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Pathogenic mechanisms of neuronal damage in
the AIDS dementia complex

S Swingler

It has become clear that infection with HIV- 1 is
capable of causing a progressive syndrome of
neurological disease that is not strictly depend-
ent upon the state of immunosuppression in
the infected individual.' Although the central
nervous system (CNS) is often the target of
opportunistic infections in the later stages of
AIDS related complex (ARC) or in AIDS
itself, the AIDS dementia complex (ADC), or

the HIV associated cognitive motor complex as

it is otherwise known, is by far the most
common cause of neurological dysfunction.2
Neuropsychiatric abnormalities become most
prevalent in the late stages of HIV-1 infection,
and occur in 40-50% of adults and as many as

70-80% of children with clinically defined
AIDS.3 Rarely, the sole indication of HIV-1
infection is the involvement of the CNS.45

Patients with the neurological syndrome
associated with HIV- 1 infection portray a slow,
progressive degeneration of both cognitive and
motor functions that does not remit.6 Fre-
quently, it begins with mild symptoms of
impaired concentration and difficulty in per-

forming simple tasks that gradually increase in
severity, leading to a major loss of intellectual
capacity and complete motor disability. Finally,
patients enter a nearly vegetative state that is
terminal.7 The time course for progression
through the disease is variable and probably
dependent upon unknown host or viral factors5
but significant deterioration can occur in the
course of two months to one year following the
appearance of symptoms.6
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Neuropathological changes
The more severe cases of ADC are character-
ised pathologically by prominent microgranu-
lomatous foci of multinucleate giant cells
(MGC) that are initially found in the cerebral
white matter and, as the disease progresses,
these abnormalities are found more frequently
in the grey matter.3 8 The occurrence ofMGC
is accompanied by reactive gliosis, a term for an
increase in both the size and number of astro-
cytes and the infiltration by cells of the mono-
cytoid lineage, the brain derived microglial
cells, and blood derived macrophages3; this
condition is referred to as HIV encephalitis.
Vacuolar myelopathy can also be a common

pathological observation in affected brain but
is more frequently found in the spinal cord.8
The earliest lesions of vacuolar myelopathy
consist of intramyelin swelling causing vacuola-
tion, while severe cases also show evidence of
gross demyelination and axonal loss. These
lesions are characterised by a minimal inflam-
matory response with macrophages only occa-

sionally observed around sites of vacuolation.5
The occurrence of vacuolar myelopathy is not
predicted by the presence of HIV encephalitis
as the two may occur independently, or
concurrently, although MGC are found more
frequently in patients with severe vacuolar
myelopathy.9 There is a third pathological con-
dition identified by diffuse damage to the
cerebral and cerebellar white matter that
creates a general white matter pallor and has
the characteristic traits of reactive gliosis,
demyelination, and disseminated, perivascular
infiltration by monocytic cells."' This is re-
ferred to as progressive diffuse leucoencepha-
lopathy as it shows evidence of an intensifying,
generalised degeneration of the white matter
without gross inflammation.8'

Radiological methods of assessing CNS
damage detect some gross changes in affected
patients. Computed tomography shows a rise
in brain atrophy and ventricular enlargement
with an increased signal from the white matter
as the disease progresses.' The degree of
cerebral atrophy, as judged by magnetic
resonance imaging (MRI), correlates with the
symptoms and progression of ADC," indicat-
ing that the clinical features of dementia may
parallel atrophy of specific regions of the
brain.'2 MRI can also show abnormalities in
additional regions of the CNS not clinically
implicated by the symptoms and provide
evidence of inflammatory changes.5 Overall,
ADC affects the subcortical regions before it
affects the cortical regions of the brain and,
therefore, clinically it is referred to as a subcor-
tical dementia that leads to neuronal loss in
selective regions of the brain.'2"-4 Neurons are
depleted in the orbitofrontal region of the
cortex'5 and neuronal losses of 50-90% occur
in the interneurons of the hippocampus.16
However, neuropathology, neuronal loss, and
clinical symptoms are not absolutely correlated
as has been shown by postmortem examination
of the brains of some patients suffering from
AIDS or ADC.'

