

Asthma and Risk of Non-Respiratory Tract Infection: A Population-Based Case Control Study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003857
Article Type:	Research
Date Submitted by the Author:	21-Aug-2013
Complete List of Authors:	Juhn, Young; Mayo Clinic, Community Pediatrics and Adolescent Medicine Bang, Duk; Mayo Clinic, Yang, Hyeon; Soon Chun Hyang University Hospital, Ryoo, Eell; Gil Hospital - Gachon University, Al-Hasan, Majdi; University of Kentucky Medical Center, Lahr, Brian; Mayo Clinic, Baddour, Larry; Mayo Clinic, Yawn, Barbara; Olmsted Medical Center, Department of Research
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	Asthma < THORACIC MEDICINE, EPIDEMIOLOGY, Gastrointestinal infections < GASTROENTEROLOGY

SCHOLARONE[™] Manuscripts

BMJ Open

1 2		Dw bang et al
3 4	1	TITLE PAGE
5 6 7	2	Original Article
7 8 9	3	Asthma and Risk of Non-Respiratory Tract Infection: A Population-Based Case Control
10 11	4	Study
12 13 14	5	
14 15 16	6	Duk Won Bang, MD ^{a,b} , Hyeon J. Yang, MD ^c , Eell Ryoo, MD ^{a,d} , Majdi N. Al-Hasan, MD ^e ,
17 18	7	Brian Lahr, MS, ^f Larry M. Baddour, MD ^g , Barbara P. Yawn, MD ^h , and Young J. Juhn, MD ^{a,i}
19 20 21	8	
22 23	9	^a Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
24 25 26	10	^b Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, South Korea
27 28	11	^c Department of Pediatrics, Soonchunhyang University Hospital, Seoul, South Korea
29 30	12	^d Department of Pediatrics, Gil Hospital, Gachon University School of Medicine, Inchon, South
31 32 33	13	Korea
34 35	14	^e Department of Medicine, University of Kentucky Medical Center, Lexington, KY
36 37	15	^f Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
38 39 40	16	^g Department of Medicine, Mayo Clinic, Rochester, MN
41 42	17	^h Department of Research, Olmsted Medical Center, Rochester, MN
43 44 45	18	ⁱ Department of Internal Medicine, Mayo Clinic, Rochester, MN
46 47	19	Corresponding author
48 49	20	Young J. Juhn, M.D., M.P.H
50 51 52	21	Division of Community Pediatric and Adolescent Medicine
53 54	22	Department of Pediatric and Adolescent Medicine/Internal Medicine
55 56 57 58 59 60	23	Mayo Clinic 1

2	
3	
5	
4 5 6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
8 9 10 11 12 13 14 15 16 17 18 19 20	
20	
21	
22	
21 22 23 24	
24	
22 23 24 25 26 27 28 29 30 31	
20	
26	
27	
28	
29	
30	
31	
32	
22	
32 33 34 35	
34	
35	
36	
36 37 38	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
60	

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

DW Bang et al

200 1st Street SW Rochester, MN 55905 TEL: 507-538-1642 FAX: 507-284-9744 E-mail: juhn.young@mayo.edu Funding: This work was supported by the Clinician Scholarly Award from the Mayo foundation and a grant from the National Institute of Allergy and Infectious Diseases (R21 AI101277). It was also supported by the Rochester Epidemiology Project (R01-AG34676) from the National Institute on Aging. Conflict of interest: The study investigators have nothing to disclose that poses a conflict of interest. We reviewed the STROBE statement and addressed all items in that checklist and are submitting the STROBE statement with the revised manuscript. Key Words: Asthma, Risk, Epidemiology, Community-acquired infections, Escherichia Coli, Blood stream infection, genitourinary, and gastrointestinal tract Abbreviations: BSI: blood stream infection, E. Coli: Escherichia Coli, TLR : Toll-like Receptor, ICS : inhaled corticosteroid, PPV23: 23-valent pneumococcal polysaccharide vaccine Word count: 2993

BMJ Open

1
2
2 3 4 5 6 7
4
5
6
7
1
8
8 9 10
10
11
12
13
11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 23 32 30
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
29
20
21
20
32
33
34
35
33 34 35 36 37 38
37
38
39
40
41
42
43
43
44 45
45 46
47
48
49
50
51
52
53
54
55
56
57
57 58
00
59

	46	Article summary
	47	1. Article focus: We addressed the following question in this study.
	48	- Given the association between asthma and airway-related infection, is asthma also associated
0 1	49	with non-airway-related serious infections such as Escherichia coli blood stream infection?
2 3	50	2. Key messages
1 2 3 4 5 6 7 8	51	- Individuals with asthma are at a significantly increased risk of non-airway-related infection,
6 7 8	52	including community-acquired E. coli blood stream infection.
9 0	53	- The impact of asthma on risks of microbial infections may go beyond airways.
1 2	54	- Clinicians and patients should be aware of the association and recognize the risk of subsequent
2 3 4 5 6 7	55	infection.
6 7	56	3. Strength and limitations
8 9 0	57	- This is the first population-based case-control study using predetermined criteria for asthma
	58	status and community-acquired <i>Escherichia coli</i> blood stream infection.
2 3 4	59	
1 2 3 4 5 6 7		- The main limitation of the study is inherent limitations as a retrospective study and the study
7 8 9	60	subjects were predominantly white.
0	61	
1 2 3	62	Contributors
3 4 5	63	BDW collected data, interpreted the results, and drafted the manuscript; HJY participated in the
2 3 4 5 6 7	64	study design, interpreted the results and reviewed the manuscript; ER collected data, interpreted
8 9	65	the results, and reviewed manuscript; MNA assembled the original dataset for the E. coli BSI
0 1	66	study, collected the original data, interpreted the results, and reviewed the manuscript; LMB
2 3 4	67	participated in the study design, interpreted the results, and reviewed the manuscript; BPY
4 5 6 7	68	participated in the study design, interpreted the results, and reviewed manuscript; and YJJ
7		

DW Bang et al

participated in the study design, performed data analysis, interpreted the results, and drafted the

manuscript. BDW, ER, and YJJ had full access to data. All authors reviewed and approved the

paper.

There will be no additional data available.

DW Bang et al

1		DW Bang et al
2 3 4	92	Abstract:
5 6 7	93	Background: Asthmatics have increased risks of airway-related infections. Little is known about
7 8 9	94	whether this is true for non-airway-related serious infections such as Escherichia coli blood
10 11	95	stream infection (BSI). We assessed whether asthma is associated with a risk of developing
12 13	96	community-acquired E. coli BSI.
14 15 16	97	Methods: The study was designed as a population-based retrospective case-control study, which
17 18	98	included 259 eligible community-acquired E. coli BSI cases in Olmsted County, MN between
19 20	99	1998 and 2007 and 259 birthday-, gender-, and residency-matched controls. Only community-
21 22 23	100	acquired E. coli BSI cases were included. Asthma status was ascertained by predetermined
24 25	101	criteria. An adjusted odds ratio (OR) and 95% confidence interval (CI) for the association
26 27	102	between asthma and risk of community-acquired E. coli BSI was calculated using conditional
28 29 30	103	logistic regression.
31 32	104	Results: Of 259 eligible cases, 179 (69 %) were female and mean age was 61±22 years. Thirty-
33 34 35	105	seven of 259 cases (14%) and 16 of 259 controls (6%) had a prior history of asthma (adjusted
36 37	106	OR: 2.74; 95% CI: 1.11-6.76; p=0.029). The population attributable risk of asthma for
38 39	107	community-acquired E. coli BSI was 9%. Although not statistically significant, there was a
40 41 42	108	borderline association between having a history of food allergy and increased risk of community-
43 44	109	acquired E. coli BSI (6% vs 2%; adjusted OR: 3.51; 95% CI: 0.94-13.11, p=0.062).
45 46	110	Conclusions: Based on the findings of the current population-based, case-control investigation, a
47 48 49	111	history of asthma may be associated with risk of community-acquired E. coli BSI. The impact of
50 51	112	asthma on risk of microbial infections may go beyond airways.
52 53	113	
54 55 56	114	Abstract Word Count: 246
57 58		
59 60		5
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

DW Bang et al

115 INTRODUCTION

Asthma is the most common chronic illness in childhood and is a major cause of
morbidity in adults, affecting 4-17% of children and 7.7% of adults in the US.(1-3)] About 300
million people globally are estimated to be affected by asthma.(4)

Previous studies showed increased risks of microbial infections among individuals with asthma(5-10) and the population attributable risk for asthma of serious pneumococcal disease was 11-17%.(6, 10) Impaired innate and adaptive immune functions among asthmatics have been suggested for potential underlying mechanisms.(11-18) These study results are based on microbial infections of the airways. However, little is known about whether asthma status is associated with risk of non-airway-related bacterial infections such as community-acquired *Escherichia coli* blood stream infection (BSI).

Addressing this question should provide an important insight into the nature of the impact of asthma status on susceptibility to microbial infection. Specifically, it will improve our understanding on whether the impact of asthma status on susceptibility to infection goes beyond airways. In investigating this question, community-acquired *E. coli* BSI is suitable because it is not an airway-related infection but genitourinary tract/gastrointestinal origin, E. coli is a gram-negative bacterium with Toll-like Receptor (TLR)-4-mediated signal transduction for innate immunity, and E. coli is the most common cause of community-acquired BSI (19) Up to 30% of individuals who developed community-acquired *E. coli* BSI did not have known risk factors,[(20)] suggesting that unrecognized risk factors exist that are associated with the development of community-acquired E. coli BSI. Investigating the relationship between asthma and non-airway-related serious bacterial

137 infections will advance our understanding on the extent to which asthma impacts susceptibility to

1		DW Bang et al
2 3 4	138	microbial infections and whether asthma could be an unrecognized risk factor for non-airway-
5 6	139	related bacterial infections.
7 8 9	140	We hypothesize that individuals with asthma have an increased risk of community-
10 11	141	acquired E. coli BSI, as compared to those without asthma. To test this hypothesis, we conducted
12 13 14	142	a population-based retrospective case-control study.
15 16	143	
17 18 19	144	
20 21	145	
22 23	146	
24 25 26	147	
27 28	148	
29 30 31	149	
32 33	150	
34 35 36	151	
36 37 38	152	
39 40 41	153 154	
42 43	155	
44 45 46	156	
47 48	157	
49 50 51	158	
52 53	159	
54 55 56	160	
57 58		
59 60		7

METHODS

162 The study was approved by the Institutional Review Boards of both Mayo Clinic and
163 Olmsted Medical Center. This study was designed as a population-based case-control study.

164 Study population and setting

Olmsted County, Minnesota is an excellent setting to conduct a population-based epidemiologic study such as this because medical care is virtually self-contained within the community (nearly all Olmsted County residents receive medical cares from two medical centers in the community). The population characteristics of Olmsted County residents are similar to those of non-Hispanic white.(21) If one grants the authorization for using medical record for research (almost 95% of Olmsted County residents), each patient is assigned a unique identifier under the auspices of the Rochester Epidemiology Project (REP).(22) Using REP resources, we previously demonstrated that incidence rates of asthma for this community are similar to other communities. The annual incidence rate of asthma in Rochester was 238 cases per 100,000 persons, which is comparable to those in other communities such as Tecumseh, Michigan

175 (250/100,000).(23)

176 Study subjects: Case ascertainment

To test our study hypothesis, we utilized a population-based incidence parent study, which previously identified the community-acquired cases to study antimicrobial resistance trends of *E. coli* BSI in the community. Details of the case ascertainment have been described previously.(19) Briefly, using the microbiology databases at Mayo Clinic Rochester and Olmsted Medical Center, all eligible children and adults with monomicrobial *E. coli* BSI (n=274) among Olmsted County residents from January 1, 1998 to December 31, 2007 (i.e., a population-based all incident cases of *E. coli* BSI) were identified based on the criteria suggested by Freidman et

BMJ Open

DW Bang et al

al.(24) As E. coli BSI is required for inpatient parental treatment, community-acquired E. coli BSI was defined by isolation of *E. coli* from blood cultures at the time of hospital admission or within 48 hours after hospital admission for patients who did not fit criteria for health care-associated infection according to the Freidman's criteria.(24) Medical records of all subjects were reviewed by investigators of the previous study (MNA) to confirm the diagnosis of community-acquired *E. coli* BSI, assess clinical features, and determine the eligibility. Only community-acquired E. coli BSI was included because nosocomial and health care-associated E. *coli* BSI are unsuitable to address the aim of the present study (clinically, they are a high-risk population for *E. coli* BSI and not representative of the study population). The index date of BSI was defined as the date when blood cultures that eventually grew *E. coli* were obtained. Exclusion criteria for cases (and controls) included: 1) polymicrobial BSI caused by more than one microorganism, 2) blood cultures acquired at autopsy, 3) nosocomial and health care-associated E. coli BSI, 4) non-Olmsted County residency at the time of index date of BSI, 5) no research authorization for using medical record for research, and 6) health conditions making ascertainment of asthma difficult listed in Table 1.

Selection of control subjects

Control subjects were randomly selected with 1:1 matching from Olmsted County residents who had not had a history of *E. coli* BSI at the end of the study period. Briefly, a list of potential control subjects who had received medical care from either Mayo Clinic or Olmsted Medical Center and who met the matching criteria was generated and randomly selected from the REP database for the present study. The matching criteria included: 1) gender, 2) birth date (within six months for those <18 years of age and within one year for those >18 years of age), 3) the same clinic registration year as matched case (within one year), and 4) closest clinic visit to

DW Bang et al

index date of matched case within one year. The index date for control subjects was defined as the closest (within one year) clinic visit date to index date of BSI for their corresponding matched case. Based on the number of cases and controls enrolled in this present study (259 pair), assuming 8% of asthma prevalence among controls, this present study had 80% power to detect an effect size of 2.27 of odds ratio (16.5% of asthma in cases). This effect size was smaller than the reported effect sizes for the association between asthma and risk of microbial infection (OR: 2.4-6.7) suggesting adequate statistical power to address the study aim.(6, 10) **Exposure ascertainment (asthma status)**

For determining asthma status of all cases and controls, we conducted comprehensive medical record reviews to apply predetermined criteria for asthma as performed in our previous work.(5, 6) The criteria are delineated in Table 1. These criteria have been extensively used in research for asthma epidemiology and were found to have high reliability.(25-30) We included both definite and probable asthma according to the criteria prior to the index date of BSI cases because most probable asthmatics become definite over time.(6, 31) The incidence dates (the first date when one met the criteria for asthma) for all asthmatic patients were determined; thus, we were able to discern the temporal relationship between asthma status (exposure) and E coli BSI (outcome). The risk of *E. coli* BSI was assessed in relation to the current asthma status(32): remission (no asthma symptoms, no asthma-related visits, or no asthma medications for at least three years prior to index date); active or current asthma (presence of clinical symptoms, asthma-related visits, or asthma medications within one year prior to index date); and inactive (not current) asthma (presence of asthma symptoms, asthma-related visits, or asthma medications within 1-3 years prior to index date).

229 Other variables

DW Bang et al

Pertinent covariates and confounders were collected from medical records: sociodemographic variables (age, gender, ethnicity, and educational status), asthma medications including inhaled and systemic corticosteroids, family history of asthma, atopic status based on sensitization against aeroallergens and food allergens, smoking status (either active or passive exposure to tobacco smoke), vaccination status, and co-morbid conditions at the time of index date as listed in Table 2. The period of data collection was from October 1, 2011 to May 30, 2012. **Statistical analysis** Formal comparison of asthma and other suspected risk factors between matched cases and controls was performed using conditional logistic regression, with community-acquired E. *coli* BSI as the target of prediction. All factors were analyzed for a univariate association with BSI, and any variables meeting the Greenland entry criteria (P < 0.2) were carried forward into a final multivariable model.(33)] Odds ratios (OR) from univariate (unadjusted) and multivariable (adjusted) models are reported to express the magnitude of association in terms of the likelihood of being a case. We calculated the population attributable risk percentage (PAR%) of asthma for community-acquired E. coli BSI using the formula established by Miettinen.(34) Statistical significance was tested at a two-sided alpha error of 0.05. All analyses were carried out with the statistical software package SAS, version 9.2 (SAS Institute, Cary, NC, USA).

DW Bang et al

RESULTS

254 Study subjects

Of the 274 patients who were identified in the original study, 259 were eligible for the present study. Fifteen patients were excluded: five for consistent FEV1 < 50%, two for restrictive lung disease, two for significant kyphoscoliosis, two for bronchiectasis, one for cystic fibrosis, one for pulmonary fibrosis, and two due to non-Olmsted County residency. Of the eligible 259 cases, 179 (69%) were female, 249 (96%) were 18 years of age or older (age mean±standard deviation, 61±22 years), and 222 (86%) were Caucasian. The characteristics of the cases and their matched controls, and the individual associations with community-acquired E. coli BSI, are summarized in Table 2. There were only 10 asthmatics on moderate- or high-dose inhaled corticosteroid (ICS) and two asthmatics on systemic corticosteroid at the time of the index date. Comparing subjects with asthma versus those without, there was no significant difference in the proportions, who had received influenza vaccine (40% vs. 40%, p=0.99) or PPV23 (49% vs. 44%, p=0.49) within one vear prior to index date.

