
FACT 1.1. Given any stationary process ((t)tEz, there exists a

nonergodic, stationary process (Xt)tE7z in the MA closure, which
is an element of S3 and has with positive probability exactly the
same sample path as (4t)tEz. More precisely,

P[Xt = (tfor all t E-I((t)tez] > 0.36 almost surely.
Details are given in Theorem 2.2. This separation dilemma is
of the same nature as de Finetti's Theorem which can be
thought of as stating the impossibility of distinguishing ex-
changeable from i.i.d. sequences (8, pp. 40-42).

In terms of the whole stochastic process, rather than a
sample path, we have the following.
FAcT 1.2. The MA closure does not contain the set of ergodic,

stationary processes.
To show the validity of Fact 1.2, it is sufficient to give an

example.
Example 1.2: Consider the stationary Markov chain (X1),tz,

given byXt E {0, 1 } with P[XX1 01 P = 1] = 1/2, Pl[X1
= OIXo = 0] = Pa[X1 = oXo = 1] = ir, 0 < Xf < 1/2. Then
(Xt)t,1z is ergodic. Moreover, the probability distribution ofXt
is not divisible, since the convolution of two nondegenerate
distributions would place mass on at least three points, whereas
Xt is only binary. Hence, the distribution of Xt cannot be
approximated by any MA process and (Xt)t,1z can therefore
not be an element of the MA closure.

It is possible to construct an ergodic, stationary process, with
marginal distributions having a density with respect to Leb-
esgue measure, which is not an element of the MA closure (see
ref. 15).
There are probably many ergodic, stationary processes,

which are not elements of the MA closure. A possible candi-
date is the bilinear process, given by

Xt = -0.4Xt-I + O.4Xt-1et-1 + Et(t E Z),
V where s, i.i.d. - X(0, 1) (see figure 3.10 in ref. 9).

000 0400 0400 *ee0 *eo0 sThis process is stationary and ergodic (10). It is also
immediate that the process is non-Gaussian. As argued in
Subba Rao and Gabr (table 3.2 and figure 3.3 in ref. 9), this
bilinear process is not representable as a moving average
process. However, the MA closure also contains the class S3
some of whose members may be ergodic.

1.2. The Testing Dilemma. There is considerable interest
in testing the hypothesis that an observed time series is a linear
process. Several authors propose different procedures for

FIG. 1. (A) Nine realizations of Example 1.1 with n = 50, A = 3. testing the hypothesis of MA representation (4, 5) and of
) One long realization of Example 1.1 with n = 200, A = 5. autoregressive representation (11).
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Consider the problem of distinguishing between the hypoth-
esis HO: (Xt)tezz is a linear process against the alternative HA:
(Xt)tEzz is a specific stationary process (not approximable byH0
processes). Do there exist critical regions C, for rejecting Ho,
such that P'HJ[(Xl, X,,) C,,] -* a >0 and PHA[(X1, ..

X,,) 0 C,,] -> 0 as n - oo. That is, can one distinguish perfectly
between HO and HA at any level of significance a? Fact 1.1 can
be restated as follows.
FAcr 1.3. In testing the hypothesis HO aboutMA representation

against any fixed one-point alternative HA about a nonlinear,
stationary process, there is no test with asymptotic significance
level a < 0.36 having limiting power 1 as the sample size tends
to infinity.

1.3. Exhausting the MA Closure. The sets Si, S2, S3 are not
rich enough to exhaust the Mallows MA closure. To achieve
this, we need sums of processes of the different types. We
introduce an adding operation for processes and define

(X,)tEz (Yt)tez is the process (X, + Yt)tEz,

where the processes (Xt)t,=z and (Y,)tEz, are independent.

We then set

Si E Sj = {(Xt)tEz E (Y,),tZ; (Xt)t,z E Si,

(Yt)t,z E- Sjl, i, j GE {1, 2, 31,
and make the common convention that all Si (i = 1, 2, 3) also
contain the null element Xt 0 for all t E Z.
The representation of a process as a D-sum of elements in

Si (i = 1, 2, 3) is not unique even in the Gaussian case.
FAcr 1.4. The closure of the set ofMA processes is given by

{S1 E S2} U {S1 D S3}.

Details are given in Theorem 2.1. Mallows (12) argues that a
linear process such as in Eq. 1.1 is close to a Gaussian process
if maxj.o lqI4l is small. This is no longer true if one considers
sequences {(Xt,n)tEZz}InEN of linear processes with coefficients
qjj,, as above and variables Et,,, which are i.i.d. but depend on
n. Then, if maxj.|oJq,,J -O0 (n -* oo) the process (Xt,,,)tez/ can
have marginal distributions close to a non-Gaussian (not
purely Gaussian) infinitely divisible law. Our result is in the
spirit of Levy (13) and uses his arguments. He showed that
every continuous time process (Xt)tEz with independent in-
crements must have an infinitely divisible law and that such
processes can be realized by a process with independent time
homogeneous increments.

2. Precise Formulations

We consider real-valued, stationary processes (Xt)tE=z with
expectation zero and finite variances. Thus, an appropriate
probability space is (RD7, I, ?P), where GI3 denotes the Borel
o-field on RZ and 9P a class of stationary probability measures
on (Rz, ?), such that for every P E GP,

Ep[X] = fxd(P 0 7rT 1)(x) = 0,

EpIX12 = f x2d(P 0 To l)(X) < o,

where Tt, . . . ,tRz -> Rm, (.x)tEZL s-* (x*, .. .*,X), ti,
tm E ZZ.
We always identify a probability measure P Ecs with its

corresponding real-valued stochastic process.

