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ABSTRACT Two objects with homologous landmarks are
said to be ofthe same shape ifthe configurations oflandmarks
of one object can be exactly matched with that of the other by
translation, rotation/reflection, and scaling. The observa-
tions on an object are coordinates of its landmarks with
reference to a set of orthogonal coordinate axes in an appro-
priate dimensional space. The origin, choice of units, and
orientation of the coordinate axes with respect to an object
may be different from object to object. In such a case, how do
we quantify the shape ofan object, find the mean and variation
of shape in a population of objects, compare the mean shapes
in two or more different populations, and discriminate be-
tween objects belonging to two or more different shape
distributions. We develop some methods that are invariant to
translation, rotation, and scaling of the observations on each
object and thereby provide generalizations of multivariate
methods for shape analysis.

1. Introduction

We consider objects that are characterized by the configura-
tion of some recognizable landmarks, say k in number. The
observations on a p-dimensional object are represented by a
p x k matrix X, where the i-th column gives the coordinates
of the i-th landmark with respect to a set of coordinate axes.
The location and orientation of any particular object with
reference to the coordinate axes may differ from object to
object so that the observations made on different objects are
not comparable. We shall also allow for variations in the units
of the coordinate axes from object to object. In such a case, we
can compare the objects only in shape, i.e., after filtering out
the differences in location, scaling, and rotation/reflection. A
convenient way of doing this is to consider the maximal
number of functions of X, which are invariant under transfor-
mations of the type

AR(X - alT), [.]

V A > 0, a E Q1tP andR E O(p), the set of orthogonal matrices.
Such functions may be described as shape coordinates. When
p = 2, there are 2k - 4 such functions that can be represented
as a point in 2ft2k-4, and when p = 3, the number of such
functions is 3k - 7. There is no unique way of choosing these
functions. However, the inference based on a particular choice
will be consistent with that based on any other choice provided
the probability distribution of any chosen set of functions can
be accurately specified.
There is considerable literature on the analysis of shape

coordinates, starting with the seminal work of Kendall (1-3)
and Bookstein (4-6). For recent work by Mardia, Dryden,
Goodall, Kent, and others the reader is referred to the survey

papers by Kendall (3) and Kent (7) and the references con-
tained therein.
Another way of specifying an object through landmarks is to

provide the k(k - 1)/2 Euclidean distances between all
possible pairs of landmarks. The distances are invariant for
change in location and rotation. They can be represented by a
k x k symmetric matrix D = (Dij), where Dij is the distance
between the landmarks i and j. In such a case, we need only
make adjustments for scale to compare objects. Writing the
entries above the diagonal in D in a vector form d* the object
can be represented by a ray

d(S) = {Ad*: A > O}, [1.2]

which represents the shape of the object. The appropriate
statistical methodology based on dj) is developed by Lele in
a series of papers (see refs. 8 and 9 and references therein).

In our approach we consider the vector d of the logarithms
of the individual components of d*, in which case the shape of
the object is characterized by the set

d(S) = {d + cl : c E RI}.
We develop the appropriate statistical methodology based on
d(s), which seems to have some advantages over the earlier
approaches.

2. Size and Shape Variables

Let d be the vector of logs of all possible, or a subset of,
distances between landmarks and denote by m, the size of the
vector d. Any function of d, which is invariant for translations
of each component of d by a constant, is a function of the set

d(s) = {aTd = ,aidi: aT1 = 0, aTa = 1}. [2.1]

Note that exp(aTd) is a function of the ratios of the distances
and, as such, the elements in Eq. 2.1 represent the shape of an
object.
A basis of the set Eq. 2.1 is Hd, where H is an m - 1 x m

matrix of rank (m - 1), such that Hl = 0. We may consider
the shape variables as

d(s) = Hd. [2.2]

Having defined shape variables unambiguously, we now look
for a suitable characterization of the size of an object. Gen-
erally, size is defined as any function f(d) such that f(d + cl)
= c + f(d), V c GE A, which in terms of the original distances
can be written in the form g(AD) = Ag(D) V A > 0. There is
no unique choice off or g unless we impose some restrictions
or require the function to have some desired properties. We
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suppose that d has a distribution with mean 6 and variance
covariance matrix :.
(i) Consider a linear function bTd as a measure of size, which

imposes the condition

bT(d + cl) = bTd + c > bTl = 1.

tions (values of d) on n objects of a population. We denote the
sample mean and covariance matrix by

[3.1]

[2.3] and

If we require bTd to be uncorrelated with the shape
variables, then

Cov(bTd, Hd) = bT,HT = 0 > bT, = alT or b = a5l11,
where a is a constant. Using the condition Eq. 2.3, a-1 =
1TI-11 so that the required linear function is 1T'-ld/
TI-11.