267 Association between asthma and risk of community-acquired *E. coli* BSI

Thirty-seven of 259 (14%) cases had a history of asthma prior to the index date of community-acquired E. coli BSI, compared with 16 of 259 (6%) controls (unadjusted OR: 2.75; 95% CI: 1.42-5.32; p=0.003). Of the 37 case subjects with asthma, 33 (89%) had definite asthma and 4 (11%) had probable asthma. Of the 16 controls with asthma, 12 (75%) had definite asthma and 4 (25%) had probable asthma. Among all 53 asthmatics, 18 were on ICS therapy at the index date (8 on low-dose ICS and 10 on moderate to high-dose ICS therapy). The effect of asthma on risk of community-acquired E. coli BSI, independent of other risk factors, is summarized in Table 3. Subjects with a history of asthma by predetermined criteria for asthma in Table 1 had a nearly 3-

BMJ Open

DW Bang et al

1		
2 3 4	276	fold higher risk of developing community-acquired E. coli BSI compared to those without
5 6 7	277	asthma, controlling for all potential confounding factors (adjusted OR: 2.74; 95% CI: 1.11-6.76;
7 8 9	278	p=0.029). The PAR% of asthma by predetermined criteria for asthma in Table 1 for the risk of E .
10 11	279	coli BSI was 9%. The <i>p</i> -values for testing a significant interaction between asthma and
12 13	280	categorized age were as follows: $p=0.285$ for age cutoff of 65 years (i.e., ≥ 65 vs. <65 years),
14 15 16	281	p=0.958 for age cutoff of 40 years (i.e., \geq 40 vs. <40 years), and p=0.417 for age cutoffs of 40
17 18	282	years and 65 years (i.e., <40, 40-65, vs. >65 years). As a result, we have no evidence of a
19 20	283	differential asthma effect across age strata. Additional characteristics of asthma were also
21 22 23	284	evaluated for an association with risk of community-acquired E. coli BSI (see Table 4). Adjusted
23 24 25	285	for other factors, active asthma was associated with increased risk of <i>E. coli</i> BSI but for
26 27	286	asthmatics on ICS therapy compared to non-asthmatics, but the overall 3-level effect was not
28 29	287	statistically significant (p=0.079).
30		
31 32	288	Other variables and <i>E. coli</i> BSI
32 33	288	Other variables and <i>E. coli</i> BSI
32 33 34 35	288 289	Other variables and <i>E. coli</i> BSI Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently
32 33 34 35 36 37		
32 33 34 35 36 37 38 39	289	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently
32 33 34 35 36 37 38	289 290	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history
32 33 34 35 36 37 38 39 40 41 42 43 44	289 290 291	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls
32 33 34 35 36 37 38 39 40 41 42 43 44 5 46	289 290 291 292	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	289 290 291 292 293	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	289 290 291 292 293 294	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\end{array}$	289 290 291 292 293 294 295	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 1\\ 52\\ 53\\ 54\\ 55\end{array}$	289 290 291 292 293 294 295 296	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 54\\ 6\\ 47\\ 48\\ 9\\ 51\\ 23\\ 54\\ 55\\ 56\\ 57\\ \end{array}$	289 290 291 292 293 294 295 296 297	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>
$\begin{array}{c} 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 95\\ 51\\ 25\\ 34\\ 55\\ 56\end{array}$	289 290 291 292 293 294 295 296 297	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired <i>E. coli</i> BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>

59

60

1		DW Bang et al
2 3 4	299	
5 6	300	DISCUSSION
7 8 9	301	To our knowledge, this is the first population-based, case-control study that demonstrated an
10 11	302	association between asthma and risk of non-respiratory bacterial infection such as community-
12 13 14	303	acquired <i>E. coli</i> BSI. This association was independent of other risk factors including age,
15 16	304	gender, follow-up duration, ethnicity, educational level, and comorbid conditions (adjusted OR:
17 18	305	2.74; 95% CI: 1.11-6.76; p=0.029). Analyses by different age cut-offs showed that the results
19 20 21	306	were not affected by age effect (e.g., younger vs. older than 40 years of age). Given either the
22 23	307	previously-reported non association (hazard ratio, HR: 1.29, 95%CI: 0.53-3.12) or a protective
24 25 26	308	effect (HR: 0.52, 95%CI:0.36-0.76) of ICS therapy on risk of pneumonia in asthmatics(35) and a
20 27 28	309	small number of asthmatics with moderate or high-dose ICS in our study (10 of 53, 19%), we
29 30	310	suspect that active or current asthma (or collectively those given ICS therapy) might be related to
31 32 33	311	risk of community-acquired E. coli BSI instead of ICS alone. There were only 2 asthmatics on
34 35	312	systemic corticosteroid therapy at the time of the index date; therefore, exposure to systemic
36 37	313	corticosteroid therapy was unlikely to account for the observed association. We believe that
38 39 40	314	susceptibility bias (e.g., covariate imbalance at baseline) is unlikely to account for the association
41 42	315	found in our study given the full adjustment for potential confounders. One concern could be
43 44	316	detection bias stemming from a situation where exposure status (asthma status) systematically
45 46 47	317	affects detection of outcomes. However, given E. coli BSI as a life-threatening condition, this is
48 49	318	unlikely and also there was no significant difference in symptom duration from BSI-related
50 51 52	319	symptom to index date between asthma and non-asthma in cases (4.7 ± 5.5 vs 5.2 ± 5.5 days,
53 54	320	p=0.61). Since detection of asthma depends on follow-up duration from registration to index
55 56	321	date of community-acquired E. coli BSI, we designed our study to ensure that duration was
57 58		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

DW Bang et al

similar between cases and controls. Asthma prevalence in controls in our study was 6%, which is similar to that in adults (7%) in the United States (5.5% for males and 9.7% for females).(36) Also, the prevalence of other common chronic condition such as coronary heart disease in our study (15%) was similar to the national average (7.1% for adults aged 45-64 years and 19.8% for adults aged \geq 65 years) suggesting that our control group may reasonably represent a general population of adults in the United States.(3) There were no significant differences in influenza and PPV23 vaccination rates between cases and controls, which may imply similar access to health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken together, our study results suggest that asthma status is independently associated with risk of community-acquired E. coli BSI. There are only a few previous studies, which assessed the incidence of *E. coli* BSI and risk factors associated with its development, including asthma. One study showed a higher risk of community-acquired E. coli BSI in asthmatics compared to non-asthmatics among those over 65 years of age (5.5% vs. 1%).(37) However, another study showed reduced risk of E. coli BSI in asthmatics (rate ratio: 0.3; 95% CI: 0.2-0.4) compared to that in total regional population.(38) These studies have significant limitations including no *a priori* hypothesis testing on the relationship between asthma and risk of community-acquired E. coli BSI, utilization of administrative data from health care organizations or case reports, ascertainment of E. coli BSI cases and asthma based on ICD-9 code, inclusion of only elderly patients aged over 65 years, (37)

- and no concurrent control group.(38) Thus, our study is the first population-based case-control

DW Bang et al

2		
3 4	345	study that demonstrated a relationship between asthma and risk of community-acquired E. coli
5 6 7	346	BSI. Several studies showed increased risks of microbial infections in asthmatics[(5-7, 10, 11)
7 8 9	347	but these studies only addressed the relationship between asthma and airway infections.
10 11	348	The mechanisms underlying the apparent association between asthma and risk of
12 13	349	community-acquired E. coli BSI are unknown. Whether previously reported impaired innate
14 15 16	350	immune factors that may predispose to infections due to viruses(13, 39, 40) and other bacteria
17 18	351	are operative in community-acquired E. coli BSI is undefined. Recently, Habibzay et al reported
19 20 21	352	impaired innate immunity against pneumococci through impaired TLR-receptor signal
21 22 23	353	transduction by house dust mite allergic sensitization resulting in reduced neutrophil recruitment
23 24 25 26 27 28 29 30	354	and increased risk of pneumococcal infection in the airways.(11) It is worth investigating
	355	whether allergic sensitization can induce similar impairment of innate immunity through TLR-4
	356	for gram-negative bacteria in genitourinary or gastrointestinal tracts in asthmatics. Also, an
31 32	357	adaptive immune response to gram-negative bacteria might be altered in asthmatics,(41) which
33 34 35	358	may affect susceptibility to gram-negative bacterial infection. For example, Koch et al reported
36 37	359	impaired Type 1 helper T cell (Th1) response (interleukin-12-induced interferon- γ release from T
38 39	360	lymphocytes) to endotoxin from Salmonella enteritidis in asthmatics.(42) Further studies are
40 41 42	361	needed to address our study findings.
43 44	362	The main strengths of our study are a population-based study design and include the
45 46 47	363	epidemiologic merits of self-contained health care environment with comprehensive medical
47 48	364	record system for research. We identified population-based all incident community-acquired E.

record system for research. We identified population-based all incident community-acquired E.

predetermined criteria independent of a physician diagnosis of asthma or ICD-9 code. Also, our

coli BSI cases based on the Freidman criteria. We ascertained asthma status by applying

study has inherent limitations as a retrospective study. We could not obtain detail information on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

DW Bang et al

certain variables such as atopic sensitization data or smoking history (e.g., duration or the number of cigarettes a day) but we assumed this data to be missing at random (i.e., it is subject to non-differential misclassification bias for comparison groups of interest). Although our criteria for asthma was based on medical record review, given the absence of gold standard for asthma, the retrospective investigation for feasibility (due to infrequent *E coli* BSI), and the extensive use of the criteria in previous asthma research, we believe the criteria is unlikely to result in a significant bias affecting interpretation of the results. Our study finding that asthma prevalence among controls was similar to that at the national level should mitigate this concern. Our study subjects were predominantly white which might limit generalizability of our results to other ethnic groups. Our study subjects were relatively a older population affected by many comorbid conditions which might confound the study results. However, when we examined the effect of the interaction between age and asthma, we found that the main results on the association between asthma and risk of E colli BSI did not appear to be significantly affected by various cutoffs of age suggesting the results did not differ by age group (younger vs. older group). In conclusion, asthmatics might be at an increased risk of non-respiratory tract bacterial infections, including community-acquired E. coli BSI. The mechanisms responsible for this association are yet to be defined while additional investigations replicate our study findings. Acknowledgement

We thank the staff of the Pediatric Asthma Epidemiology Research Unit for their comments and
suggestions. We also thank Elizabeth Krusemark for administrative assistance. This work was
supported by the Clinician Scholarly Award from the Mayo foundation and by the Rochester
Epidemiology Project (R01-AG34676) from the National Institute on Aging. The sponsor of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		DW Bang et al
2 3 4 5 6	391	study had no role in study design, data collection, data analysis, data interpretation, or writing of
5 6	392	the report.
7 8 9	393	
10 11	394	
12 13	395	
14 15 16	396	
17 18	397	
19 20 21	398	
20 21 22 23 24 25	399	
24 25 26	400	
26 27 28 29 30	401	
29 30	402	
31 32 33	403	
34 35	404	
36 37 38	405	
38 39 40	406	
41 42 43	407	
43 44 45	408	
46 47	409	
48 49 50	410	
51 52	411	
53 54 55	412	
56 57	413	
58 59 60		18
00		

BMJ Open

DW Bang et al

References

Eder W, and Ege MJ, and von Mutius E. The Asthma Epidemic. New England Journal 1. of Medicine. 2006;355(21 %R doi:10.1056/NEJMra054308):2226-35. 2. Barnett SB, TA. N. Costs of asthma in the United States: 2002-2007. J Allergy Clin Immunol 2011;127(1):145-52. The Center for Disease Control and Prevention. Vital signs: asthma prevalence, 3. disease characteristics, and self-management education --- United States, 2001--2009. MMWR Morb Mortal Wkly Rep. 2011;60(17):547-52. Epub 2011/05/06. Bernsen RM, van der Wouden JC, Nagelkerke NJ, JC. dJ. Early life circumstances and 4. atopic disorders in childhood. Clinical & Experimental Allergy. 2006;36(7):858-65. Capili CR, Hettinger A, Rigelman-Hedberg N, Fink L, Boyce T, Lahr B, et al. Increased 5. risk of pertussis in patients with asthma. J Allergy Clin Immunol. 2012;129(4):957-63. Epub 2011/12/31. Juhn YJ, Kita H, Yawn BP, Boyce TG, Yoo KH, McGree ME, et al. Increased risk of 6. serious pneumococcal disease in patients with asthma. Journal of Allergy and Clinical Immunology. 2008;122(4):719-23. Jung JA, Kita H, Yawn BP, Boyce TG, Yoo KH, McGree ME, et al. Increased risk of 7. serious pneumococcal disease in patients with atopic conditions other than asthma. Allergy Clin Immunol. 2010;125(1):217-21. Klemets P, Lyytikainen O, Ruutu P, Ollgren J, Kaijalainen T, Leinonen M, et al. Risk of 8. invasive pneumococcal infections among working age adults with asthma. Thorax. 2010;65(8):698-702. Epub 2010/08/06. Pilishvili T, Zell ER, Farley MM, Schaffner W, Lynfield R, Nyquist AC, et al. Risk 9. factors for invasive pneumococcal disease in children in the era of conjugate vaccine use. Pediatrics. 2010;126(1):e9-17. 10. Talbot TR, Hartert TV, Mitchel E, Halasa NB, Arbogast PG, Poehling KA, et al. Asthma as a risk factor for invasive pneumococcal disease. N Engl J Med. 2005:352(20):2082-90. 11. Habibzay M, Saldana JI, Goulding J, Lloyd CM, Hussell T. Altered regulation of Toll-like receptor responses impairs antibacterial immunity in the allergic lung. Mucosal Immunol. 2012;5(5):524-34. Epub 2012/05/03. Jung J, Kita H, Nahm M, Tsigrelis C, Baddour L, Jacobson R, et al. Influence of asthma 12. status on serotype specific antibody pneumococcal antibody levels. Postraduate Medicine. 2010;122(5):116-24. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, et al. 13. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006;12(9):1023-6. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. 14. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. Journal of Experimental Medicine. 2005;201(6):937-47. Epub 2005/03/23. Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, et al. Rhinovirus-15. induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Natl Acad Sci U S A. 2008;105(36):13562-7. Epub 2008/09/05.

16. Laza-Stanca V, Message SD, Edwards MR, Parker HL, Zdrenghea MT, Kebadze T, et al. The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations. PLoS Pathog. 2011;7(7):e1002114. Plummeridge MJ, Armstrong L, Birchall MA, Millar AB. Reduced production of 17. interleukin 12 by interferon y primed alveolar macrophages from atopic asthmatic subjects. Thorax. 2000:55(10):842-7. 18. Ho C-Y, Wong C-K, Ko FW-S, Chan CH-S, Ho AS-S, Hui DS-C, et al. APoptosis and b-cell lymphoma-2 of peripheral blood t lymphocytes and soluble fas in patients with allergic asthma*. CHEST Journal. 2002;122(5):1751-8. Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM. Antimicrobial resistance 19. trends of Escherichia coli bloodstream isolates: a population-based study, 1998-2007. Journal of Antimicrobial Chemotherapy. 2009;64(1):169-74. 20. Cheong Hs Fau - Kang C-I, Kang Ci Fau - Kwon KT, Kwon Kt Fau - Heo ST, Heo St Fau - Wi YM, Wi Ym Fau - Kim ES, Kim Es Fau - Lee JS, et al. Clinical significance of healthcare-associated infections in community-onset Escherichia coli bacteraemia. (0305-7453 (Print)). St. Sauver JL, Grossardt BR, Yawn BP, Melton LJ, Rocca WA. Use of a Medical Records 21. Linkage System to Enumerate a Dynamic Population Over Time: The Rochester Epidemiology Project. American Journal of Epidemiology. 2011;173(9):1059-68. 22. Kurland LT, Molgaard CA. The patient record in epidemiology. Sci Am. 1981;245(4):54-63. Epub 1981/10/01. Broder I, Higgins MW, Mathews KP, Keller JB. Epidemiology of asthma and allergic 23. rhinitis in a total community, Tecumseh, Michigan: III. Second survey of the community. J Allergy Clin Immunol. 1974;53(3):127-38. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health 24. care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137(10):791-7. Yunginger JW, Reed CE, O'Connell EJ, Melton LJ, 3rd, O'Fallon WM, Silverstein MD. A 25. community-based study of the epidemiology of asthma. Incidence rates, 1964-1983. Am Rev Respir Dis. 1992;146(4):888-94. Epub 1992/10/01. Silverstein MD, Reed CE, O'Connell EJ, Melton LJ, 3rd, O'Fallon WM, Yunginger IW. 26. Long-term survival of a cohort of community residents with asthma. N Engl J Med. 1994;331(23):1537-41. Epub 1994/12/08. 27. Bauer BA, Reed CE, Yunginger JW, Wollan PC, Silverstein MD. Incidence and outcomes of asthma in the elderly. A population-based study in Rochester, Minnesota. Chest. 1997;111(2):303-10. Epub 1997/02/01. Juhn YJ, Oin R, Urm S, Katusic S, Vargas-Chanes D. The influence of neighborhood 28. environment on the incidence of childhood asthma: a propensity score approach. J Allergy Clin Immunol. 2010;125(4):838-43 e2. Epub 2010/03/20. 29. Juhn YJ, Sauver JS, Katusic S, Vargas D, Weaver A, Yunginger J. The influence of neighborhood environment on the incidence of childhood asthma: a multilevel approach. Social science & medicine. 2005;60(11):2453-64. Epub 2005/04/09. Yawn BP, Yunginger JW, Wollan PC, Reed CE, Silverstein MD, Harris AG. Allergic 30. rhinitis in Rochester, Minnesota residents with asthma: frequency and impact on health care charges. J Allergy Clin Immunol. 1999;103(1 Pt 1):54-9. Epub 1999/01/20.