Viral invasion of the CNS and the cellular
targets ofHIV-1 replication
The time at which HIV-1 gains entry into the
CNS remains unclear. Aseptic meningitis is a
dominant symptom of HIV-1 infection at the
time of seroconversion.5 Several reports docu-
ment both an early intrathecal HIV-1 specific
antibody synthesis'8 and an early recovery of
the virus from cerebrospinal fluid (CSF),'3 '9
suggesting viral entry recently after infection.
This may be confirmed by one tragic case of
accidental infection with HIV-1, where virus
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was detected in the brain after 15 days at post-
mortem examination.'7
By analogy to another lentivirus, Visna, free

virus could cross the blood brain barrier
following replication in cells of the choroid
plexus20 but a more widely held view is that
HIV- 1 is carried across by infected
macrophages. 14 This mechanism of infection
is possibly facilitated by the enhanced ability of
HIV-1 infected macrophages to induce adhe-
sion molecules on the surfaces of capillary
endothelial cells of the blood brain barrier, thus
allowing their binding and ultimate
penetration.'4 Brain capillary endothelial cells
can be infected in a non-cytolytic fashion by
HIV-1 and may also contribute to CNS
invasion by producing virus for the infection of
normal leucocyte traffic.2' Once infected with
HIV- 1, macrophages produce high levels of the
chemoattractant cytokines, macrophage in-
flammatory proteins la and 1B, which might
recruit uninfected T cells and monocytes to
sites within the CNS and amplify the
infection.22 Despite the evidence indicating
early entry into the CNS, ADC most fre-
quently occurs late in the disease, raising the
possibility that productive infection of the brain
commonly occurs after a considerable time,'3
or that the CNS is reseeded, probably as the
levels of circulating virus in the body increase
late in the disease.'4 It can be speculated that
the late appearance of the symptoms ofADC is
due to a minor evolution ofviral tropism for the
CNS. The tropism of HIV- 1 is determined pri-
marily by the V3 region of the envelope glyco-
protein, gp 120, with all primary isolates of
HIV-1 being able to infect both macrophage
and activated T lymphocyte cell cultures. Two
reports document CNS derived HIV-1 as pos-
sessing an altered V3 region in patients suffer-
ing from dementia.2324

Following the discovery of a close association
between neurological dysfunction and HIV-1
infection, many studies were undertaken to
determine which elements of the CNS became
infected during ADC. Shaw et al,25 studying
necropsy tissue, first reported that the brain
harboured considerable integrated and uninte-
grated HIV-1 sequences with an abundance
often exceeding that seen in lymphoid tissues,
such as lymph nodes and spleen. The major
infected cell type in the CNS supporting viral
replication was found to be the macrophage or
microglial cell.26 28 The MGC found in HIV-1
encephalitis are similarly macrophage in
origin'0 and probably result from the fusion of
infected and uninfected cells.29 Only in severe
cases of HIV-1 encephalopathy are HIV-1
structural antigens found in a few neurons and
astrocytes,29 30 although significant numbers of
astrocytes support limited HIV-1 replication
with the production of only the non-structural
Nef and Rev proteins in patients who have suf-
fered dementia.3'
The consensus, however, is that there is

insufficient viral replication within macro-
phages and not enough detectable virus in the
CNS to account for the neurological
dysfunction.5 Generally, although the presence
and frequency of infected cells correlates with

the neuropathological findings29 and the clini-
cal stage ofADC, the level ofHIV-1 infection is
still often less pronounced than the symptoms
of dementia."l 32 These findings indicate that
although productive brain infection, assessed
by the CSF levels of the viral capsid antigen, is
the closest correlate to the degree of
neurological damage,33 and antiretroviral
therapy can delay or mitigate the symptoms of
ADC,34 the cause of CNS pathology and
ultimately dementia while irrefutably linked to
the presence of HIV, is only indirectly depend-
ent upon the virus . l2 5 29

Mechanisms ofnervous system damage
Since HIV-1 infection of the CNS shows no
direct replication associated pathology within
neuronal, astrocytic, or oligodendroglial
cells,2" 29 what can the indirect methods of neu-
ronal damage be? Research has demonstrated
that one (or more) viral gene product is either
directly or indirectly toxic to neuronal and
astrocytic cells. In addition, brain macrophages
and microglial cells that are virally infected
become immunologically activated to produce
high levels of cytotoxic, proinflammatory
cytokines and metabolites with similar toxic
properties that act on neurons, oligodendro-
cytes, and astrocytes.