(i) Consider a linear function bTd as in Eq. 2.3. The regres-
sion of d on bTd is

Cov(d,bTd) lb
Var(bTd) = bTIb [2.4]

where the vector on the right hand side of Eq. 2.4
represents the average increase (or decrease) in each of
the variables for a unit increase in bTd. We may charac-
terize bTd as a measure of size if the vector in Eq. 2.4 has
all positive elements. Ifwe choose all the elements of Eq.
2.4 to be equal then

5;b
bT,b oc 1 or b c-11. [2.5]

Using the condition bTl = 1, we have b = :-1111T;-11,
which is the same vector as that derived in (i).

(iii) Let d1 and d2 be two vectors associated with two indi-
viduals. Then the square of the Mahalanobis distance
between the individuals admits the decomposition

(d - d2)TY-l(d1 - d2)
= (d1 - d2)THT

(H1HT)-1H(d1 - d2)

[1T-E(d- d2)] [2.6-
+ 1TI-11[26

using the identity in ref. 10, p. 77,

,-1= HT(HfH')-1H + -1l(l17\-11)-1TI-1. [2.7]

The first part of Eq. 2.6 is the square of the Mahalanobis
distance in shape and the second may be interpreted as
the square of the Mahalanobis distance in size. This again
leads to the function 1T'-'d/1T- 1 as an indicator of
size.

(iv) One requirement which biometricians seem to prefer is
that size should be stochastically independent of shape.
The problem then is to determine a function f(d), such
thatf(d + cl) = c + f(d) and is distributed independently
of the shape variables Hd. It has been shown by Sampson
and Siegel (11) that among linear functions of size,
17T-Id/IlT:-11 is the unique function that is indepen-
dent of HTd when d has the multivariate normal distri-
bution with the variance covariance matrix :. In the
appendix to this paper, we show that this result is true
without the assumption that f is linear.

3. Statistical Analysis of Shape

Consider the full vector d of the logs of all possible m = k(k -
1)/2 Euclidean distances, and let d1,. . ., d, be the observa-

S = (n - l)1(dldT + . .. + d -dT- nfldT), [3.2]

which constitute the summary statistics of a sample on which
further calculations are based. If we are working with a
selected subset of distances the relevant components in Eqs.
3.1 and 3.2 are chosen.

3.1. Mean Shape. A typical component of dr is logD([), the
log of the distance between the landmarks i and j of object r,
and the corresponding component in d is

n
n-1 log D( ) = logDij say,

r=1

so that Dij is the geometric mean ofDlt, r - 1,...,n.The
geometric mean distance Dij, i, j = 1,..., k, may not be
embeddable in a Euclidean space of the same dimension as the
objects are. For graphical representation of shape, we may do
a metrical scaling in the required dimension using the method
proposed by Torgerson (12). For details of this method and
some modifications reference may be made to Rao (ref. 13,
section 14). We call the distances calculated from the config-
uration obtained by metric scaling the regularized mean
distances between landmarks, and denote them by D1i. The
ratios of Dij are independent of the sizes of the individual
objects, i.e., we get the same ratios if instead ofDOr)we consider
ArD(r) as the distances in the r-th object for any arbitrary Ar.
The same is true of Dijs. In this sense, the distances Dij or D
provide a characterization of the mean shape of objects.
There are other ways of defining mean shape conforming to

the dimensions of the objects. Let

dr= (dri,. .. , drm)T, r = 1, ... n [3.3]

with m = k(k - 1)/2, and consider ap x k matrixM (i.e., of
the same order as the configuration of an individual object)
with the associated m vector of log distances

dM = (dMi, . *. , dMm)T. [3.4]

Further, let w1, . .. , wm be non-negative weights adding up to
unity, and denote

dr= EWjdrj dM= EWjdMj- [3.5]

We define the mean configuration as

m n

M*= arg min wj [(dll - dr) - (dMI - dM)]2.
M j=l r=l

[3.6]

Another possibility is to work directly with distances instead
of their logarithms. Representing the actual distances in Eqs.
3.3-3.6 with an asterisk, we may define the mean configuration
as

n m

M* = arg min E Ewj(d*Mj - Ad*?j)',
M,Ai,..* *kA"r=lj=l

[3.7]

subject to the condition E wjd 2 Mi = 1. The expression in Eq.
3.7 can be simplified to
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n( EWJd*r_*MjM* = argmax (w jd rj)2
Mr (EWjd2*r)

Suitable algorithms have to be developed to solve the optimi-
zation problems in Eqs. 3.6 and 3.8.