DW Bang et al

DW Bang et al

1		Dw bang et al
2		
3	-	
4	502	31. Yunginger J, Reed, CE, O'Connell, EJ, Melton, J, O'Fallon, WM, Silverstein, MD. A
5	503	Community-based Study of the Epidemiology of Asthma: Incidence Rates, 1964-1983. Am
6	504	Rev Respir Dis. 1992;146:888-94.
7		
	505	32. Javed A, Yoo KH, Jacobson RM, Poland GA, Juhn YJ. Characteristics of Chiildren with
8	506	Asthma who Achieved Remission of Asthma. Journal of Asthma. 2013;Epub ahead of
9 10	507	print(doi:10.3109/02770903.2013.787625).
11	508	33. Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public
12	509	Health. 1989;79:340-9.
12		·
14	510	34. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait
14	511	or intervention. American Journal of Epidemiology. 1974;99(5):325-32.
16	512	35. O'Byrne PM, Pedersen S, Carlsson L-G, Radner F, Thoren A, Peterson S, et al. Risks of
17	513	Pneumonia in Patients with Asthma Taking Inhaled Corticosteroids. Am J Respir Crit Care
18	514	Med. 2011;183(5):589-95.
19	515	36. The Center for Disease Control and Prevention. Prevalence of Coronary Heart
20		
21	516	Disease: United States, 2006-2010. MMWR. 2011;60(40):1377-81.
22	517	37. Jackson LA, Benson P, Neuzil KM, Grandjean M, Marino JL. Burden of community-
23	518	onset Escherichia coli bacteremia in seniors. J Infect Dis. 2005;191(9):1523-9.
24	519	38. Laupland KB GD, Church DL, Ross T, Pitout JD,. Incidence, Risk Factors and
25	520	Outcomes of Escherichia coli Blood Stream Infections in a Large Canadian Region. Clin
26	520	Microbiol Infect. 2008;14:1041-7.
27		
28	522	39. Sykes A, Edwards MR, Macintyre J, Del Rosario A, Bakhsoliani E, Trujillo-Torralbo
29	523	MB, et al. Rhinovirus 16-induced IFN-alpha and IFN-beta are deficient in bronchoalveolar
30	524	lavage cells in asthmatic patients. J Allergy Clin Immunol.129(6):1506-14 e6.
31	525	40. Wang L, Zhao L, Lv J, Yin Q, Liang X, Chu Y, et al. BLT1-dependent Alveolar
32	526	Recruitment of CD4+CD25+ Foxp3+ Regulatory T Cells Is Important for Resolution of Acute
33	527	Lung Injury. Am J Respir Crit Care Med. 2012;186(10):989-98.
34		
35	528	41. Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009;39(9):1314-23.
36	529	42. Koch A, Knobloch J, Dammhayn C, Raidl M, Ruppert A, Hag H, et al. Effect of bacterial
37	530	endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics.
38	531	Clin Immunol. 2007;125(2):194-204. Epub 2007/09/22.
39	532	
40	533	
41	222	
42		
43	534	
44 45		
45 46	535	
40 47		
47	536	
49	000	
- 50	F 9 7	
51	537	
52		
53	538	
54		
55	539	
56		
57	540	
58	510	
59		21
60		
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

541 Table 1. Definition of asthma

Patients were considered to have *definite* asthma if a physician had made a diagnosis of asthma with the first two conditions and/or if each of the following three conditions were present, and they were considered to have *probable* asthma if only the first two conditions were present:

- 1. History of cough with wheezing, and/or dyspnea, OR history of cough and/or dyspnea plus wheezing on examination,
- Substantial variability in symptoms from time to time or periods of weeks or more when symptoms were 2. absent, and
- Two or more of the following: 3.
- Sleep disturbance by nocturnal cough and wheeze ٠
- Nonsmoker (14 years or older) •
- Nasal polyps •
- Blood eosinophilia higher than 300/uL
- Positive wheal and flare skin tests OR elevated serum IgE
- History of hav fever or infantile eczema OR cough, dyspnea, and wheezing regularly on exposure to an • antigen
- Pulmonary function tests showing one FEV₁ or FVC less than 70% predicted and another with at least 20% improvement to an FEV_1 of higher 70% predicted OR methacholine challenge test showing 20% or greater decrease in FEV_1
- Favorable clinical response to bronchodilator (e.g., documented improvement of respiratory symptoms or FEV1 in spirometry after bronchodilator therapy)

Patients were excluded from the study if any of these conditions were present:

- Tracheobronchial foreign body at or about the incidence date •
- Hypogammaglobulinemia (IgG less than 2.0 mg/mL) or other immunodeficiency disorder
- Wheezing occurring only in response to anesthesia or medications •
- Bullous emphysema or pulmonary fibrosis on chest radiograph •
- PiZZ alpha₁-antitrypsin
- Cystic fibrosis •
- Other major chest disease such as juvenile kyphoscoliosis or bronchiectasis FVC forced vital capacity; FEV1, forced expiratory volume in 1 sec.
- Pulmonary function tests that showed FEV_1 to be consistently below 50% predicted or diminished diffusion

40		capacity			
41	542				
41 42	543				
43 44	544				
45 46 47	545				
48 49	546				
50 51	547				
52 53 54 55	548				
56	549				
57 58					
59 60				22	

BMJ Open

DW Bang et al

550 Table 2. Sociodemographic, and clinical characteristics of patients with *Escherichia coli* blood

551 stream infection and their matched control subjects

Characteristics Age (years)	(n= 259) 61±22	(n= 259) 61±22	(95% CI)	
	61±22	61+22		
		01-22	1.14 (0.78, 1.67)	0.497
Female gender	179 (69%)	179 (69%)	-	
Ethnicity				< 0.001
Caucasian (non-Hispanic)	222 (86%)	245 (95%)	Referent	
Other	37 (14%)	14 (5%)	4.83 (2.01, 11.64)	
Education status				0.004
Some high school or less	45 (17%)	21 (8%)	Referent	
High school graduate	95 (37%)	87 (34%)	0.50 (0.27, 0.93)	
Some college or more	110 (42%)	143 (55%)	0.33 (0.18, 0.62)	
Unknown	9 (3%)	8 (3%)	-	
Influenza vaccination 1 year prior to	95 (37%)	110 (42%)	0.75 (0.51, 1.10)	0.145
index date				
PPV23 prior to index date	117 (45%)	114 (44%)	1.08 (0.69, 1.68)	0.736
Food allergy	16 (6%)	6 (2%)	2.67 (1.04, 6.81)	0.040
Asthma	37 (14%)	16 (6%)	2.75 (1.42, 5.32)	0.003
High-risk conditions				
Alcohol addiction	17 (7%)	1 (0%)	17.00 (2.26, 127.75)	0.006
Autoimmune disease ^c	9 (3%)	3 (1%)	3.00 (0.81, 11.08)	0.099
Chronic obstructive lung disease	12 (5%)	9 (3%)	1.37 (0.55, 3.42)	0.493
Chronic renal insufficiency	30 (12%)	4 (2%)	9.67 (2.94, 31.73)	< 0.001
Congestive heart failure	19 (7%)	2 (1%)	18.00 (2.40, 134.84)	0.005
Coronary artery disease	52 (20%)	40 (15%)	1.46 (0.89, 2.41)	0.136
Dementia	16 (6%)	7 (3%)	3.25 (1.06, 9.97)	0.039
Diabetes mellitus	50 (19%)	24 (9%)	2.53 (1.44, 4.43)	0.001
History of stroke	15 (6%)	10 (4%)	1.71 (0.67, 4.35)	0.257
Immobilization ^d	10 (4%)	1 (0%)	10.00 (1.28, 78.12)	0.028
Immunosuppressive therapy	25 (10%)	4 (2%)	8.00 (2.41, 26.57)	0.001
Malignancy	21 (8%)	12 (5%)	2.00 (0.90, 4.45)	0.090
Recurrent urinary tract infection	29 (11%)	2 (1%)	14.50 (3.46, 60.77)	< 0.001
Transplant recipients	8(3%)	0 (0%)	-	
Urinary incontinence	46 (18%)	20 (8%)	2.86 (1.55, 5.25)	0.001

Other condition ^e	14 (5%)	0 (0%)	-	-
Smoke				0.058
No (including ex-smoker)	206 (80%)	222 (86%)	Referent	
Active	53 (20%)	37 (14%)	1.59 (0.98, 2.58)	

^a Odds ratio based on matched analysis taking into account gender, birthday, residency, and follow-up duration

^b Comorbidity conditions are not mutually exclusive

^c Autoimmune disease includes SLE, rheumatoid arthritis, inflammatory bowel disease and other autoimmune diseases

^d Immobilization includes hemi/para/quadri-plegia

^e Other conditions include use of urinary catheter, device, genitourinary procedures (e.g., prostate biopsy), and congenital anomaly

BMJ Open

DW Bang et al

604	Table 3. A multivariable conditional	logistic regression	model for the asso	ciation between
-----	--------------------------------------	---------------------	--------------------	-----------------

605 asthma and risk of community-acquired Escherichia coli bloodstream infection	n
--	---

Characteristics	Case (n= 259)	Control (n= 259)	Adjusted OR ^a (95% CI)	p valu
Ethnicity				0.003
Caucasian (non-Hispanic)	222 (86%)	245 (95%)	Referent	
Other	37 (14%)	14 (5%)	5.90 (1.85, 18.84)	
Education status				0.646
Some high school or less	45 (17%)	21 (8%)	Referent	
High school graduate	95 (37%)	87 (34%)	0.89 (0.37, 2.14)	
Some college or more	110 (42%)	143 (55%)	0.65 (0.28, 1.50)	
Unknown	9 (3%)	8 (3%)	-	
Influenza vaccination 1 year prior	05 (270/)	110 (420/)	0.58 (0.22, 1.02)	0.058
to index date	95 (37%)	110 (42%)	0.58 (0.33, 1.02)	
Food allergy	16 (6%)	6 (2%)	3.51 (0.94, 13.11)	0.062
Asthma	37 (14%)	16 (6%)	2.74 (1.11, 6.76)	0.029
Active smoking	53 (20%)	37 (14%)	1.31 (0.69, 2.47)	0.412
High-risk conditions				
Alcohol addiction	17 (7%)	1 (0%)	32.31 (1.91, 546.18)	0.016
Autoimmune diseases	9 (3%)	3 (1%)	1.79 (0.23, 13.72)	0.574
Chronic renal insufficiency	30 (12%)	4 (2%)	4.76 (1.16, 19.59)	0.030
Congestive heart failure	19 (7%)	2 (1%)	9.86 (0.93, 104.59)	0.058
Coronary artery disease	52 (20%)	40 (15%)	0.81 (0.37, 1.77)	0.593
Dementia	16 (6%)	7 (3%)	4.14 (0.96, 17.96)	0.057
Diabetes mellitus	50 (19%)	24 (9%)	2.39 (0.97, 5.87)	0.057
Immobilization	10 (4%)	1 (0%)	39.86 (2.30, 690.42)	0.011
Immunosuppressive therapy	25 (10%)	4 (2%)	8.51 (1.32, 54.96)	0.024
Malignancy	21 (8%)	12 (5%)	2.18 (0.59, 8.11)	0.243
Recurrent urinary tract infection	29 (11%)	2 (1%)	13.54 (2.42, 75.65)	0.003
Urinary incontinence	46 (18%)	20 (8%)	2.57 (1.05, 6.26)	0.038
^a Adjusted variables included all variables	included in this	table.		

Table 4. Association of asthma control status and therapy with risk of community-acquired

612 Escherichia coli bloodstream infection

Asthma characteristics	Total	Unadjusted OR	Adjusted OR ^a	
	(n=518)	(95% CI), p-value	(95% CI), p-value	
Inhaled corticosteroid therapy (ICS)	$p = 0.009^{b}$	p=0.079 ^b	
No asthma	465 (90%)	Referent	Referent	
Asthma without ICS	35 (7%)	1.90 (0.88, 4.09)	1.99 (0.67, 5.94)	
Asthma with ICS	18 (3%)	7.00 (1.59, 30.80)	5.33 (0.90, 31.66)	
Asthma status ^c		$p = 0.005^{b}$	$p = 0.067^{b}$	
No asthma	465 (90%)	Referent	Referent	
Remission or inactive asthma	17 (3%)	1.25 (0.45, 3.50)	1.25 (0.25, 6.30)	
Active or current asthma	36 (7%)	4.37 (1.80, 10.62)	3.89 (1.23, 12.28)	

^a Adjusted variables included all factors reported in the multivariable model (see Table 3) except for dichotomous asthma status

^b P-value for overall comparison

^c Active or current asthma was defined as the presence of asthma-related events including asthma symptoms, or use of asthma medications, and outpatient/emergency department/hospitalization for asthma within one year prior to index date of E coli BSI; Remission of asthma was defined as the absence of asthma-related events > 3 years prior to index date; Inactive (not current) asthma was defined as the presence of asthma-related events within 1-3 years prior to index date.

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract(title)
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found(abstract)
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported(lines 96-112)
Objectives	3	State specific objectives, including any prespecified hypotheses (lines 113-119)
Methods		
Study design	4	Present key elements of study design early in the paper(lines 139-140)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
6		exposure, follow-up, and data collection (lines 142-145/159/212-213)
Participants	6	(a) Give the eligibility criteria, and the sources and methods of case ascertainment
1		and control selection. Give the rationale for the choice of cases and controls (table 1
		153~)
		(b) For matched studies, give matching criteria and the number of controls per case
		(176~)
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable(191-213)
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group(177-186)
Bias	9	Describe any efforts to address potential sources of bias(289-306)
Study size	10	Explain how the study size was arrived at(186-190)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why(214-224)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
(214-224)		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed(N/A)
		(d) If applicable, explain how matching of cases and controls was addressed
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed (N/A)
		(b) Give reasons for non-participation at each stage (N/A)
		(c) Consider use of a flow diagram(N/A)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders(Table 2 &3)
		(b) Indicate number of participants with missing data for each variable of
		interest(Table 2 & 3)
Outcome data	15*	Report numbers in each exposure category, or summary measures of exposure(Table 2 &3)
		/

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

2
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
30
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50 51
51 52
52 53
53 54
55
56
57
58
59
60

(Table 2, 3 & 4)		their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses
		(Table 2 &3)
Discussion		
Key results	18	Summarise key results with reference to study objectives (277-281)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias(338-346)
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence(334-347)
Generalisability	21	Discuss the generalisability (external validity) of the study results(346-349)
Other informati	on	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
		for the original study on which the present article is based(356-360)

*Give information separately for cases and controls.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Asthma and Risk of Non-Respiratory Tract Infection: A Population-Based Case Control Study

Journal:	BMJ Open
Manuscript ID:	bmjopen-2013-003857.R1
Article Type:	Research
Date Submitted by the Author:	28-Aug-2013
Complete List of Authors:	Juhn, Young; Mayo Clinic, Community Pediatrics and Adolescent Medicine Bang, Duk; Mayo Clinic, Yang, Hyeon; Soon Chun Hyang University Hospital, Ryoo, Eell; Gil Hospital - Gachon University, Al-Hasan, Majdi; University of Kentucky Medical Center, Lahr, Brian; Mayo Clinic, Baddour, Larry; Mayo Clinic, Yawn, Barbara; Olmsted Medical Center, Department of Research
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Respiratory medicine
Keywords:	Asthma < THORACIC MEDICINE, EPIDEMIOLOGY, Gastrointestinal infections < GASTROENTEROLOGY

SCHOLARONE[™] Manuscripts

	Item No	Recommendation
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract(title)
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found(abstract)
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported (lines 96-112)
Objectives	3	State specific objectives, including any prespecified hypotheses (lines 113-119)
Methods		
Study design	4	Present key elements of study design early in the paper(lines 139-140)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection (lines 142-145/159/212-213)
Participants	6	(a) Give the eligibility criteria, and the sources and methods of case ascertainment
. r	-	and control selection. Give the rationale for the choice of cases and controls (table 1
		153~)
		(b) For matched studies, give matching criteria and the number of controls per case
		(176~)
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable(191-213)
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there i
		more than one group(177-186)
Bias	9	Describe any efforts to address potential sources of bias(289-306)
Study size	10	Explain how the study size was arrived at(186-190)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why(214-224)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
(214-224)		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed(N/A)
		(d) If applicable, explain how matching of cases and controls was addressed
		(e) Describe any sensitivity analyses
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
*		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed (N/A)
		(b) Give reasons for non-participation at each stage(N/A)
		(c) Consider use of a flow diagram(N/A)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
-		information on exposures and potential confounders(Table 2 &3)
		(b) Indicate number of participants with missing data for each variable of
		interest(Table 2 & 3)
Outcome data	15*	Report numbers in each exposure category, or summary measures of exposure(Table 2 & 3)
		,

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

2
4
3 4 5
5 6
7
0
8 9 10
9
10
11
12
13
14
15
16
17
18
10
20
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 132 33 435 36 37 82
21
22
23
24
25
26
27
28
29
30
31
32
33
24
25
30
30
37
38
39
40
41
42
43
44
45
46
47
47 48
40 49
49 50
52
53
54
55
56
57
58
59
60
00

(Table 2, 3 & 4)		their precision (eg, 95% confidence interval). Make clear which confounders were			
		adjusted for and why they were included			
		(b) Report category boundaries when continuous variables were categorized			
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a			
		meaningful time period			
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses			
		(Table 2 &3)			
Discussion					
Key results	18	Summarise key results with reference to study objectives (277-281)			
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.			
		Discuss both direction and magnitude of any potential bias(338-346)			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity			
		of analyses, results from similar studies, and other relevant evidence(334-347)			
Generalisability	21	Discuss the generalisability (external validity) of the study results(346-349)			
Other information					
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,			
		for the original study on which the present article is based(356-360)			

*Give information separately for cases and controls.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

BMJ Open

1 2		
3 4	1	TITLE PAGE
5 6	2	Original Article
7 8 9 10 11 12 13 14 15 16 17 18	3	Asthma and Risk of Non-Respiratory Tract Infection: A Population-Based Case Control
	4	Study
	5	
	6	Duk Won Bang, MD ^{a,b} , Hyeon J. Yang, MD ^c , Eell Ryoo, MD ^{a,d} , Majdi N. Al-Hasan, MD ^e ,
	7	Brian Lahr, MS, ^f Larry M. Baddour, MD ^g , Barbara P. Yawn, MD ^h , and Young J. Juhn, MD ^{a,i}
19 20 21	8	
22 23	9	^a Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
24 25 26 27 28 29 30	10	^b Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, South Korea
	11	^c Department of Pediatrics, Soonchunhyang University Hospital, Seoul, South Korea
	12	^d Department of Pediatrics, Gil Hospital, Gachon University School of Medicine, Inchon, South
31 32 33	13	Korea
34 35	14	^e Department of Medicine, University of Kentucky Medical Center, Lexington, KY
36 37	15	^f Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
38 39 40	16	^g Department of Medicine, Mayo Clinic, Rochester, MN
41 42	17	^h Department of Research, Olmsted Medical Center, Rochester, MN
43 44 45	18	ⁱ Department of Internal Medicine, Mayo Clinic, Rochester, MN Corresponding author
46 47	19	Corresponding author
48 49	20	Young J. Juhn, M.D., M.P.H
50 51 52	21	Division of Community Pediatric and Adolescent Medicine
53 54	22	Department of Pediatric and Adolescent Medicine/Internal Medicine
55 56	23	Mayo Clinic
57 58 59		
60		1

Funding: This work was supported by the Clinician Scholarly Award from the Mayo foundation

and a grant from the National Institute of Allergy and Infectious Diseases (R21 AI101277). It

was also supported by the Rochester Epidemiology Project (R01-AG34676) from the National

Conflict of interest: The study investigators have nothing to disclose that poses a conflict of

We reviewed the STROBE statement and addressed all items in that checklist and are

Key Words: Asthma, Risk, Epidemiology, Community-acquired infections, Escherichia Coli,

Abbreviations: BSI: blood stream infection, E. Coli: Escherichia Coli, TLR : Toll-like Receptor,

ICS : inhaled corticosteroid, PPV23: 23-valent pneumococcal polysaccharide vaccine

submitting the STROBE statement with the revised manuscript.