VIRAL PROTEINS
Individual viral gene products of HIV- 1,
particularly the envelope glycoprotein, gp 120,
an extracellular protein shed from virions and
infected cells, have profound effects on neuro-
nal and astrocytic cell function and cause neu-
rotoxicity around infected macrophages pro-
ducing viral antigens.35"2 The binding of free
gp 120 to neurons in culture causes their death
via an interaction with receptors that also bind
the neurotrophic factor, vasoactive intestinal
peptide, that is implicated in promoting neuro-
nal survival.35 gpl20, in the context of mixed
neuronal-astroglial cultures, exerts potent and
selective killing of hippocampal neurons40
which also become depleted in the brains of
ADC patients.'6 Only fragments of gpl20 are
required for neurotoxicity and their effects can
be ameliorated by competition with an artificial
peptide, peptide T.40 In primary cortical
cultures, the neurotoxicity of gp 120 operates in
a nitric oxide dependent manner that requires
Ca2' and glutamate, the primary excitatory
amino acid in the brain,4' and occurs through
the activation of voltage sensitive Ca24 channels
and glutamate sensitive N-methyl-D-aspartate
channels (NMDA), which leads to an unregu-
lated Ca24 influx and neuronal death or
dysfunction via an excitotoxic mechanism." 43
Superoxide anions that are damaging to cells
are also induced by gpl20 in primary cortical
cultures and play a role in mediating
neurotoxicity.4' Furthermore, the intracerebral
expression of gp 120 in transgenic mice pro-
duces a range of neuronal and astrocytic
changes resembling those found in the human
brain, the extent of which correlates with the
level of gp 120 expression.39

Astrocytes also possess receptors for VIP and
gp 120 may exert deleterious effects on their
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physiology36 or cause their death directly.37
Astrocytes primarily regulate the ionic and sol-
ute concentrations of the extracellular space,
including the levels of neurotransmitters, the
alteration of which will disrupt neuronal
function.44 Indeed, exposure of astrocytes to
gp 120 stimulates Na+/H+ antiport, K+ conduct-
ance, and glutamate efflux.38 Astrocytic Na+/H+
exchange leads to intracellular alkalisation
which activates the glutamate efflux and K+
channel activity in excess of the Na+,K+-
ATPase that reabsorbs extracellular K+. Exces-
sive K+ in the extracellular space surrounding
neurons activates their voltage dependent Ca2
channels and the increased glutamate levels
activate NMDA channels.38 42 The resulting
elevation in neuronal Ca21 leads to depolarisa-
tion that, if prolonged, causes cellular dysfunc-
tion and death in a manner similar to the direct
action of gpl 20 on neurons.
The viral transactivator protein, Tat, is toxic

to neurons in vitro and intracerebral injection
of Tat is lethal to mice.45 The protein, like
gp 120, is secreted from expressing cells46 and
acts on neurons directly, causing their depolari-
sation and death.45 47 In the case of Tat, the
activation of both NMDA and non-NMDA
excitatory amino acid receptors is implicated in
neuronal toxicity.47 Two other virion proteins,
the envelope transmembrane protein, gp4 1,
and the gag gene product, matrix, may be a
further cause of CNS injury due to antibody
cross-reactivity with surface epitopes on
astrocytes.48"50 The immunodominant epitope
of gp41 is shared by astrocytes and astrocyte
reactive antibodies are present in some patients
with neurological complications.49

THE HIV-1 INFECTED, ACTIVATED MACROPHAGE
The productive infection of macrophages with
HIV-1 primes the cell for immunological
activation probably though an IFNy-like path-
way even though there are relatively low num-
bers of IFNy secreting lymphocytes within the
CNS.'4 The viral matrix protein has structural
similarities with IFNy5' and HIV may have
developed mechanisms to mimic the action of
the cytokine. Subsequent immunological acti-
vation of the primed, infected macrophage
then occurs via direct interactions with
astrocytes52 (facilitated by the ability of
gp 120 to induce adhesion molecule expression
on the surface of the astrocyte),54 exposure to
endogenous brain chemicals, such as
endorphins,55 or interaction with opportunistic
infections already present in the CNS.'4 Once
activated, HIV-1 infected macrophages pro-
duce significant amounts of the cytokines,
TNFa and IL-1,B, and the bioactive metabo-
lites, eicosanoids, quinolinic acid, platelet acti-
vating factor (PAF), and nitric oxide, which are
directly or indirectly neurotoxic.' 53 56-62 The
levels of most of these potential neurotoxins
(TNFa, IL-1,B, quinolinic acid, PAF, eicosa-
noids and the inducible form of nitric oxide
synthetase) are known to be elevated in the
CSF or brain tissue of patients with
neurological disease."4 56 63 64
Of the cytokines, TNFa mediates neuronal