3.2. Comparison of Two Populations in Size and Shape.
Let di and Si be the statistics in Eqs. 3.1 and 3.2 based on a
sample of size ni from population i, i = 1, 2. We wish to test
the hypotheses that the populations are the same in size and
in shape with possible differences in size. Denote S = [(n, -
1)S1 + (n2 - 1)S2]/(n, + n2 - 2). Then the overall
Mahalanobis distance between the populations has the de-
composition

Do= (a1 -d2)TS-(dl- d2)

[17S-1(dl - d2)]2
= (d - d2)THT(HSH)-lH(d1 - d2) + 1TS-11

= Dh + Ds[3.9

where H is an m - 1 x m matrix of rank (m - 1) such that
Hl = 0. The statistic D 2 reflects the difference in size and

X2f= n+n2f2. [3.10]

is asymptotically distributed as X2 on 1 degree of freedom
under the null hypothesis of no difference in size. The statistic
Dsh reflects differences in shape, and

X2 nnl2 2[3.11]sh =ni + ??2 -h[.1

is asymptotically distributed as X2 on (m - 1) degrees of
freedom under the null hypothesis of no difference in shape,
where m is the number of distances chosen.
As an example, we consider the differences in size and shape

of the cranii of chimpanzee and gorilla based on a selection of
13 distances out of 8(8 - 1)/2 possible distances. The data
were collected by Paul Higgins (University College, London).
The total Mahalanobis distance and that due to size and shape
are 79.25 = 17.63 + 61.62.
The sample sizes for chimpanzee and gorilla were 28 and 29,

and the x2 for size is (28 X 29/28 + 29)17.63 = 251.15, which
is significant on 1 degree of freedom. The x2 for shape is (28 x
29/28 + 29)61.62 = 877.81, which is significant on 12 degrees
of freedom.

If we want to discriminate between the objects of two
populations by shape alone, the appropriate linear discrimi-
nant function is

(d1 - d2)THT(HSHT)-lHd

= (d1 - d2)T(S1 1TS-11 )d, [3.12]

where d is the vector of log distances on an object. In terms of
the original distances the discriminant function is of the form

rHD'$,', E Eaij = 0. [3.13]

[3.8]
S = E(ni- 1)Si/E(ni - 1),

B = ndlclaT + .. .., nraraT- nT.

Then the statistic for testing differences in size is

1TS-BS-l1
si

=

TS-11 9

[3.14]

[3.15]

which is distributed asymptotically as X2on (r - 1) degrees of
freedom, and the statistic for differences in shape is

Xsh = tr(BS1) - ITS-lBS-lIX2t (BS-ITS_ [3.16]

which is distributed asymptotically as x2on (m - 1)(r - 1)
degrees of freedom.
One question that arises in practice is about the choice of a

subset of the distances, out of the k(k - 1)/2 possible
distances, in carrying out the tests of differences in size and
shape.
So far as the estimation of the mean shape is concerned, it

is desirable to use all the k(k - 1)/2 distances. In tests of
significance and discriminant analysis, all the distances can be
used if the sample sizes are sufficiently large. The fact that the
distances are functionally related does not invalidate the
asymptotic tests since the relationships are not linear. How-
ever, the information content may not increase with increase
in the number of distances chosen. This together with small
sample sizes ordinarily met with in practice suggests that there
is some advantage in choosing a subset of the distances. (see
ref. 14 for loss in efficiency in using a large number of variables
when sample sizes are small). It is known that a choice of 3k -
6 (or 2k - 3 when the relative positions of the landmarks are
known) distances is sufficient to specify the configuration of
landmarks on a two-dimensional object. There may be differ-
ent choices of such distances, but in practice any one of these
choices would be sufficient to indicate differences in the
populations. If we are using nonparametric density estimation
for classification purposes it is essential that we should choose
a minimal set of distances, which can specify the configuration
of landmarks uniquely. Once a set of distances is chosen, the
basic statistics needed for statistical analysis can be obtained
from Eqs. 3.1 and 3.2 by omitting some elements. In practice,
a few different alternative choices may be tried to see if they
lead to different conclusions. An example where 2k - 3
distances are sufficient to specify the configuration of land-
marks is that of the profile of the human face as shown in Fig.
1.
Once the; differences in shape between the populations are

revealed through appropriate tests, it will be of interest to
examine the exact nature of differences. For this purpose, we
consider the mean shape through regularized mean distances
as discussed in Section 3.1. If Di7) and b,/) are the distances
between the landmarks i and j, we consider all possible ratios