Blood stream infection, genitourinary, and gastrointestinal tract

2
4
3 4 5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 22
25
26
27
28
29
29 30
31
32
22
33
34 35
35
36 37 38
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60
00

1

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

DW Bang et al

200 1st Street SW

Rochester, MN 55905

TEL: 507-538-1642

FAX: 507-284-9744

Institute on Aging.

interest.

E-mail: juhn.young@mayo.edu

Word count: 2993

BMJ Open

1
2
3 4 5 6 7 8
4
5
6
7
1
8
9
10
11
40
12
13
14
15
16
17
17
18
19
20
10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 31 22 31 22
22
22
23
24
25
26
20
27
28
29
30
21
51
32
33
34
35
26
30
33 34 35 36 37 38
38
39
40
41
42
43
44
45
46
47
48
49
- 50
51
52
53
54
54 55
55
56
57
58
59
29
60

	46	Article summary
	47	1. Article focus: We addressed the following question in this study.
	48	- Given the association between asthma and airway-related infection, is asthma also associated
) I	49	with non-airway-related serious infections such as Escherichia coli blood stream infection?
2	50	2. Key messages
+ 5 6	51	- Individuals with asthma are at a significantly increased risk of non-airway-related infection,
7 3	52	including community-acquired E. coli blood stream infection.
))	53	- The impact of asthma on risks of microbial infections may go beyond airways.
1 2 3	54	- Clinicians and patients should be aware of the association and recognize the risk of subsequent
4 5	55	infection.
5 7 2	56	3. Strength and limitations
))	57	- This is the first population-based case-control study using predetermined criteria for asthma
 2	58	status and community-acquired Escherichia coli blood stream infection.
3 1 5	59	- The main limitation of the study is inherent limitations as a retrospective study and the study
5 7	60	subjects were predominantly white.
3	61	
) >	62	Contributors
- 3 1	63	BDW collected data, interpreted the results, and drafted the manuscript; HJY participated in the
5	64	study design, interpreted the results and reviewed the manuscript; ER collected data, interpreted
, 3 9	65	the results, and reviewed manuscript; MNA assembled the original dataset for the E. coli BSI
)	66	study, collected the original data, interpreted the results, and reviewed the manuscript; LMB
2 3 1	67	participated in the study design, interpreted the results, and reviewed the manuscript; BPY
5	68	participated in the study design, interpreted the results, and reviewed manuscript; and YJJ
7 2		

participated in the study design, performed data analysis, interpreted the results, and drafted the

manuscript. BDW, ER, and YJJ had full access to data. All authors reviewed and approved the

paper.

6

There will be no additional data available.

BMJ Open

DW Bang et al

1 2		
3 4	92	Abstract:
5 6 7	93	Objectives: Asthmatics have increased risks of airway-related infections. Little is known about
8 9	94	whether this is true for non-airway-related serious infections such as Escherichia coli blood
10 11	95	stream infection (BSI). We assessed whether asthma is associated with a risk of developing
12 13 14	96	community-acquired E. coli BSI.
15 16	97	Design: The study was designed as a population-based retrospective case-control study.
17 18	98	Setting: This population-based study was conducted in Olmsted County, Minnesota.
19 20 21	99	Participants: The study included 259 all eligible community-acquired E. coli BSI cases in
22 23	100	Olmsted County, MN between 1998 and 2007 and 259 birthday-, gender-, and residency-
24 25 26	101	matched controls.
20 27 28	102	Primary and secondary outcome measures: Only community-acquired E. coli BSI cases as the
29 30	103	primary outcome was included. Asthma status as an exposure was ascertained by predetermined
31 32 33	104	criteria. An adjusted odds ratio (OR) and 95% confidence interval (CI) for the association
34 35	105	between asthma and risk of community-acquired E. coli BSI was calculated using conditional
36 37	106	logistic regression.
38 39 40	107	Results: Of 259 eligible cases, 179 (69 %) were female and mean age was 61±22 years. Thirty-
41 42	108	seven of 259 cases (14%) and 16 of 259 controls (6%) had a prior history of asthma (adjusted
43 44	109	OR: 2.74; 95% CI: 1.11-6.76; p=0.029). The population attributable risk of asthma for
45 46 47	110	community-acquired E. coli BSI was 9%. Although not statistically significant, there was a
48 49	111	borderline association between having a history of food allergy and increased risk of community-
50 51 52	112	acquired <i>E. coli</i> BSI (6% vs 2%; adjusted OR: 3.51; 95% CI: 0.94-13.11, p=0.062).
52 53 54	113	Conclusions: Based on the findings of the current population-based, case-control investigation, a
55 56	114	history of asthma may be associated with risk of community-acquired E. coli BSI. The impact of
57 58 59		
00		5

1		DW Bang et al
2 3 4	115	asthma on risk of microbial infections may go beyond airways.
5 6	116	
7 8 9	117	Abstract Word Count: 246
10 11	118	INTRODUCTION
12 13	119	Asthma is the most common chronic illness in childhood and is a major cause of
14 15 16	120	morbidity in adults, affecting 4-17% of children and 7.7% of adults in the US.(1-3)] About 300
17 18	121	million people globally are estimated to be affected by asthma.(4)
19 20 21	122	Previous studies showed increased risks of microbial infections among individuals with
22 23	123	asthma(5-10) and the population attributable risk for asthma of serious pneumococcal disease
24 25	124	was 11-17%.(6, 10) Impaired innate and adaptive immune functions among asthmatics have
26 27 28	125	been suggested for potential underlying mechanisms.(11-18) These study results are based on
29 30	126	microbial infections of the airways. However, little is known about whether asthma status is
31 32 33	127	associated with risk of non-airway-related bacterial infections such as community-acquired
33 34 35	128	Escherichia coli blood stream infection (BSI).
36 37	129	Addressing this question should provide an important insight into the nature of the impact
38 39 40	130	of asthma status on susceptibility to microbial infection. Specifically, it will improve our
41 42	131	understanding on whether the impact of asthma status on susceptibility to infection goes beyond
43 44	132	airways. In investigating this question, community-acquired E. coli BSI is suitable because it is
45 46 47	133	not an airway-related infection but genitourinary tract/gastrointestinal origin, E. coli is a gram-
48 49	134	negative bacterium with Toll-like Receptor (TLR)-4-mediated signal transduction for innate
50 51 52	135	immunity, and E. coli is the most common cause of community-acquired BSI.(19) Up to 30% of
52 53 54 55	136	individuals who developed community-acquired E. coli BSI did not have known risk
56 57		
58 59 60		6

1		DW Bang et al
2 3 4	137	factors,[(20)] suggesting that unrecognized risk factors exist that are associated with the
5 6 7	138	development of community-acquired E. coli BSI.
7 8 9	139	Investigating the relationship between asthma and non-airway-related serious bacterial
10 11	140	infections will advance our understanding on the extent to which asthma impacts susceptibility to
12 13 14	141	microbial infections and whether asthma could be an unrecognized risk factor for non-airway-
14 15 16	142	related bacterial infections.
17 18	143	We hypothesize that individuals with asthma have an increased risk of community-
19 20 21	144	acquired E. coli BSI, as compared to those without asthma. To test this hypothesis, we conducted
22 23	145	a population-based retrospective case-control study.
24 25 26	146	
20 27 28	147	
29 30	148	
31 32 33	149	
34 35	150	
36 37 38	151	
39 40	152	
41 42 43	153	
43 44 45	154	
46 47	155	
48 49 50	156	
51 52	157	
53 54 55	158	
56 57	159	
58 59 60		7
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

The study was approved by the Institutional Review Boards of both Mayo Clinic and

Olmsted Medical Center. This study was designed as a population-based case-control study.

Olmsted County, Minnesota is an excellent setting to conduct a population-based

community (nearly all Olmsted County residents receive medical cares from two medical centers

epidemiologic study such as this because medical care is virtually self-contained within the

in the community). The population characteristics of Olmsted County residents are similar to

those of non-Hispanic white.(21) If one grants the authorization for using medical record for

research (almost 95% of Olmsted County residents), each patient is assigned a unique identifier

under the auspices of the Rochester Epidemiology Project (REP).(22) Using REP resources, we

previously demonstrated that incidence rates of asthma for this community are similar to other

communities. The annual incidence rate of asthma in Rochester was 238 cases per 100,000

persons, which is comparable to those in other communities such as Tecumseh, Michigan

2	
3 4	160
5 6 7	161
7 8 9	162
10 11	163
12 13	164
14 15 16	165
17 18	166
19 20	167
21 22 23	168
23 24 25	169
26 27	170
28 29 20	171
30 31 32	172
33 34	173
35 36 37	174
37 38 39	175
40 41	176
42 43	177
44 45 46	178
47 48	170
49 50	175
51 52 53	
53 54 55	181
56 57	182
58 59 60	
00	

1

DW Bang et al

METHODS

Study population and setting

(250/100,000).(23)

Study subjects: Case ascertainment

To test our study hypothesis, we utilized a population-based incidence parent study,

which previously identified the community-acquired cases to study antimicrobial resistance

trends of *E. coli* BSI in the community. Details of the case ascertainment have been described

BMJ Open

DW Bang et al

previously.(19) Briefly, using the microbiology databases at Mayo Clinic Rochester and Olmsted Medical Center, all eligible children and adults with monomicrobial E. coli BSI (n=274) among Olmsted County residents from January 1, 1998 to December 31, 2007 (i.e., a population-based all incident cases of *E. coli* BSI) were identified based on the criteria suggested by Freidman et al.(24) As E. coli BSI is required for inpatient parental treatment, community-acquired E. coli BSI was defined by isolation of *E. coli* from blood cultures at the time of hospital admission or within 48 hours after hospital admission for patients who did not fit criteria for health care-associated infection according to the Freidman's criteria.(24) Medical records of all subjects were reviewed by investigators of the previous study (MNA) to confirm the diagnosis of community-acquired E. coli BSI, assess clinical features, and determine the eligibility. Only community-acquired E. coli BSI was included because nosocomial and health care-associated E. *coli* BSI are unsuitable to address the aim of the present study (clinically, they are a high-risk population for *E. coli* BSI and not representative of the study population). The index date of BSI was defined as the date when blood cultures that eventually grew *E. coli* were obtained. Exclusion criteria for cases (and controls) included: 1) polymicrobial BSI caused by more than one microorganism, 2) blood cultures acquired at autopsy, 3) nosocomial and health care-associated E. coli BSI, 4) non-Olmsted County residency at the time of index date of BSI, 5) no research authorization for using medical record for research, and 6) health conditions making ascertainment of asthma difficult listed in Table 1.

Selection of control subjects

Control subjects were randomly selected with 1:1 matching from Olmsted County residents who had not had a history of E. coli BSI at the end of the study period. Briefly, a list of potential control subjects who had received medical care from either Mayo Clinic or Olmsted

DW Bang et al

 Medical Center and who met the matching criteria was generated and randomly selected from the REP database for the present study. The matching criteria included: 1) gender, 2) birth date (within six months for those <18 years of age and within one year for those >18 years of age). 3) the same clinic registration year as matched case (within one year), and 4) closest clinic visit to index date of matched case within one year. The index date for control subjects was defined as the closest (within one year) clinic visit date to index date of BSI for their corresponding matched case. Based on the number of cases and controls enrolled in this present study (259 pair), assuming 8% of asthma prevalence among controls, this present study had 80% power to detect an effect size of 2.27 of odds ratio (16.5% of asthma in cases). This effect size was smaller than the reported effect sizes for the association between asthma and risk of microbial infection (OR: 2.4-6.7) suggesting adequate statistical power to address the study aim.(6, 10) Exposure ascertainment (asthma status) For determining asthma status of all cases and controls, we conducted comprehensive medical record reviews to apply predetermined criteria for asthma as performed in our previous work.(5, 6) The criteria are delineated in Table 1. These criteria have been extensively used in

research for asthma epidemiology and were found to have high reliability.(25-30) We included both definite and probable asthma according to the criteria prior to the index date of BSI cases because most probable asthmatics become definite over time (6, 31) The incidence dates (the first date when one met the criteria for asthma) for all asthmatic patients were determined; thus, we were able to discern the temporal relationship between asthma status (exposure) and E coli BSI (outcome). The risk of *E. coli* BSI was assessed in relation to the current asthma status(32): remission (no asthma symptoms, no asthma-related visits, or no asthma medications for at least three years prior to index date); active or current asthma (presence of clinical symptoms, asthma-

BMJ Open

DW	Bang	et al	
----	------	-------	--

related visits, or asthma medications within one year prior to index date); and inactive (not
current) asthma (presence of asthma symptoms, asthma-related visits, or asthma medications
within 1-3 years prior to index date).

10232Other variables

Pertinent covariates and confounders were collected from medical records: sociodemographic variables (age, gender, ethnicity, and educational status), asthma medications including inhaled and systemic corticosteroids, family history of asthma, atopic status based on sensitization against aeroallergens and food allergens, smoking status (either active or passive exposure to tobacco smoke), vaccination status, and co-morbid conditions at the time of index date as listed in Table 2. The period of data collection was from October 1, 2011 to May 30, 2012.

240 Statistical analysis

Formal comparison of asthma and other suspected risk factors between matched cases and controls was performed using conditional logistic regression, with community-acquired E. *coli* BSI as the target of prediction. All factors were analyzed for a univariate association with BSI, and any variables meeting the Greenland entry criteria (P < 0.2) were carried forward into a final multivariable model.(33)] Odds ratios (OR) from univariate (unadjusted) and multivariable (adjusted) models are reported to express the magnitude of association in terms of the likelihood of being a case. We calculated the population attributable risk percentage (PAR%) of asthma for community-acquired E. coli BSI using the formula established by Miettinen.(34) Statistical significance was tested at a two-sided alpha error of 0.05. All analyses were carried out with the statistical software package SAS, version 9.2 (SAS Institute, Cary, NC, USA).

Of the 274 patients who were identified in the original study, 259 were eligible for the present

study. Fifteen patients were excluded; five for consistent FEV1 < 50%, two for restrictive lung

pulmonary fibrosis, and two due to non-Olmsted County residency. Of the eligible 259 cases,

disease, two for significant kyphoscoliosis, two for bronchiectasis, one for cystic fibrosis, one for

179 (69%) were female, 249 (96%) were 18 years of age or older (age mean±standard deviation,

61±22 years), and 222 (86%) were Caucasian. The characteristics of the cases and their matched

controls, and the individual associations with community-acquired E. coli BSI, are summarized

in Table 2. There were only 10 asthmatics on moderate- or high-dose inhaled corticosteroid (ICS)

and two asthmatics on systemic corticosteroid at the time of the index date. Comparing subjects

with asthma versus those without, there was no significant difference in the proportions, who had

received influenza vaccine (40% vs. 40%, p=0.99) or PPV23 (49% vs. 44%, p=0.49) within one

Thirty-seven of 259 (14%) cases had a history of asthma prior to the index date of community-

acquired E. coli BSI, compared with 16 of 259 (6%) controls (unadjusted OR: 2.75; 95% CI:

1.42-5.32; p=0.003). Of the 37 case subjects with asthma, 33 (89%) had definite asthma and 4

(11%) had probable asthma. Of the 16 controls with asthma, 12 (75%) had definite asthma and 4

Association between asthma and risk of community-acquired E. coli BSI

1 2	
3 4	252
5 6 7	253
8 9	254
10 11	255
12 13 14	256
15 16	257
17 18	258
19 20 21	259
22 23	260
24 25	261
26 27 28	262
29 30	263
31 32 33	264
34 35	265
36 37	266
38 39 40	267
41 42	268
43 44 45	269
46 47	270
48 49	271
50 51 52	272
53 54	273
55 56 57	274
57 58 59	
60	

DW Bang et al

RESULTS

Study subjects

vear prior to index date.

BMJ Open

DW Bang et al

(25%) had probable asthma. Among all 53 asthmatics, 18 were on ICS therapy at the index date (8 on low-dose ICS and 10 on moderate to high-dose ICS therapy). The effect of asthma on risk of community-acquired E. coli BSI, independent of other risk factors, is summarized in Table 3. Subjects with a history of asthma by predetermined criteria for asthma in Table 1 had a nearly 3-fold higher risk of developing community-acquired E. coli BSI compared to those without asthma, controlling for all potential confounding factors (adjusted OR: 2.74; 95% CI: 1.11-6.76; p=0.029). The PAR% of asthma by predetermined criteria for asthma in Table 1 for the risk of E. *coli* BSI was 9%. The *p*-values for testing a significant interaction between asthma and categorized age were as follows: p=0.285 for age cutoff of 65 years (i.e., ≥ 65 vs. <65 years), p=0.958 for age cutoff of 40 years (i.e., \geq 40 vs. <40 years), and p=0.417 for age cutoffs of 40 years and 65 years (i.e., <40, 40-65, vs. >65 years). As a result, we have no evidence of a differential asthma effect across age strata. Additional characteristics of asthma were also evaluated for an association with risk of community-acquired E. coli BSI (see Table 4). Adjusted for other factors, active asthma was associated with increased risk of E. coli BSI but for asthmatics on ICS therapy compared to non-asthmatics, but the overall 3-level effect was not statistically significant (p=0.079).

Other variables and E. coli BSI

Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently associated with increased risk of community-acquired E. coli BSI (see Tables 2 and 3). A history of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls (adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic dermatitis (p=0.87) was found to be significantly associated with community-acquired E. coli BSI.