It is possible to metrize the space QP with a metric d (see
sections 2.1 and 2.2). The closure with respect to the metric d
of sets in 9P, or equivalently of stationary real-valued stochastic
processes with distributions in 9P, is defined in the usual
topological sense. We are particularly interested in the closure
of MA processes (MA closure). Thus, we will consider se-
quences

Xtn =eN Ekjn t n teZ [2.1]

2.1. Mallows Metric. We define the Mallows metric d2 on
9P, by

d2(P1, P2) - 2 d(m)(P 1o 1,m ,P2 0 ,m)2-m,
m=1

P1, P2 E=P,

where dsm)(Pi 0 irQ.. ,m '2 ° irj2. .m) = inf{(EIX - 1112)1/21
when the infimum is taken over all jointly distributed NX, Y) E

?1-'n having marginals Pl ° wiTj ..im and P2 o .1,...m; 1111
denotes the Euclidean norm in Rm.
The following characterization is useful. Let Pn, P E 9P and

denote by 4> weak convergence of probability measures. Then,

d2(Pn,P) -*0 (n -*oo)

is equivalent to the following two statements

Pn,.i t => P ° t1,,(nc )forall tl,.tE mE RJ

fX2d(Pn oi0l)(X) 2
x2d(P o

7r l')(x) (n -> oo),

that is, all finite dimensional distributions at tl, . .., tm con-
verge weakly and the variance of the marginal at any time point
t converges (see ref. 14). We also use the notation for the
corresponding processes, d2((Xt,,)te;Z, (Xt)tEZ) = d2(Pn, P),
where (Xt;n)tEZ - Pn, (Xt)t1 - P.

2.2. Variation Metric. The question about distinguishing
perfectly between two stationary processes requires a stronger
metric than the Mallows d2. The variation metric allows a
precise formulation.
As before, let P1, P2 E 2P and define the variation metric as

dv(Pl, P2) = 2 d m)(P1 ° T .., m' P2 ° .m)2 X
m=1

whered ')(P1 MT.j1 . ,,P20 ITj,.m) = sup{IPi 0 i7T. m[A]
- P2 0 1, . ,m[A]I;A E-A(Rm)}, I(Rm) the Borel cr-algebra
of Dim. This definition reflects the nonuniform convergence of
finite dimensional distributions in the variation metric. Here
we do not require convergence of second moments. Distin-
guishing perfectly is characterized as follows. Let P1, P2 be
ergodic probability measures in 9P. Then

dv(P1, P2) > 0 if and only if there exist test functions

pm:W > R,R,0 pmq 1, such thatEp[hpm(X1, .Xm)]

0,EpP2kpm(X1, ... ,Xm)] > 1(m >* c)-

2.3. Closure for MA Processes. We consider first the
Mallows d2 closure for MA processes, that is, sequences as
defined in Eq. 2.1. Without loss of generality we can scale the
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innovations and assume: (A): For every n E NJ, (st,n)tEz is an
i.i.d. sequence with

E[-t,n] = 0, E-t,n 12 = 1.

The following result describes the Mallows MA closure.
THEoREM 2.1. (i) Consider a sequence of MA processes as

defined in Eq. 2.1 converging in the d2 sense, satisfying (A) and one
of the following:

(Al): di)(tn, St) - 0 (n -> oo), where (st)tEz is an i.i.d.
sequence with E[st] = 0.

(A2): maxjojqij,nIj -> 0 (n -> oo).
Then, the d2 limit ofsuch a sequence is in {SI e S2} U {Si 0

S3}.
(ii) Every element of {Si 0 S2} U {S1 0E S3} can be obtained

as a d2 limit ofa sequence ofMA processes as defined in Eq. 2.1,
satisfying (A) and (Al) or (A2).

Example 1.1 describes a sequence of MA processes with d2
limit in S3. This example can be modified so that the sequence
of MA processes also converges in the variation metric to a dv
limit in S3. This is needed in the following theorem, which has
as a consequence that we can never distinguish perfectly
between any stationary processes and MA processes even
though there are such processes that cannot be approximated
arbitrarily closely by MA processes.
THEOREM 2.2. The MA closure with respect to the variation

metric dv has the following features.
(i) Let (4t)tE be any stationary process such that for all m E

FJ, the distributions of (,, .. ., ,m) have densities with respect to
Lebesgue measure. Then, there exists a process (Xt)tE=z E S3,
which is an element oftheMA closure with respect to the variation
metric dv, such that

P[Xt = (t for all t E (Z t E.; ] > 0.36 almost surely.
(ii) There exist ergodic, stationary processes as in (i) which are

not elements oftheMA closure with respect to the variation metric
dv.
The proofs of Theorem 2.1 and 2.2 are given in Bickel and

Buhlmann (15). We have looked here at MA processes of
infinite order. All our results are also true for sequences of
finite (generally unbounded) order MA processes, which are
more common in statistical modeling.

3. Discussion

The basic implication of our results is that any stationary
process cannot be sharply distinguished from a high enough
order MA process. Our proofs in Bickel and Buhlmann (15)
show that a high order is a necessity to approximate an
arbitrary ergodic, stationary process in the sense of Fact 1.1
and Theorem 2.2.
However, as can be noted from Fig. 1 the phenomenon is

quite noticeable even for ratios of number of parameters to
observations as low as 0.1. Note that purely chaotic processes
do not fall under Theorem 2.2 since ((,, ..., (m) do not have
a density for m sufficiently large. However, by adding an
arbitrarily small amount of white noise to any stationary
process including purely chaotic ones we produce a process
which can not be distinguished perfectly from an MA process
of high order.
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