5ij= b/b, i,j= 1,..., k. [3.17]

3.3. Comparison of Many Populations. The test statistics
in Eqs. 3.10 and 3.11 can be generalized for testing equality in
size and shape of several populations. Let di and Si be the
statistics in Eqs. 3.1 and 3.2 based on a sample of size ni from
population i, i = 1, 2, ..., r. Let

An overall measure of difference in the mean shapes of the two
populations is the Hilbert's distance

max8i
log i 8 l [3.18]
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A study of the pattern of the $ij values would indicate regions
of the object where shapes in the two populations are more
different than in the others.

4. Other Types of Exploratory Analysis

4.1. Principal Component Analysis of Shape. Let S be the
estimated covariance matrix of the vector d of logs of chosen
distances. The basic set of shape variables as defined in Eq. 2.1
is

{aTd : aTi = 0, aTa = l}. [4.1]

We wish to find a member in the set of Eq. 4.1, which has the
maximum variance. The algebraic problem is that of determining
a, which maximizes aTSa subject to the conditions aTl = 0 and
aTa = 1. The equations leading to the optimum a are

Sa = Aa + ,u1, lTa = 0. [4.2]

It is easy to show that the optimum a is the eigenvector of QSQ
corresponding to the maximum eigenvalue, where Q = (I -
m-111T); m being the number of components in the vector d.
The other principal components, (m - 2) in number, corre-
spond to the (m - 2) eigenvectors associated with the other
non-zero eigenvalues of QSQ.

4.2. Canonical Correlations. It may be of interest in some
situations to know whether the shapes in different regions of
an object are related. For instance, we may wish to know
whether there is a high correlation between the shapes of the
upper and lower parts of a cranium. Let d, and d2 be m1 and
m2 vectors of log distances arising out of landmarks in the
upper and lower parts of the cranium. Corresponding to the
choice of d, and d2, we have the covariance matrix,

(Sll S12 [.3
S21 S22) [4.3]

3

4 5

7

11

f

in the partitioned form. We now consider the shape measure-
ments Y, = H1d, and y2 = H2d2, where HI is of the order ml
- 1 X ml and Hll = 0 and H2 is of orderm2- 1 Xm2and
H21 = 0, with the associated covariance matrix

( H1S11Hf H1S12Hf'\ 11 S 12
H2S21HT H2S22Hj/,= S* S2 [4.4]

and find the canonical correlations between y, and Y2. These
correlations are independent of the choice of H1 and H2 and
in any problem they can be chosen in a convenient way.

5. Conclusions

It is demonstrated in this paper that by considering log
distances between landmarks the traditional methods of mul-
tivariate analysis can be used to study differences in terms of
subsets of landmarks in a consistent way. The approaches
based on the coordinates as in Kendall (3), Mardia and Dryden
(15), and others, the mean shape of a subset of landmarks may
depend on other landmarks included in the study.

Appendix

THEOREM 1. Let X - Np(,u, 5) and f(X) be a function such that
f(X + cl) = c + f(X)and is distributed independentlyof z = HX,
where H is a p - 1 x p matrix ofrank p - 1 and Hi = 0. Then
f is the unique function, apart from a constant,

iTl-lX
f(X) = [A.1]

Proof: Writef(X) = g(y, z), wherey = 1TI-1X/liT - 11. Then,

g(y + c,z) = c + g(y,z) > 7g(y,z) = 1 a g(y,z) = y + h(z),
[A.2]

12

FIG. 1. Minimum number of distances required to fix a human facial profile.
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where h is some function of z. Because X - Np(,u, E), y, and
z, and hence y and h(z) are independently distributed. It is
given thatf(X) and z are independent and, therefore,y + h(z)
and h(z) are independent.
Now, suppose that h(z) in Eq. A.2 is not degenerate and let

h, and h2 be two distinct support points of the distribution of
h(z), and a be an arbitrary point such that a - h1 and a - h2
are continuity points of the distribution of y. We have,

P{h(z) + y c a} = P{h(z) + y ' aIh(z)} a.s.

= P{y c a - hi}, i = 1,2,

which is impossible since the set ofa's is dense in R. Hence h(z)
must be degenerate.
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