To our knowledge, this is the first population-based, case-control study that demonstrated an

association between asthma and risk of non-respiratory bacterial infection such as community-

gender, follow-up duration, ethnicity, educational level, and comorbid conditions (adjusted OR:

2.74; 95% CI: 1.11-6.76; p=0.029). Analyses by different age cut-offs showed that the results

were not affected by age effect (e.g., younger vs. older than 40 years of age). Given either the

previously-reported non association (hazard ratio, HR: 1.29, 95%CI: 0.53-3.12) or a protective

effect (HR: 0.52, 95%CI:0.36-0.76) of ICS therapy on risk of pneumonia in asthmatics(35) and a

suspect that active or current asthma (or collectively those given ICS therapy) might be related to

risk of community-acquired E. coli BSI instead of ICS alone. There were only 2 asthmatics on

systemic corticosteroid therapy at the time of the index date; therefore, exposure to systemic

corticosteroid therapy was unlikely to account for the observed association. We believe that

found in our study given the full adjustment for potential confounders. One concern could be

detection bias stemming from a situation where exposure status (asthma status) systematically

affects detection of outcomes. However, given E. coli BSI as a life-threatening condition, this is

susceptibility bias (e.g., covariate imbalance at baseline) is unlikely to account for the association

small number of asthmatics with moderate or high-dose ICS in our study (10 of 53, 19%), we

acquired E. coli BSI. This association was independent of other risk factors including age,

1	
2 3 4	298
5 6 7	299
8 9	300
10 11	301
12 13 14	302
15 16	303
17 18	304
19 20 21	305
22 23	306
24 25	307
26 27 28	308
29 30	309
31 32 33	310
34 35	311
36 37	312
38 39 40	313
40 41 42	314
43 44 45	315
45 46 47	316
48 49	317
50 51 52	318
52 53 54	319
55 56	320
57 58 50	
59 60	

DW Bang et al

DISCUSSION

BMJ Open

DW Bang et al

2 3 4	321	unlikely and also there was no significant difference in symptom duration from BSI-related
$\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 20 \\ 21 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$	322	symptom to index date between asthma and non-asthma in cases (4.7±5.5 vs 5.2±5.5 days,
	323	p=0.61). Since detection of asthma depends on follow-up duration from registration to index
	324	date of community-acquired E. coli BSI, we designed our study to ensure that duration was
	325	similar between cases and controls. Asthma prevalence in controls in our study was 6%, which is
	326	similar to that in adults (7%) in the United States (5.5% for males and 9.7% for females).(36)
	327	Also, the prevalence of other common chronic condition such as coronary heart disease in our
	328	study (15%) was similar to the national average (7.1% for adults aged 45-64 years and 19.8% for
	329	adults aged ≥ 65 years) suggesting that our control group may reasonably represent a general
	330	population of adults in the United States.(3) There were no significant differences in influenza
	331	and PPV23 vaccination rates between cases and controls, which may imply similar access to
	332	health care services. Also, food allergy approached to statistical significant association with risk
31 32	333	of E coli BSI but other atopic conditions were not. This is probably due to greater
33 34 35	334	misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code
36 37	335	compared to asthma status and food allergy by predetermined criteria in our study. Taken
38 39 40	336	together, our study results suggest that asthma status is independently associated with risk of
40 41 42	337	community-acquired E. coli BSI.
43	220	There are only a few previous studies, which assessed the incidence of F , coli DSI and

There are only a few previous studies, which assessed the incidence of E. coli BSI and risk factors associated with its development, including asthma. One study showed a higher risk of community-acquired E. coli BSI in asthmatics compared to non-asthmatics among those over 65 years of age (5.5% vs. 1%).(37) However, another study showed reduced risk of E. coli BSI in asthmatics (rate ratio: 0.3; 95% CI: 0.2-0.4) compared to that in total regional population.(38) These studies have significant limitations including no *a priori* hypothesis testing on the

DW Bang et al

relationship between asthma and risk of community-acquired *E. coli* BSI, utilization of
administrative data from health care organizations or case reports, ascertainment of *E. coli* BSI
cases and asthma based on ICD-9 code, inclusion of only elderly patients aged over 65 years,(37)
and no concurrent control group.(38) Thus, our study is the first population-based case-control
study that demonstrated a relationship between asthma and risk of community-acquired *E. coli*BSI. Several studies showed increased risks of microbial infections in asthmatics[(5-7, 10, 11)
but these studies only addressed the relationship between asthma and airway infections.

The mechanisms underlying the apparent association between asthma and risk of community-acquired *E. coli* BSI are unknown. Whether previously reported impaired innate immune factors that may predispose to infections due to viruses(13, 39, 40) and other bacteria are operative in community-acquired E. coli BSI is undefined. Recently, Habibzay et al reported impaired innate immunity against pneumococci through impaired TLR-receptor signal transduction by house dust mite allergic sensitization resulting in reduced neutrophil recruitment and increased risk of pneumococcal infection in the airways.(11) It is worth investigating whether allergic sensitization can induce similar impairment of innate immunity through TLR-4 for gram-negative bacteria in genitourinary or gastrointestinal tracts in asthmatics. Also, an adaptive immune response to gram-negative bacteria might be altered in asthmatics, (41) which may affect susceptibility to gram-negative bacterial infection. For example, Koch et al reported impaired Type 1 helper T cell (Th1) response (interleukin-12-induced interferon- γ release from T lymphocytes) to endotoxin from Salmonella enteritidis in asthmatics.(42) Further studies are needed to address our study findings.

The main strengths of our study are a population-based study design and include the epidemiologic merits of self-contained health care environment with comprehensive medical

BMJ Open

DW Bang et al

record system for research. We identified population-based all incident community-acquired E. *coli* BSI cases based on the Freidman criteria. We ascertained asthma status by applying predetermined criteria independent of a physician diagnosis of asthma or ICD-9 code. Also, our study has inherent limitations as a retrospective study. We could not obtain detail information on certain variables such as atopic sensitization data or smoking history (e.g., duration or the number of cigarettes a day) but we assumed this data to be missing at random (i.e., it is subject to non-differential misclassification bias for comparison groups of interest). Although our criteria for asthma was based on medical record review, given the absence of gold standard for asthma, the retrospective investigation for feasibility (due to infrequent *E coli* BSI), and the extensive use of the criteria in previous asthma research, we believe the criteria is unlikely to result in a significant bias affecting interpretation of the results. Our study finding that asthma prevalence among controls was similar to that at the national level should mitigate this concern. Our study subjects were predominantly white which might limit generalizability of our results to other ethnic groups. Our study subjects were relatively an older population affected by many comorbid conditions, which might confound the study results. Therefore, we adjusted the association between asthma and risk of E coli BSI for each comorbid condition individually in our multivariate model. Since the prevalence of comorbid conditions is related to age, we examined the effect of the interaction between age and asthma. We found that the main results on the association between asthma and risk of *E coli* BSI did not appear to be significantly affected by various cutoffs of age suggesting the results did not differ by age group (younger vs. older group).

DW Bang et al

In conclusion, asthmatics might be at an increased risk of non-respiratory tract bacterial 6 infections, including community-acquired *E. coli* BSI. The mechanisms responsible for this association are yet to be defined while additional investigations replicate our study findings. Acknowledgement We thank the staff of the Pediatric Asthma Epidemiology Research Unit for their comments and suggestions. We also thank Elizabeth Krusemark for administrative assistance. This work was supported by the Clinician Scholarly Award from the Mayo foundation and by the Rochester Epidemiology Project (R01-AG34676) from the National Institute on Aging. The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

DW Bang et al

2		
3	411	
4 5		
6	412	
7		
8	413	
9		
10	414	
11 12		
13	415	
14		
15	416	
16 17		
17 18	417	
19		
20	418	
21		
22 23	419	
23 24		
25	420	References
26		
27	421	1. Eder W, and Ege MJ, and von Mutius E. The Asthma Epidemic. New England Journal
28	422	of Medicine. 2006;355(21 %R doi:10.1056/NEJMra054308):2226-35.
29 30	423	2. Barnett SB, TA. N. Costs of asthma in the United States: 2002-2007. J Allergy Clin
31	424	Immunol 2011;127(1):145-52.
32	425	3. The Center for Disease Control and Prevention. Vital signs: asthma prevalence,
33	426	disease characteristics, and self-management education United States, 20012009.
34 35	427	MMWR Morb Mortal Wkly Rep. 2011;60(17):547-52. Epub 2011/05/06.
36	428	4. Bernsen RM, van der Wouden JC, Nagelkerke NJ, JC. dJ. Early life circumstances and
37	429	atopic disorders in childhood. Clinical & Experimental Allergy. 2006;36(7):858-65.
38	430	5. Capili CR, Hettinger A, Rigelman-Hedberg N, Fink L, Boyce T, Lahr B, et al. Increased
39	431	risk of pertussis in patients with asthma. J Allergy Clin Immunol. 2012;129(4):957-63.
40 41	432	Epub 2011/12/31.
41	433	6. Juhn YJ, Kita H, Yawn BP, Boyce TG, Yoo KH, McGree ME, et al. Increased risk of
43	434	serious pneumococcal disease in patients with asthma. Journal of Allergy and Clinical
44	435	Immunology. 2008;122(4):719-23.
45	436	7. Jung JA, Kita H, Yawn BP, Boyce TG, Yoo KH, McGree ME, et al. Increased risk of
46 47	437	serious pneumococcal disease in patients with atopic conditions other than asthma. J
47	438	Allergy Clin Immunol. 2010;125(1):217-21.
49	439	8. Klemets P, Lyytikainen O, Ruutu P, Ollgren J, Kaijalainen T, Leinonen M, et al. Risk of
50	440	invasive pneumococcal infections among working age adults with asthma. Thorax.
51	441	2010;65(8):698-702. Epub 2010/08/06.
52 53	442	9. Pilishvili T, Zell ER, Farley MM, Schaffner W, Lynfield R, Nyquist AC, et al. Risk
53 54	443	factors for invasive pneumococcal disease in children in the era of conjugate vaccine use.
55	444	Pediatrics. 2010;126(1):e9-17.
56	445	10. Talbot TR, Hartert TV, Mitchel E, Halasa NB, Arbogast PG, Poehling KA, et al. Asthma
57	446	as a risk factor for invasive pneumococcal disease. N Engl J Med. 2005;352(20):2082-90.
58 59		
59 60		19

DW Bang et al

11. Habibzay M, Saldana JI, Goulding J, Lloyd CM, Hussell T. Altered regulation of Toll-like receptor responses impairs antibacterial immunity in the allergic lung. Mucosal Immunol. 2012;5(5):524-34. Epub 2012/05/03. Jung J, Kita H, Nahm M, Tsigrelis C, Baddour L, Jacobson R, et al. Influence of asthma 12. status on serotype specific antibody pneumococcal antibody levels. Postraduate Medicine. 2010:122(5):116-24. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, et al. 13. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006;12(9):1023-6. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. 14. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. Journal of Experimental Medicine. 2005;201(6):937-47. Epub 2005/03/23. 15. Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cvtokine and IL-10 production. Proc Natl Acad Sci U S A. 2008;105(36):13562-7. Epub 2008/09/05. Laza-Stanca V, Message SD, Edwards MR, Parker HL, Zdrenghea MT, Kebadze T, et al. 16. The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations. PLoS Pathog. 2011;7(7):e1002114. Plummeridge MJ, Armstrong L, Birchall MA, Millar AB. Reduced production of 17. interleukin 12 by interferon γ primed alveolar macrophages from atopic asthmatic subjects. Thorax. 2000;55(10):842-7. Ho C-Y, Wong C-K, Ko FW-S, Chan CH-S, Ho AS-S, Hui DS-C, et al. APoptosis and b-cell 18. lymphoma-2 of peripheral blood t lymphocytes and soluble fas in patients with allergic asthma*. CHEST Journal. 2002;122(5):1751-8. Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM. Antimicrobial resistance 19. trends of Escherichia coli bloodstream isolates: a population-based study, 1998-2007. Journal of Antimicrobial Chemotherapy. 2009;64(1):169-74. Cheong Hs Fau - Kang C-I, Kang Ci Fau - Kwon KT, Kwon Kt Fau - Heo ST, Heo St Fau 20. - Wi YM, Wi Ym Fau - Kim ES, Kim Es Fau - Lee JS, et al. Clinical significance of healthcare-associated infections in community-onset Escherichia coli bacteraemia. (0305-7453 (Print)). St. Sauver JL, Grossardt BR, Yawn BP, Melton LJ, Rocca WA. Use of a Medical Records 21. Linkage System to Enumerate a Dynamic Population Over Time: The Rochester Epidemiology Project. American Journal of Epidemiology. 2011;173(9):1059-68. 22. Kurland LT, Molgaard CA. The patient record in epidemiology. Sci Am. 1981;245(4):54-63. Epub 1981/10/01. Broder I, Higgins MW, Mathews KP, Keller JB. Epidemiology of asthma and allergic 23. rhinitis in a total community, Tecumseh, Michigan: III. Second survey of the community. J Allergy Clin Immunol. 1974;53(3):127-38. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health 24. care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137(10):791-7. Yunginger JW, Reed CE, O'Connell EJ, Melton LJ, 3rd, O'Fallon WM, Silverstein MD. A 25. community-based study of the epidemiology of asthma. Incidence rates, 1964-1983. Am Rev Respir Dis. 1992;146(4):888-94. Epub 1992/10/01.

BMJ Open

DW Bang et al

2		
3	493	26. Silverstein MD, Reed CE, O'Connell EJ, Melton LJ, 3rd, O'Fallon WM, Yunginger JW.
4	494	Long-term survival of a cohort of community residents with asthma. N Engl J Med.
5 6	495	1994;331(23):1537-41. Epub 1994/12/08.
7	496	27. Bauer BA, Reed CE, Yunginger JW, Wollan PC, Silverstein MD. Incidence and
8	497	outcomes of asthma in the elderly. A population-based study in Rochester, Minnesota.
9	498	Chest. 1997;111(2):303-10. Epub 1997/02/01.
10	499	28. Juhn YJ, Qin R, Urm S, Katusic S, Vargas-Chanes D. The influence of neighborhood
11		
12 13	500	environment on the incidence of childhood asthma: a propensity score approach. J Allergy
14	501	Clin Immunol. 2010;125(4):838-43 e2. Epub 2010/03/20.
15	502	29. Juhn YJ, Sauver JS, Katusic S, Vargas D, Weaver A, Yunginger J. The influence of
16	503	neighborhood environment on the incidence of childhood asthma: a multilevel approach.
17	504	Social science & medicine. 2005;60(11):2453-64. Epub 2005/04/09.
18	505	30. Yawn BP, Yunginger JW, Wollan PC, Reed CE, Silverstein MD, Harris AG. Allergic
19 20	506	rhinitis in Rochester, Minnesota residents with asthma: frequency and impact on health
20 21	507	care charges. J Allergy Clin Immunol. 1999;103(1 Pt 1):54-9. Epub 1999/01/20.
22	508	31. Yunginger J, Reed, CE, O'Connell, EJ, Melton, J, O'Fallon, WM, Silverstein, MD. A
23	509	Community-based Study of the Epidemiology of Asthma: Incidence Rates, 1964-1983. Am
24	510	Rev Respir Dis. 1992;146:888-94.
25	511	32. Javed A, Yoo KH, Jacobson RM, Poland GA, Juhn YJ. Characteristics of Chiildren with
26 27	512	Asthma who Achieved Remission of Asthma. Journal of Asthma. 2013;Epub ahead of
28	513	print(doi:10.3109/02770903.2013.787625).
29	514	33. Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public
30	515	Health. 1989;79:340-9.
31	516	34. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait
32 33	517	or intervention. American Journal of Epidemiology. 1974;99(5):325-32.
33 34	518	35. O'Byrne PM, Pedersen S, Carlsson L-G, Radner F, Thoren A, Peterson S, et al. Risks of
35	519	Pneumonia in Patients with Asthma Taking Inhaled Corticosteroids. Am J Respir Crit Care
36	520	Med. 2011;183(5):589-95.
37	521	36. The Center for Disease Control and Prevention. Prevalence of Coronary Heart
38	522	Disease: United States, 2006-2010. MMWR. 2011;60(40):1377-81.
39 40	523	37. Jackson LA, Benson P, Neuzil KM, Grandjean M, Marino JL. Burden of community-
40 41	524	onset Escherichia coli bacteremia in seniors. J Infect Dis. 2005;191(9):1523-9.
42	525	38. Laupland KB GD, Church DL, Ross T, Pitout JD, Incidence, Risk Factors and
43	526	Outcomes of Escherichia coli Blood Stream Infections in a Large Canadian Region. Clin
44	527	Microbiol Infect. 2008;14:1041-7.
45 46	528	39. Sykes A, Edwards MR, Macintyre J, Del Rosario A, Bakhsoliani E, Trujillo-Torralbo
40 47	529	MB, et al. Rhinovirus 16-induced IFN-alpha and IFN-beta are deficient in bronchoalveolar
48	530	lavage cells in asthmatic patients. J Allergy Clin Immunol.129(6):1506-14 e6.
49	531	40. Wang L, Zhao L, Lv J, Yin Q, Liang X, Chu Y, et al. BLT1-dependent Alveolar
50	532	Recruitment of CD4+CD25+ Foxp3+ Regulatory T Cells Is Important for Resolution of Acute
51	533	Lung Injury. Am J Respir Crit Care Med. 2012;186(10):989-98.
52 53	534	41. Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009;39(9):1314-23.
54	535	42. Koch A, Knobloch J, Dammhayn C, Raidl M, Ruppert A, Hag H, et al. Effect of bacterial
55	536	endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics.
56	537	Clin Immunol. 2007;125(2):194-204. Epub 2007/09/22.
57	538	$\frac{1}{100} \frac{1}{100} \frac{1}$
58 59	550	
60		21

DW Bang et al	1
---------------	---

2		
3 4	539	
5 6 7	540	
, 8 9	541	
10 11	542	
12 13 14	543	
15 16	544	
17 18	545	
19 20 21	546	
22 23	547	Table 1. Definition of asthma
24 25 26 27		Patients were considered to have <i>definite</i> asthma if a physician had made a diagnosis of asthma with the first two conditions and/or if each of the following three conditions were present, and they were considered to have <i>probable</i> asthma if only the first two conditions were present:
28 29 30		1. History of cough with wheezing, and/or dyspnea, OR history of cough and/or dyspnea plus wheezing on examination,
31		2. Substantial variability in symptoms from time to time or periods of weeks or more when symptoms were

- Substantial variability in symptoms from time to time or periods of weeks or more when symptoms were absent, and
- Two or more of the following: 3.
- Sleep disturbance by nocturnal cough and wheeze
- Nonsmoker (14 years or older)
- Nasal polyps
- Blood eosinophilia higher than 300/uL •
- Positive wheal and flare skin tests OR elevated serum IgE •
- History of hay fever or infantile eczema OR cough, dyspnea, and wheezing regularly on exposure to an antigen
- Pulmonary function tests showing one FEV₁ or FVC less than 70% predicted and another with at least 20% improvement to an FEV_1 of higher 70% predicted OR methacholine challenge test showing 20% or greater decrease in FEV₁
- Favorable clinical response to bronchodilator (e.g., documented improvement of respiratory symptoms or FEV1 in spirometry after bronchodilator therapy)

Patients were excluded from the study if any of these conditions were present:

- Tracheobronchial foreign body at or about the incidence date
- Hypogammaglobulinemia (IgG less than 2.0 mg/mL) or other immunodeficiency disorder
- Wheezing occurring only in response to anesthesia or medications
- Bullous emphysema or pulmonary fibrosis on chest radiograph
- PiZZ alpha₁-antitrypsin •
- Cystic fibrosis
- Other major chest disease such as juvenile kyphoscoliosis or bronchiectasis FVC forced vital capacity; FEV1, forced expiratory volume in 1 sec.