damage and dysfunction at several levels. It is

known to upregulate HIV-1 replication and
may act on infected macrophages in an
autocrine manner" to increase the production
of neurotoxic viral proteins, while at the same
time it is cytotoxic to both oligodendrocytes
and neurons by an apoptotic mechanism.60 61
At subcytotoxic doses, but in the presence of a
glutamate receptor agonist, it exerts neurotox-
icity by activation of the neuronal a-amino-3-
hydroxy-5-methylisoxazole-4-proprionic acid
(AMPA) subtype of glutamate receptor
channels,53 and it has been noted that there is a
loss of AMPA receptor protein in the brains of
AIDS patients.66 TNFa stimulates Na+/H+
exchange in the membranes of astrocytes, in a
manner similar to gp 120, with identical neuro-
toxic potential57 but, furthermore, it inhibits
astrocytic glutamate reuptake, compounding
the processes leading to unregulated Ca21
influx and neuronal damage via voltage de-
pendent Ca21 channels and NMDA operated
receptor channels.62 IL-11 can also contribute
to the degeneration of oligodendrocytes in
conjunction with TNFa67 and alone it pro-
motes Na+/H+ exchange in astrocytes.57 In
addition, IL- 1 3 is the cause of astrocyte
proliferation.68 Quinolinic acid exerts direct
neuronal toxicity via stimulation of the NMDA
receptor channels and the subsequent increase
in intracellular Ca"+.69 Nitric oxide similarly
produces neurotoxicity via NMDA receptors,
although in itself it does not appear to do so
directly, it first combines with the superoxide
anion to form a toxic intermediate.'4 PAF is a
lipid mediator that is also a potent neurotoxin
which again acts via NMDA receptors58
causing glutamate mediated excitotoxicity and
inducing a rise in neuronal intracellular Ca2 .70
PAF could further potentiate neurotoxicity
indirectly as it is a potent inducer ofTNFa and
IL- 1 P production from macrophages.7" Of the
eicosanoids, prostaglandins E2, F2a, and
thromboxane B2 are elevated in the CNS of
demented patients and are potent neuromodu-
lators that promote cell injury.63 Finally,
arachidonic acid can also inhibit astrocyte
reuptake of glutamate, promoting the potential
for neuronal excitotoxicity via NMDA
receptors."

Conclusions
Current research has identified the infected
macrophage or microglial cell as the initiator of
neuronal dysfunction and death in ADC
through the production of viral gene products,
notably gp120, and diffusable, cellular neuro-
toxins, the synthesis of which becomes en-
hanced after interaction with resident astro-
cytic cells. Astrocytes serve a dual role in ADC,
initially preventing neuronal damage by main-
taining the extracellular microenvironment
but, increasingly, as the numbers of infected
macrophages rises amplifying the excitotoxic
mechanism of neuron damage. The majority of
viral or macrophage produced neurotoxins act
directly or indirectly via voltage dependent
Ca"+ channels and NMDA receptor operated
channels, a mechanism that is not unique to
ADC, but also is believed to occur in other
neurodegenerative diseases, such as Hunting-
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ton's disease, Parkinson's disease and amyo-
trophic lateral sclerosis.43 Clinically tolerated
antagonists of these pathways, such as meman-

tine, are undergoing trials as potential therapies
for ADC.'7 " In addition, drugs that limit the
synthesis of specific macrophage derived in-
flammatory products, PAF and eicasonoids,
are also being developedi4 in the hope that they
will ameliorate the symptoms of ADC more

effectively than antiretroviral drugs alone.

I am grateful to Dr Alan Morris for helpful discussions and
critical reading of a draft of this paper.
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