DW Bang et al

•	Pulmonary function tests that showed FEV_1 to be consistently below 50% predicted or diminished diffusion
	capacity

548	
549	
550	
551	
552	
552	
553	
554	
555	
FFC	Table 2. Second amore reaching and aligned abare starigting of notion to with Each wishing calible ad
220	Table 2. Sociodemographic, and clinical characteristics of patients with <i>Escherichia coli</i> blood
557	stream infection and their matched control subjects
	23
	550 551 552 553

Page 26 of 56

DW Bang et al

Characteristics	Case	Control	Unadjusted OR ^a	p value	
Characteristics	(n= 259)	(n= 259)	(95% CI)		
Age (years)	61±22	61±22	1.14 (0.78, 1.67)	0.497	
Female gender	179 (69%)	179 (69%)	-		
Ethnicity				< 0.001	
Caucasian (non-Hispanic)	222 (86%)	245 (95%)	Referent		
Other	37 (14%)	14 (5%)	4.83 (2.01, 11.64)		
Education status				0.004	
Some high school or less	45 (17%)	21 (8%)	Referent		
High school graduate	95 (37%)	87 (34%)	0.50 (0.27, 0.93)		
Some college or more	110 (42%)	143 (55%)	0.33 (0.18, 0.62)		
Unknown	9 (3%)	8 (3%)	-		
Influenza vaccination 1 year prior to index date	95 (37%)	110 (42%)	0.75 (0.51, 1.10)	0.145	
PPV23 prior to index date	117 (45%)	114 (44%)	1.08 (0.69, 1.68)	0.736	
Food allergy	16 (6%)	6 (2%)	2.67 (1.04, 6.81)	0.040	
Asthma	37 (14%)	16 (6%)	2.75 (1.42, 5.32)	0.003	
High-risk conditions					
Alcohol addiction	17 (7%)	1 (0%)	17.00 (2.26, 127.75)	0.006	
Autoimmune disease ^c	9 (3%)	3 (1%)	3.00 (0.81, 11.08)	0.099	
Chronic obstructive lung disease	12 (5%)	9 (3%)	1.37 (0.55, 3.42)	0.493	
Chronic renal insufficiency	30 (12%)	4 (2%)	9.67 (2.94, 31.73)	< 0.001	
Congestive heart failure	19 (7%)	2 (1%)	18.00 (2.40, 134.84)	0.005	
Coronary artery disease	52 (20%)	40 (15%)	1.46 (0.89, 2.41)	0.136	
Dementia	16 (6%)	7 (3%)	3.25 (1.06, 9.97)	0.039	
Diabetes mellitus	50 (19%)	24 (9%)	2.53 (1.44, 4.43)	0.001	
History of stroke	15 (6%)	10 (4%)	1.71 (0.67, 4.35)	0.257	
Immobilization ^d	10 (4%)	1 (0%)	10.00 (1.28, 78.12)	0.028	
Immunosuppressive therapy	25 (10%)	4 (2%)	8.00 (2.41, 26.57)	0.001	
Malignancy	21 (8%)	12 (5%)	2.00 (0.90, 4.45)	0.090	
Recurrent urinary tract infection	29 (11%)	2 (1%)	14.50 (3.46, 60.77)	< 0.001	
Transplant recipients	8(3%)	0 (0%)	-		
Urinary incontinence	46 (18%)	20 (8%)	2.86 (1.55, 5.25)	0.001	
Other condition ^e	14 (5%)	0 (0%)	-	-	
Smoke				0.058	
No (including ex-smoker)	206 (80%)	222 (86%)	Referent		

BMJ Open

DW Bang et al

2 3		Active	53 (20%)) 37 (14%	(6) 1.59 (0.98, 2.58)	
4 5 6 7 8 9 10 1 12 3 14 5 6 7 18 9 20 1 22 3 24 5 6 7 8 9 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 4 4 5 6 7 8 9 10 1 12 3 4 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 4 5 6 7 8 9 10 1 12 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{l} 5589\\ 555555555555555555555555555555555$	 ^a Odds ratio based on matched analysis f ^b Comorbidity conditions are not mutua ^c Autoimmune disease includes SLE, rhe ^d Immobilization includes hemi/para/qua ^e Other conditions include use of urinary anomaly ^e Other conditions include use of urinary anomaly 	taking into account Ily exclusive eumatoid arthritis, adri-plegia y catheter, device, s	e regression r	nodel for the association bloodstream infection	e diseases d congenital between
57 58		Characteristics	(n= 259)	(n= 259)	Adjusted OR ^a (95% CI)	p value
59 60				25		

DW Bang et al

Asthma charact	eristics	Total	Unadjuste	d OR Adjuste	ed OR
Escherichia co	oli bloodstream in	fection			
Table 4. Assoc	ciation of asthma	control status	and therapy v	with risk of community	y-acq
^a Adjusted variable	s included all variables	included in this ta	able.		
Urinary incon	tinence	46 (18%)	20 (8%)	2.57 (1.05, 6.26)	0.0
	nary tract infection	29 (11%)	2 (1%)	13.54 (2.42, 75.65)	0.0
Malignancy		21 (8%)	12 (5%)	2.18 (0.59, 8.11)	0.2
	essive therapy	25 (10%)	4 (2%)	8.51 (1.32, 54.96)	0.0
Immobilizatio		10 (4%)	1 (0%)	39.86 (2.30, 690.42)	0.0
Diabetes mell	itus	50 (19%)	24 (9%)	2.39 (0.97, 5.87)	0.0
Dementia	-	16 (6%)	7 (3%)	4.14 (0.96, 17.96)	0.0
Coronary arte		52 (20%)	40 (15%)	0.81 (0.37, 1.77)	0.5
Congestive he	-	19 (7%)	2 (1%)	9.86 (0.93, 104.59)	0.0
Chronic renal		30 (12%)	4 (2%)	4.76 (1.16, 19.59)	0.0
Autoimmune		9 (3%)	3 (1%)	1.79 (0.23, 13.72)	0.5
Alcohol addic		17 (7%)	1 (0%)	32.31 (1.91, 546.18)	0.0
High-risk condi		(-•/•)	- (/ 0)		0.
Active smoking		53 (20%)	37 (14%)	1.31 (0.69, 2.47)	0.4
Asthma		37 (14%)	16 (6%)	2.74 (1.11, 6.76)	0.0
Food allergy		16 (6%)	6 (2%)	3.51 (0.94, 13.11)	0.0
to index date	iacion i year prior	95 (37%)	110 (42%)	0.58 (0.33, 1.02)	0.0
	nation 1 year prior	9 (J70)	0 (370)	-	0.0
Some college Unknown		110 (42%) 9 (3%)	143 (55%) 8 (3%)	0.65 (0.28, 1.50)	
High school g		95 (37%)	· · · ·		
-			21 (8%) 87 (34%)	0.89 (0.37, 2.14)	
Some high scl		45 (17%)	21 (8%)	Referent	0.0
Other Education status		37 (14%)	14 (5%)	5.90 (1.85, 18.84)	0.
Caucasian (no	n-Hispanic)	222 (86%)	245 (95%)	Referent	
с · /	u II: uu · ``	222 (0 (0())	245 (0501)		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

DW Bang et al

	(n=518)	(95% CI), p-value	(95% CI), p-value
Inhaled corticosteroid therapy (ICS)		$p = 0.009^{b}$	$p = 0.079^{b}$
No asthma	465 (90%)	Referent	Referent
Asthma without ICS	35 (7%)	1.90 (0.88, 4.09)	1.99 (0.67, 5.94)
Asthma with ICS	18 (3%)	7.00 (1.59, 30.80)	5.33 (0.90, 31.66)
Asthma status ^c		$p = 0.005^{b}$	$p = 0.067^{b}$
No asthma	465 (90%)	Referent	Referent
Remission or inactive asthma	17 (3%)	1.25 (0.45, 3.50)	1.25 (0.25, 6.30)
Active or current asthma	36 (7%)	4.37 (1.80, 10.62)	3.89 (1.23, 12.28)

^a Adjusted variables included all factors reported in the multivariable model (see Table 3) except for dichotomous asthma status

^b P-value for overall comparison

^c Active or current asthma was defined as the presence of asthma-related events including asthma symptoms, or use of asthma medications, and outpatient/emergency department/hospitalization for asthma within one year prior to index date of E coli BSI; Remission of asthma was defined as the absence of asthma-related events > 3 years prior to index date; Inactive (not current) asthma was defined as the presence of asthma-related events within 1-3 years prior to index date.

2
3
4
5
4 5 6
7
0
8
9
10
11
40
12
13
14
15
16
10
17
9 10 11 12 13 14 15 16 17 18 19 20
19
20
20
21
22
23 24 25
24
25
20
ZD
27 28
28
29
29
30
31
32
33
32 33 34 35
34
35
36
37
36 37 38
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

DW Bang et al

1 TITLE PAGE

3

4

5

8

2 Original Article

Asthma and Risk of Non-Respiratory Tract Infection: A Population-Based Case Control Study

6 Duk Won Bang, MD^{a,b}, Hyeon J. Yang, MD^c, Eell Ryoo, MD^{a,d}, Majdi N. Al-Hasan, MD^e,

7 Brian Lahr, MS,^f Larry M. Baddour, MD^g, Barbara P. Yawn, MD^h, and Young J. Juhn, MD^{a,i}

⁹ ^aDepartment of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN

10 ^bDepartment of Internal Medicine, Soonchunhyang University Hospital, Seoul, South Korea

^cDepartment of Pediatrics, Soonchunhyang University Hospital, Seoul, South Korea

12 ^dDepartment of Pediatrics, Gil Hospital, Gachon University School of Medicine, Inchon, South

13 Korea

^eDepartment of Medicine, University of Kentucky Medical Center, Lexington, KY

15 ^fDivision of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN

16 ^gDepartment of Medicine, Mayo Clinic, Rochester, MN

17 ^hDepartment of Research, Olmsted Medical Center, Rochester, MN

18 ⁱDepartment of Internal Medicine, Mayo Clinic, Rochester, MN

5 19 Corresponding author

20 Young J. Juhn, M.D., M.P.H

21 Division of Community Pediatric and Adolescent Medicine

22 Department of Pediatric and Adolescent Medicine/Internal Medicine

23 Mayo Clinic

1		DW Bang et al
2 3 4	24	200 1 st Street SW
5 6	25	Rochester, MN 55905
7 8 9	26	TEL: 507-538-1642
10 11	27	FAX: 507-284-9744
12 13 14	28	E-mail: juhn.young@mayo.edu
15 16	29	
17 18	30	Funding: This work was supported by the Clinician Scholarly Award from the Mayo foundation
19 20 21	31	and a grant from the National Institute of Allergy and Infectious Diseases (R21 AI101277). It
22 23	32	was also supported by the Rochester Epidemiology Project (R01-AG34676) from the National
24 25 26	33	Institute on Aging.
20 27 28	34	
29 30	35	Conflict of interest: The study investigators have nothing to disclose that poses a conflict of
31 32 33	36	interest.
34 35	37	
36 37	38	We reviewed the STROBE statement and addressed all items in that checklist and are
38 39 40	39	submitting the STROBE statement with the revised manuscript.
41 42	40	
43 44 45	41	Key Words: Asthma, Risk, Epidemiology, Community-acquired infections, Escherichia Coli,
45 46 47	42	Blood stream infection, genitourinary, and gastrointestinal tract
48 49	43	Abbreviations: BSI: blood stream infection, E.Coli: Escherichia Coli, TLR : Toll-like Receptor,
50 51 52	44	ICS : inhaled corticosteroid, PPV23: 23-valent pneumococcal polysaccharide vaccine
52 53 54 55 56 57 58	45	Word count: 2993

DW Bang et al

46 Article summary

47 1. Article focus: We addressed the following question in this study.

48 - Given the association between asthma and airway-related infection, is asthma also associated

49 with non-airway-related serious infections such as *Escherichia coli* blood stream infection?

50 2. Key messages

51 - Individuals with asthma are at a significantly increased risk of non-airway-related infection,

52 including community-acquired *E. coli* blood stream infection.

53 - The impact of asthma on risks of microbial infections may go beyond airways.

- Clinicians and patients should be aware of the association and recognize the risk of subsequent

55 infection.

56 3. Strength and limitations

57 - This is the first population-based case-control study using predetermined criteria for asthma

58 status and community-acquired *Escherichia coli* blood stream infection.

59 - The main limitation of the study is inherent limitations as a retrospective study and the study

60 subjects were predominantly white.

62 Contributors

BDW collected data, interpreted the results, and drafted the manuscript; HJY participated in the
study design, interpreted the results and reviewed the manuscript; ER collected data, interpreted
the results, and reviewed manuscript; MNA assembled the original dataset for the E. coli BSI
study, collected the original data, interpreted the results, and reviewed the manuscript; LMB
participated in the study design, interpreted the results, and reviewed the manuscript; BPY
participated in the study design, interpreted the results, and reviewed manuscript; and YJJ

1 2		DW Bang et al
3 4	69	participated in the study design, performed data analysis, interpreted the results, and drafted the
5 6 7	70	manuscript. BDW, ER, and YJJ had full access to data. All authors reviewed and approved the
8 9	71	paper.
10 11	72	There will be no additional data available.
12 13 14	73	
15 16	74	
17 18 19	75	
20 21	76	
22 23	77	
24 25 26	78	
27 28	79	
29 30 31	80	
32 33	81	
34 35 36	82	
37 38	83	
39 40 41	84	
42 43	85	
44 45	86 87	
46 47 48	88	
49 50	89	
51 52 53	90	
54 55	91	
56 57 58	. —	
59 60		4

DW Bang et al

1
2
3
4
5
6
0
1
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 31\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 32\\ 33\\ 34\\ 35\\ 6\\ 37\\ 8\\ 39\\ 35\\ 36\\ 37\\ 8\\ 39\\ 30\\ 35\\ 35\\ 36\\ 37\\ 8\\ 39\\ 35\\ 36\\ 37\\ 38\\ 39\\ 35\\ 36\\ 37\\ 38\\ 39\\ 35\\ 36\\ 37\\ 38\\ 39\\ 35\\ 36\\ 37\\ 38\\ 39\\ 30\\ 35\\ 36\\ 37\\ 38\\ 39\\ 30\\ 36\\ 37\\ 38\\ 39\\ 30\\ 36\\ 37\\ 38\\ 39\\ 30\\ 36\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
24
24
25
26
27
28
29
20
30
31
32
33
34
35
26
30
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

92	Abstract:
93	Objectives: Asthmatics have increased risks of airway-related infections. Little is known about
94	whether this is true for non-airway-related serious infections such as Escherichia coli blood
95	stream infection (BSI). We assessed whether asthma is associated with a risk of developing
96	community-acquired E. coli BSI.
97	Design: The study was designed as a population-based retrospective case-control study.
98	Setting: This population-based study was conducted in Olmsted County, Minnesota.
99	Participants: The study included 259 all eligible community-acquired E. coli BSI cases in
100	Olmsted County, MN between 1998 and 2007 and 259 birthday-, gender-, and residency-
101	matched controls.
102	Primary and secondary outcome measures: Only community-acquired E. coli BSI cases as the
103	primary outcome was included. Asthma status as an exposure was ascertained by predetermined
104	criteria. An adjusted odds ratio (OR) and 95% confidence interval (CI) for the association
105	between asthma and risk of community-acquired <i>E. coli</i> BSI was calculated using conditional
106	logistic regression.
107	Results: Of 259 eligible cases, 179 (69 %) were female and mean age was 61±22 years. Thirty-
108	seven of 259 cases (14%) and 16 of 259 controls (6%) had a prior history of asthma (adjusted
109	OR: 2.74; 95% CI: 1.11-6.76; p=0.029). The population attributable risk of asthma for
110	community-acquired E. coli BSI was 9%. Although not statistically significant, there was a
111	borderline association between having a history of food allergy and increased risk of community-
112	acquired <i>E. coli</i> BSI (6% vs 2%; adjusted OR: 3.51; 95% CI: 0.94-13.11, p=0.062).
113	Conclusions: Based on the findings of the current population-based, case-control investigation, a
114	history of asthma may be associated with risk of community-acquired E. coli BSI. The impact of

BMJ Open

1		DW Bang et al
2 3 4	115	asthma on risk of microbial infections may go beyond airways.
5 6 7	116	
7 8 9	117	Abstract Word Count: 246
10 11	118	INTRODUCTION
12 13 14	119	Asthma is the most common chronic illness in childhood and is a major cause of
15 16	120	morbidity in adults, affecting 4-17% of children and 7.7% of adults in the US.(1-3)] About 300
17 18 19	121	million people globally are estimated to be affected by asthma.(4)
20 21	122	Previous studies showed increased risks of microbial infections among individuals with
22 23	123	asthma(5-10) and the population attributable risk for asthma of serious pneumococcal disease
24 25 26	124	was 11-17%.(6, 10) Impaired innate and adaptive immune functions among asthmatics have
27 28	125	been suggested for potential underlying mechanisms.(11-18) These study results are based on
29 30	126	microbial infections of the airways. However, little is known about whether asthma status is
31 32 33	127	associated with risk of non-airway-related bacterial infections such as community-acquired
34 35	128	Escherichia coli blood stream infection (BSI).
36 37 28	129	Addressing this question should provide an important insight into the nature of the impact
38 39 40	130	of asthma status on susceptibility to microbial infection. Specifically, it will improve our
41 42	131	understanding on whether the impact of asthma status on susceptibility to infection goes beyond
43 44 45	132	airways. In investigating this question, community-acquired E. coli BSI is suitable because it is
46 47	133	not an airway-related infection but genitourinary tract/gastrointestinal origin, E. coli is a gram-
48 49	134	negative bacterium with Toll-like Receptor (TLR)-4-mediated signal transduction for innate
50 51 52	135	immunity, and <i>E. coli</i> is the most common cause of community-acquired BSI.(19) Up to 30% of
53 54 55 56	136	individuals who developed community-acquired <i>E. coli</i> BSI did not have known risk
57 58 59		

DW	Bang	ot	_1
DW	Bang	eι	al

2	
3	137
4	107
5 6	138
0 7	100
8	139
9	157
10	140
11	140
12	4.4.4
13	141
14	
15 16	142
17	
18	143
19	
20	144
21	
22	145
23	110
24	146
25	140
26 27	147
28	147
29	140
30	148
31	
32	149
33	
34	150
35	
36 37	151
37 38	
39	152
40	
41	153
42	155
43	154
44	154
45	1 2 2
46 47	155
47 48	
49	156
50	
51	157
52	
53	158
54	
55 56	159
56 57	
57 58	
59	
60	

factors,[(20)] suggesting that unrecognized risk factors exist that are associated with the

development of community-acquired E. coli BSI.

Investigating the relationship between asthma and non-airway-related serious bacterial

infections will advance our understanding on the extent to which asthma impacts susceptibility to

-1 microbial infections and whether asthma could be an unrecognized risk factor for non-airway-

related bacterial infections.

We hypothesize that individuals with asthma have an increased risk of community-

acquired E. coli BSI, as compared to those without asthma. To test this hypothesis, we conducted ntrol st.

a population-based retrospective case-control study. Page 37 of 56

DW Bang et al

BMJ Open

1	
2	
3	
4	
5	
5	
6	
7	
8	
à	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
-345678910123415171892222222222233333333333333333333333333	
24	
25	
20	
26	
27	
28	
29	
20	
30	
31	
32 33 34 35 36 37 38 39	
33	
34	
25	
30	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	

160 161 162 163 164 **METHODS** 165 The study was approved by the Institutional Review Boards of both Mayo Clinic and 166 Olmsted Medical Center. This study was designed as a population-based case-control study. 167 Study population and setting 168 Olmsted County, Minnesota is an excellent setting to conduct a population-based 169 epidemiologic study such as this because medical care is virtually self-contained within the 170 community (nearly all Olmsted County residents receive medical cares from two medical centers 171 in the community). The population characteristics of Olmsted County residents are similar to 172 those of non-Hispanic white.(21) If one grants the authorization for using medical record for 173 research (almost 95% of Olmsted County residents), each patient is assigned a unique identifier 174 under the auspices of the Rochester Epidemiology Project (REP).(22) Using REP resources, we 175 previously demonstrated that incidence rates of asthma for this community are similar to other 176 communities. The annual incidence rate of asthma in Rochester was 238 cases per 100,000 177 persons, which is comparable to those in other communities such as Tecumseh, Michigan 178 (250/100,000).(23)

179 Study subjects: Case ascertainment

To test our study hypothesis, we utilized a population-based incidence parent study,
which previously identified the community-acquired cases to study antimicrobial resistance
trends of *E. coli* BSI in the community. Details of the case ascertainment have been described

DW Bang et al

183	previously.(19) Briefly, using the microbiology databases at Mayo Clinic Rochester and Olmsted
184	Medical Center, all eligible children and adults with monomicrobial <i>E. coli</i> BSI (n=274) among
185	Olmsted County residents from January 1, 1998 to December 31, 2007 (i.e., a population-based
186	all incident cases of E. coli BSI) were identified based on the criteria suggested by Freidman et
187	al.(24) As E. coli BSI is required for inpatient parental treatment, community-acquired E. coli
188	BSI was defined by isolation of <i>E. coli</i> from blood cultures at the time of hospital admission or
189	within 48 hours after hospital admission for patients who did not fit criteria for health care-
190	associated infection according to the Freidman's criteria.(24) Medical records of all subjects
191	were reviewed by investigators of the previous study (MNA) to confirm the diagnosis of
192	community-acquired E. coli BSI, assess clinical features, and determine the eligibility. Only
193	community-acquired <i>E. coli</i> BSI was included because nosocomial and health care-associated <i>E.</i>
194	coli BSI are unsuitable to address the aim of the present study (clinically, they are a high-risk
195	population for <i>E. coli</i> BSI and not representative of the study population). The index date of BSI
196	was defined as the date when blood cultures that eventually grew E. coli were obtained.
197	Exclusion criteria for cases (and controls) included: 1) polymicrobial BSI caused by more than
198	one microorganism, 2) blood cultures acquired at autopsy, 3) nosocomial and health care-
199	associated E. coli BSI, 4) non-Olmsted County residency at the time of index date of BSI, 5) no
200	research authorization for using medical record for research, and 6) health conditions making
201	ascertainment of asthma difficult listed in Table 1.
202	Selection of control subjects

203 Control subjects were randomly selected with 1:1 matching from Olmsted County
204 residents who had not had a history of *E. coli* BSI at the end of the study period. Briefly, a list of
205 potential control subjects who had received medical care from either Mayo Clinic or Olmsted

BMJ Open

DW Bang et al

Medical Center and who met the matching criteria was generated and randomly selected from the REP database for the present study. The matching criteria included: 1) gender, 2) birth date (within six months for those <18 years of age and within one year for those >18 years of age). 3) the same clinic registration year as matched case (within one year), and 4) closest clinic visit to index date of matched case within one year. The index date for control subjects was defined as the closest (within one year) clinic visit date to index date of BSI for their corresponding matched case. Based on the number of cases and controls enrolled in this present study (259 pair), assuming 8% of asthma prevalence among controls, this present study had 80% power to detect an effect size of 2.27 of odds ratio (16.5% of asthma in cases). This effect size was smaller than the reported effect sizes for the association between asthma and risk of microbial infection (OR: 2.4-6.7) suggesting adequate statistical power to address the study aim.(6, 10)

217 Exposure ascertainment (asthma status)

For determining asthma status of all cases and controls, we conducted comprehensive medical record reviews to apply predetermined criteria for asthma as performed in our previous work.(5, 6) The criteria are delineated in Table 1. These criteria have been extensively used in research for asthma epidemiology and were found to have high reliability.(25-30) We included both definite and probable asthma according to the criteria prior to the index date of BSI cases because most probable asthmatics become definite over time (6, 31) The incidence dates (the first date when one met the criteria for asthma) for all asthmatic patients were determined; thus, we were able to discern the temporal relationship between asthma status (exposure) and E coli BSI (outcome). The risk of *E. coli* BSI was assessed in relation to the current asthma status(32): remission (no asthma symptoms, no asthma-related visits, or no asthma medications for at least three years prior to index date); active or current asthma (presence of clinical symptoms, asthma-

DW Bang et al

related visits, or asthma medications within one year prior to index date); and inactive (not
current) asthma (presence of asthma symptoms, asthma-related visits, or asthma medications
within 1-3 years prior to index date).

232 Other variables

Pertinent covariates and confounders were collected from medical records: sociodemographic variables (age, gender, ethnicity, and educational status), asthma medications including inhaled and systemic corticosteroids, family history of asthma, atopic status based on sensitization against aeroallergens and food allergens, smoking status (either active or passive exposure to tobacco smoke), vaccination status, and co-morbid conditions at the time of index date as listed in Table 2. The period of data collection was from October 1, 2011 to May 30, 2012.

240 Statistical analysis

Formal comparison of asthma and other suspected risk factors between matched cases and controls was performed using conditional logistic regression, with community-acquired E. *coli* BSI as the target of prediction. All factors were analyzed for a univariate association with BSI, and any variables meeting the Greenland entry criteria (P < 0.2) were carried forward into a final multivariable model.(33)] Odds ratios (OR) from univariate (unadjusted) and multivariable (adjusted) models are reported to express the magnitude of association in terms of the likelihood of being a case. We calculated the population attributable risk percentage (PAR%) of asthma for community-acquired E. coli BSI using the formula established by Miettinen.(34) Statistical significance was tested at a two-sided alpha error of 0.05. All analyses were carried out with the statistical software package SAS, version 9.2 (SAS Institute, Cary, NC, USA).

Page 41 of 56

DW Bang et al

BMJ Open

1		DW Bang et al
$\begin{array}{c}2&3&4&5&6&7\\8&9&10&11&2&3&4&5&6\\1&1&1&1&1&1&1&1&2\\2&2&2&2&2&2&2&2&2&2&3&3&3&3&3&3&3&4&4&4&4$	252	
	253	
	254	
	255	
	256	RESULTS
	257	Study subjects
	258	Of the 274 patients who were identified in the original study, 259 were eligible for the present
	259	study. Fifteen patients were excluded; five for consistent FEV1 < 50%, two for restrictive lung
	260	disease, two for significant kyphoscoliosis, two for bronchiectasis, one for cystic fibrosis, one for
	261	pulmonary fibrosis, and two due to non-Olmsted County residency. Of the eligible 259 cases,
	262	179 (69%) were female, 249 (96%) were 18 years of age or older (age mean±standard deviation,
	263	61±22 years), and 222 (86%) were Caucasian. The characteristics of the cases and their matched
	264	controls, and the individual associations with community-acquired E. coli BSI, are summarized
	265	in Table 2. There were only 10 asthmatics on moderate- or high-dose inhaled corticosteroid (ICS)
	266	and two asthmatics on systemic corticosteroid at the time of the index date. Comparing subjects
	267	with asthma versus those without, there was no significant difference in the proportions, who had
	268	received influenza vaccine (40% vs. 40%, p=0.99) or PPV23 (49% vs. 44%, p=0.49) within one
	269	year prior to index date.
	270	Association between asthma and risk of community-acquired <i>E. coli</i> BSI
	271	Thirty-seven of 259 (14%) cases had a history of asthma prior to the index date of community-
	272	acquired E. coli BSI, compared with 16 of 259 (6%) controls (unadjusted OR: 2.75; 95% CI:
	273	1.42-5.32; p=0.003). Of the 37 case subjects with asthma, 33 (89%) had definite asthma and 4
	274	(11%) had probable asthma. Of the 16 controls with asthma, 12 (75%) had definite asthma and 4
58 59		12
60		

DW Bang et al

2			
3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 18 9 21 22 3 22 22 22 22 23 3 3 3 3 3 3 3 3	275	(25%) had probable asthma. Among all 53 asthmatics, 18 were on ICS therapy at the index date	
	276	(8 on low-dose ICS and 10 on moderate to high-dose ICS therapy). The effect of asthma on risk	
	277	of community-acquired <i>E. coli</i> BSI, independent of other risk factors, is summarized in Table 3.	
	278	Subjects with a history of asthma by predetermined criteria for asthma in Table 1 had a nearly 3-	
	279	fold higher risk of developing community-acquired E. coli BSI compared to those without	
	280	asthma, controlling for all potential confounding factors (adjusted OR: 2.74; 95% CI: 1.11-6.76;	
	281	p=0.029). The PAR% of asthma by predetermined criteria for asthma in Table 1 for the risk of <i>E</i> .	
	282	coli BSI was 9%. The <i>p</i> -values for testing a significant interaction between asthma and	
	283	categorized age were as follows: $p=0.285$ for age cutoff of 65 years (i.e., ≥ 65 vs. <65 years),	
	284	p=0.958 for age cutoff of 40 years (i.e., \geq 40 vs. <40 years), and p=0.417 for age cutoffs of 40	
	285	years and 65 years (i.e., <40, 40-65, vs. >65 years). As a result, we have no evidence of a	
	286	differential asthma effect across age strata. Additional characteristics of asthma were also	
	287	evaluated for an association with risk of community-acquired E. coli BSI (see Table 4). Adjusted	
	288	for other factors, active asthma was associated with increased risk of E. coli BSI but for	
	289	asthmatics on ICS therapy compared to non-asthmatics, but the overall 3-level effect was not	
	290	statistically significant (p=0.079).	
	291	Other variables and <i>E. coli</i> BSI	
	292	Several of the high-risk conditions, as well as non-Caucasian ethnicity, were independently	
	293	associated with increased risk of community-acquired E. coli BSI (see Tables 2 and 3). A history	
	294	of food allergy was found in 16 (6%) of 259 cases as compared with 6 (2%) of 259 controls	
	295	(adjusted OR: 3.51; 95% CI: 0.94-13.11; p=0.062). Neither allergic rhinitis (p=0.82) nor atopic	
	296	dermatitis (p=0.87) was found to be significantly associated with community-acquired <i>E. coli</i>	
55 56	297	BSI.	
57 58			
59 60		13	

Page 43 of 56

1

59

60

DW Bang et al

BMJ Open

1 2		
3 4	298	
5 6 7	299	
7 8 9	300	
10 11	301	
12 13 14	302	
15 16	303	DISCUSSION
17 18	304	To our knowledge, this is the first population-based, case-control study that demonstrated an
19 20 21	305	association between asthma and risk of non-respiratory bacterial infection such as community-
22 23	306	acquired E. coli BSI. This association was independent of other risk factors including age,
24 25 26	307	gender, follow-up duration, ethnicity, educational level, and comorbid conditions (adjusted OR:
26 27 28	308	2.74; 95% CI: 1.11-6.76; p=0.029). Analyses by different age cut-offs showed that the results
29 30	309	were not affected by age effect (e.g., younger vs. older than 40 years of age). Given either the
31 32 33	310	previously-reported non association (hazard ratio, HR: 1.29, 95%CI: 0.53-3.12) or a protective
34 35	311	effect (HR: 0.52, 95%CI:0.36-0.76) of ICS therapy on risk of pneumonia in asthmatics(35) and a
36 37	312	small number of asthmatics with moderate or high-dose ICS in our study (10 of 53, 19%), we
38 39 40	313	suspect that active or current asthma (or collectively those given ICS therapy) might be related to
41 42	314	risk of community-acquired E. coli BSI instead of ICS alone. There were only 2 asthmatics on
43 44 45	315	systemic corticosteroid therapy at the time of the index date; therefore, exposure to systemic
45 46 47	316	corticosteroid therapy was unlikely to account for the observed association. We believe that
48 49	317	susceptibility bias (e.g., covariate imbalance at baseline) is unlikely to account for the association
50 51 52	318	found in our study given the full adjustment for potential confounders. One concern could be
53 54	319	detection bias stemming from a situation where exposure status (asthma status) systematically
55 56 57 58	320	affects detection of outcomes. However, given E. coli BSI as a life-threatening condition, this is
50		

DW Bang et al

2		
3 4	321	unlikely and also there was no significant difference in symptom duration from BSI-related
5 6 7	322	symptom to index date between asthma and non-asthma in cases (4.7±5.5 vs 5.2±5.5 days,
7 8 9	323	p=0.61). Since detection of asthma depends on follow-up duration from registration to index
10 11	324	date of community-acquired E. coli BSI, we designed our study to ensure that duration was
12 13	325	similar between cases and controls. Asthma prevalence in controls in our study was 6%, which is
14 15 16	326	similar to that in adults (7%) in the United States (5.5% for males and 9.7% for females).(36)
17 18	327	Also, the prevalence of other common chronic condition such as coronary heart disease in our
19 20 21	328	study (15%) was similar to the national average (7.1% for adults aged 45-64 years and 19.8% for
21 22 23	329	adults aged ≥ 65 years) suggesting that our control group may reasonably represent a general
24 25	330	population of adults in the United States.(3) There were no significant differences in influenza
	004	
26 27 28	331	and PPV23 vaccination rates between cases and controls, which may imply similar access to
27 28 29 30	331 332	and $PPV23$ vaccination rates between cases and controls, which may imply similar access to health care services. Also, food allergy approached to statistical significant association with risk
27 28 29 30 31 32		
27 28 29 30 31	332	health care services. Also, food allergy approached to statistical significant association with risk
27 28 29 30 31 32 33 34 35 36 37	332 333	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater
27 28 29 30 31 32 33 34 35 36 37 38 39	332 333 334	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	332 333 334 335	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 332 333 334 335 336 	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken together, our study results suggest that asthma status is independently associated with risk of
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 5 46	 332 333 334 335 336 337 	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken together, our study results suggest that asthma status is independently associated with risk of community-acquired <i>E. coli</i> BSI.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	 332 333 334 335 336 337 338 	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken together, our study results suggest that asthma status is independently associated with risk of community-acquired <i>E. coli</i> BSI. There are only a few previous studies, which assessed the incidence of <i>E. coli</i> BSI and
$\begin{array}{c} 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ \end{array}$	 332 333 334 335 336 337 338 339 	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken together, our study results suggest that asthma status is independently associated with risk of community-acquired <i>E. coli</i> BSI. There are only a few previous studies, which assessed the incidence of <i>E. coli</i> BSI and risk factors associated with its development, including asthma. One study showed a higher risk
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50	 332 333 334 335 336 337 338 339 340 	health care services. Also, food allergy approached to statistical significant association with risk of E coli BSI but other atopic conditions were not. This is probably due to greater misclassification bias of ascertainment of allergic rhinitis and atopic dermatitis by ICD-9 code compared to asthma status and food allergy by predetermined criteria in our study. Taken together, our study results suggest that asthma status is independently associated with risk of community-acquired <i>E. coli</i> BSI. There are only a few previous studies, which assessed the incidence of <i>E. coli</i> BSI and risk factors associated with its development, including asthma. One study showed a higher risk of community-acquired <i>E. coli</i> BSI in asthmatics compared to non-asthmatics among those over

Page 45 of 56

BMJ Open

DW Bang et al

relationship between asthma and risk of community-acquired *E. coli* BSI, utilization of
administrative data from health care organizations or case reports, ascertainment of *E. coli* BSI
cases and asthma based on ICD-9 code, inclusion of only elderly patients aged over 65 years,(37)
and no concurrent control group.(38) Thus, our study is the first population-based case-control
study that demonstrated a relationship between asthma and risk of community-acquired *E. coli*BSI. Several studies showed increased risks of microbial infections in asthmatics[(5-7, 10, 11)
but these studies only addressed the relationship between asthma and airway infections.

The mechanisms underlying the apparent association between asthma and risk of community-acquired *E. coli* BSI are unknown. Whether previously reported impaired innate immune factors that may predispose to infections due to viruses(13, 39, 40) and other bacteria are operative in community-acquired E. coli BSI is undefined. Recently, Habibzay et al reported impaired innate immunity against pneumococci through impaired TLR-receptor signal transduction by house dust mite allergic sensitization resulting in reduced neutrophil recruitment and increased risk of pneumococcal infection in the airways.(11) It is worth investigating whether allergic sensitization can induce similar impairment of innate immunity through TLR-4 for gram-negative bacteria in genitourinary or gastrointestinal tracts in asthmatics. Also, an adaptive immune response to gram-negative bacteria might be altered in asthmatics, (41) which may affect susceptibility to gram-negative bacterial infection. For example, Koch et al reported impaired Type 1 helper T cell (Th1) response (interleukin-12-induced interferon- γ release from T lymphocytes) to endotoxin from Salmonella enteritidis in asthmatics.(42) Further studies are needed to address our study findings.

53365The main strengths of our study are a population-based study design and include the5455366epidemiologic merits of self-contained health care environment with comprehensive medical

DW Bang et al

2 3 4	367	record system for research. We identified population-based all incident community-acquired E.
4 5 6	368	<i>coli</i> BSI cases based on the Freidman criteria. We ascertained asthma status by applying
7	300	con BSI cases based on the Freidman criteria. We ascertained astima status by apprying
8 9	369	predetermined criteria independent of a physician diagnosis of asthma or ICD-9 code. Also, our
10 11	370	study has inherent limitations as a retrospective study. We could not obtain detail information on
12 13 14	371	certain variables such as atopic sensitization data or smoking history (e.g., duration or the
15 16	372	number of cigarettes a day) but we assumed this data to be missing at random (i.e., it is subject to
17 18	373	non-differential misclassification bias for comparison groups of interest). Although our criteria
19 20 21	374	for asthma was based on medical record review, given the absence of gold standard for asthma,
22 23	375	the retrospective investigation for feasibility (due to infrequent <i>E coli</i> BSI), and the extensive use
24 25	376	of the criteria in previous asthma research, we believe the criteria is unlikely to result in a
26 27 28	377	significant bias affecting interpretation of the results. Our study finding that asthma prevalence
29 30	378	among controls was similar to that at the national level should mitigate this concern. Our study
31 32 33	379	subjects were predominantly white which might limit generalizability of our results to other
34 35	380	ethnic groups. Our study subjects were relatively an older population affected by many
36 37	381	comorbid conditions, which might confound the study results. Therefore, we adjusted the
38 39 40	382	association between asthma and risk of E coli BSI for each comorbid condition individually in
40 41 42	383	our multivariate model. Since the prevalence of comorbid conditions is related to age, we
43 44	384	examined the effect of the interaction between age and asthma. We found that the main results
45 46 47	385	on the association between asthma and risk of <i>E coli</i> BSI did not appear to be significantly
48 49	386	affected by various cutoffs of age suggesting the results did not differ by age group (younger vs.
50 51	387	older group).
52 53		
54		

BMJ Open

DW	Bang	et	al
----	------	----	----

In conclusion, asthmatics might be at an increased risk of non-respiratory tract bacterial 6 infections, including community-acquired E. coli BSI. The mechanisms responsible for this association are yet to be defined while additional investigations replicate our study findings. Acknowledgement We thank the staff of the Pediatric Asthma Epidemiology Research Unit for their comments and suggestions. We also thank Elizabeth Krusemark for administrative assistance. This work was supported by the Clinician Scholarly Award from the Mayo foundation and by the Rochester Epidemiology Project (R01-AG34676) from the National Institute on Aging. The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

- 2 3 411 5
- 6 412 7
- 8 413 9
- 10 11 414
- 12 13 415

418

419

- 14
- 15 416 16
- 17 18 19

1

- 20 21
- 22 23

24 25 420 **References**

- 26
 27 421 1. Eder W, and Ege MJ, and von Mutius E. The Asthma Epidemic. New England Journal
 28 422 of Medicine. 2006;355(21 %R doi:10.1056/NEJMra054308):2226-35.
 29 423 2 Barnott SB TA N Costs of asthma in the United States: 2002-2007 I Allergy Clin
- 423 2. Barnett SB, TA. N. Costs of asthma in the United States: 2002-2007. J Allergy Clin
 424 Immunol 2011;127(1):145-52.
- 32 425 3. The Center for Disease Control and Prevention. Vital signs: asthma prevalence,
 33 426 disease characteristics, and self-management education --- United States, 2001--2009.
 34 427 MMWR Morb Mortal Wkly Rep. 2011;60(17):547-52. Epub 2011/05/06.
- 428
 428
 428
 429
 429
 429
 429
 429
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 11703700;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):017 02: 1170370;
 42011,00(17):0170370;
 42011,00(17):0170370;
 42011,00(17):0170370;
 42011,00(17):0170370;
 42011,00(17):0170370;
 42011,00
- 430 5. Capili CR, Hettinger A, Rigelman-Hedberg N, Fink L, Boyce T, Lahr B, et al. Increased
 431 risk of pertussis in patients with asthma. J Allergy Clin Immunol. 2012;129(4):957-63.
 432 Epub 2011/12/31.
- 41
 433
 433
 434
 434
 435
 435
 434
 435
 435
 435
 434
 435
 435
 435
 435
 436
 446
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 447
 448
 448
 448
 448
 448
 448
 448
 448
 <
- 45 436 7. Jung JA, Kita H, Yawn BP, Boyce TG, Yoo KH, McGree ME, et al. Increased risk of
 46 437 serious pneumococcal disease in patients with atopic conditions other than asthma. J
 47 438 Allergy Clin Immunol. 2010;125(1):217-21.
- 49 439 8. Klemets P, Lyytikainen O, Ruutu P, Ollgren J, Kaijalainen T, Leinonen M, et al. Risk of
 50 440 invasive pneumococcal infections among working age adults with asthma. Thorax.
 51 441 2010;65(8):698-702. Epub 2010/08/06.
- Pilishvili T, Zell ER, Farley MM, Schaffner W, Lynfield R, Nyquist AC, et al. Risk
 factors for invasive pneumococcal disease in children in the era of conjugate vaccine use.
 Pediatrics. 2010;126(1):e9-17.
- 56 445 10. Talbot TR, Hartert TV, Mitchel E, Halasa NB, Arbogast PG, Poehling KA, et al. Asthma
 57 446 as a risk factor for invasive pneumococcal disease. N Engl J Med. 2005;352(20):2082-90.
- 59
- 60

BMJ Open

DW Bang et al

11. Habibzay M, Saldana JI, Goulding J, Lloyd CM, Hussell T. Altered regulation of Toll-like receptor responses impairs antibacterial immunity in the allergic lung. Mucosal Immunol. 2012;5(5):524-34. Epub 2012/05/03. Jung J, Kita H, Nahm M, Tsigrelis C, Baddour L, Jacobson R, et al. Influence of asthma 12. status on serotype specific antibody pneumococcal antibody levels. Postraduate Medicine. 2010:122(5):116-24. Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA, Bartlett NW, et al. 13. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006;12(9):1023-6. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. 14. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. Journal of Experimental Medicine. 2005;201(6):937-47. Epub 2005/03/23. 15. Message SD, Laza-Stanca V, Mallia P, Parker HL, Zhu J, Kebadze T, et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cvtokine and IL-10 production. Proc Natl Acad Sci U S A. 2008;105(36):13562-7. Epub 2008/09/05. Laza-Stanca V, Message SD, Edwards MR, Parker HL, Zdrenghea MT, Kebadze T, et al. 16. The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations. PLoS Pathog. 2011;7(7):e1002114. 17. Plummeridge MJ, Armstrong L, Birchall MA, Millar AB. Reduced production of interleukin 12 by interferon γ primed alveolar macrophages from atopic asthmatic subjects. Thorax. 2000;55(10):842-7. 18. Ho C-Y, Wong C-K, Ko FW-S, Chan CH-S, Ho AS-S, Hui DS-C, et al. APoptosis and b-cell lymphoma-2 of peripheral blood t lymphocytes and soluble fas in patients with allergic asthma*. CHEST Journal. 2002;122(5):1751-8. Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM. Antimicrobial resistance 19. trends of Escherichia coli bloodstream isolates: a population-based study, 1998-2007. Journal of Antimicrobial Chemotherapy. 2009;64(1):169-74. Cheong Hs Fau - Kang C-I, Kang Ci Fau - Kwon KT, Kwon Kt Fau - Heo ST, Heo St Fau 20. - Wi YM, Wi Ym Fau - Kim ES, Kim Es Fau - Lee JS, et al. Clinical significance of healthcare-associated infections in community-onset Escherichia coli bacteraemia. (0305-7453 (Print)). St. Sauver JL, Grossardt BR, Yawn BP, Melton LJ, Rocca WA. Use of a Medical Records 21. Linkage System to Enumerate a Dynamic Population Over Time: The Rochester Epidemiology Project. American Journal of Epidemiology. 2011;173(9):1059-68. 22. Kurland LT, Molgaard CA. The patient record in epidemiology. Sci Am. 1981;245(4):54-63. Epub 1981/10/01. Broder I, Higgins MW, Mathews KP, Keller JB. Epidemiology of asthma and allergic 23. rhinitis in a total community, Tecumseh, Michigan: III. Second survey of the community. J Allergy Clin Immunol. 1974;53(3):127-38. 24. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137(10):791-7. Yunginger JW, Reed CE, O'Connell EJ, Melton LJ, 3rd, O'Fallon WM, Silverstein MD. A 25. community-based study of the epidemiology of asthma. Incidence rates, 1964-1983. Am Rev Respir Dis. 1992;146(4):888-94. Epub 1992/10/01.

DW Bang et al

26. Silverstein MD, Reed CE, O'Connell EJ, Melton LJ, 3rd, O'Fallon WM, Yunginger JW. Long-term survival of a cohort of community residents with asthma. N Engl J Med. 1994;331(23):1537-41. Epub 1994/12/08. Bauer BA, Reed CE, Yunginger JW, Wollan PC, Silverstein MD. Incidence and 27. outcomes of asthma in the elderly. A population-based study in Rochester, Minnesota. Chest, 1997:111(2):303-10. Epub 1997/02/01. Juhn YJ, Qin R, Urm S, Katusic S, Vargas-Chanes D. The influence of neighborhood 28. environment on the incidence of childhood asthma: a propensity score approach. I Allergy Clin Immunol. 2010;125(4):838-43 e2. Epub 2010/03/20. Juhn YJ, Sauver JS, Katusic S, Vargas D, Weaver A, Yunginger J. The influence of 29. neighborhood environment on the incidence of childhood asthma: a multilevel approach. Social science & medicine. 2005;60(11):2453-64. Epub 2005/04/09. 30. Yawn BP, Yunginger JW, Wollan PC, Reed CE, Silverstein MD, Harris AG, Allergic rhinitis in Rochester, Minnesota residents with asthma: frequency and impact on health care charges. J Allergy Clin Immunol. 1999;103(1 Pt 1):54-9. Epub 1999/01/20. Yunginger J, Reed, CE, O'Connell, EJ, Melton, J, O'Fallon, WM, Silverstein, MD. A 31. Community-based Study of the Epidemiology of Asthma: Incidence Rates, 1964-1983. Am Rev Respir Dis. 1992;146:888-94. Javed A, Yoo KH, Jacobson RM, Poland GA, Juhn YJ. Characteristics of Chiildren with 32. Asthma who Achieved Remission of Asthma. Journal of Asthma. 2013; Epub ahead of print(doi:10.3109/02770903.2013.787625). Greenland S. Modeling and variable selection in epidemiologic analysis, Am I Public 33. Health. 1989;79:340-9. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait 34. or intervention. American Journal of Epidemiology. 1974;99(5):325-32. O'Byrne PM, Pedersen S, Carlsson L-G, Radner F, Thoren A, Peterson S, et al. Risks of 35. Pneumonia in Patients with Asthma Taking Inhaled Corticosteroids. Am J Respir Crit Care Med. 2011;183(5):589-95. 36. The Center for Disease Control and Prevention. Prevalence of Coronary Heart Disease: United States, 2006-2010. MMWR. 2011;60(40):1377-81. Jackson LA. Benson P. Neuzil KM. Grandiean M. Marino IL, Burden of community-37. onset Escherichia coli bacteremia in seniors. J Infect Dis. 2005;191(9):1523-9. Laupland KB GD, Church DL, Ross T, Pitout JD, Incidence, Risk Factors and 38. Outcomes of Escherichia coli Blood Stream Infections in a Large Canadian Region. Clin Microbiol Infect. 2008:14:1041-7. 39. Sykes A, Edwards MR, Macintyre J, Del Rosario A, Bakhsoliani E, Trujillo-Torralbo MB, et al. Rhinovirus 16-induced IFN-alpha and IFN-beta are deficient in bronchoalveolar lavage cells in asthmatic patients. J Allergy Clin Immunol.129(6):1506-14 e6. Wang L, Zhao L, Lv J, Yin Q, Liang X, Chu Y, et al. BLT1-dependent Alveolar 40. Recruitment of CD4+CD25+ Foxp3+ Regulatory T Cells Is Important for Resolution of Acute Lung Injury. Am J Respir Crit Care Med. 2012;186(10):989-98. Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009;39(9):1314-23. 41. Koch A, Knobloch J, Dammhayn C, Raidl M, Ruppert A, Hag H, et al. Effect of bacterial 42. endotoxin LPS on expression of INF-gamma and IL-5 in T-lymphocytes from asthmatics. Clin Immunol. 2007;125(2):194-204. Epub 2007/09/22.

DW Bang et al

Table 1. Definition of asthma

3. Two or more of the following:

PiZZ alpha₁-antitrypsin

Cystic fibrosis

Nonsmoker (14 years or older)

Blood eosinophilia higher than 300/uL

examination,

absent, and

Nasal polyps

antigen

2.

•

•

٠

probable asthma if only the first two conditions were present:

Sleep disturbance by nocturnal cough and wheeze

FEV1 in spirometry after bronchodilator therapy)

Positive wheal and flare skin tests OR elevated serum IgE

Pulmonary function tests showing one FEV₁ or FVC less than 70% predicted and another with at least 20% improvement to an FEV₁ of higher70% predicted OR

methacholine challenge test showing 20% or greater decrease in FEV₁

Patients were excluded from the study if any of these conditions were present:
Tracheobronchial foreign body at or about the incidence date

Wheezing occurring only in response to anesthesia or medications Bullous emphysema or pulmonary fibrosis on chest radiograph

Other major chest disease such as juvenile kyphoscoliosis or bronchiectasis

Patients were considered to have *definite* asthma if a physician had made a diagnosis of asthma with the first two conditions and/or if each of the following three conditions were present, and they were considered to have

1. History of cough with wheezing, and/or dyspnea, OR history of cough and/or dyspnea plus wheezing on

Substantial variability in symptoms from time to time or periods of weeks or more when symptoms were

History of hay fever or infantile eczema OR cough, dyspnea, and wheezing regularly on exposure to an

Favorable clinical response to bronchodilator (e.g., documented improvement of respiratory symptoms or

2	
3 4	539
5 6	540
7 8	541
9 10	
11	542
12 13 14	543
14 15 16	544
17 18	545
19 20	546
21 22	547
23 24	547
25 26	
27	
28 29	
30 31	
32	
33 34	
35	
36 37	
38 39	
40	
41 42	
43 44	
45	
46 47	
48	
49 50	
51 52	
53	
54 55	
56	
57 58	
59 60	

FVC forced vital capacity; FEV1, f	forced expiratory volume in 1 sec.

Hypogammaglobulinemia (IgG less than 2.0 mg/mL) or other immunodeficiency disorder

Pulmonary function tests that showed FEV_1 to be consistently below 50% predicted or diminished diffusion • capacity

 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 		
31 32 33 34 35		
36		
37 38	548 549	
39	549	
40 41 42 43	551	
44	552	
45 46 47	553	
48 49 50 51	554	
50 51 52	555	
53 54	556	Table 2. Sociodemographic, and clinical characteristics of patients with Escherichia coli blood
55 56 57 58	557	stream infection and their matched control subjects
59 60		23

BMJ Open

DW Bang et al

Characteristics	Case	Control	Unadjusted OR ^a	p value
Characteristics	(n= 259)	(n= 259)	(95% CI)	
Age (years)	61±22	61±22	1.14 (0.78, 1.67)	0.497
Female gender	179 (69%)	179 (69%)	-	
Ethnicity				< 0.001
Caucasian (non-Hispanic)	222 (86%)	245 (95%)	Referent	
Other	37 (14%)	14 (5%)	4.83 (2.01, 11.64)	
Education status				0.004
Some high school or less	45 (17%)	21 (8%)	Referent	
High school graduate	95 (37%)	87 (34%)	0.50 (0.27, 0.93)	
Some college or more	110 (42%)	143 (55%)	0.33 (0.18, 0.62)	
Unknown	9 (3%)	8 (3%)	-	
Influenza vaccination 1 year prior to index date	95 (37%)	110 (42%)	0.75 (0.51, 1.10)	0.145
PPV23 prior to index date	117 (45%)	114 (44%)	1.08 (0.69, 1.68)	0.736
Food allergy	16 (6%)	6 (2%)	2.67 (1.04, 6.81)	0.040
Asthma	37 (14%)	16 (6%)	2.75 (1.42, 5.32)	0.003
High-risk conditions				
Alcohol addiction	17 (7%)	1 (0%)	17.00 (2.26, 127.75)	0.006
Autoimmune disease ^c	9 (3%)	3 (1%)	3.00 (0.81, 11.08)	0.099
Chronic obstructive lung disease	12 (5%)	9 (3%)	1.37 (0.55, 3.42)	0.493
Chronic renal insufficiency	30 (12%)	4 (2%)	9.67 (2.94, 31.73)	< 0.001
Congestive heart failure	19 (7%)	2 (1%)	18.00 (2.40, 134.84)	0.005
Coronary artery disease	52 (20%)	40 (15%)	1.46 (0.89, 2.41)	0.136
Dementia	16 (6%)	7 (3%)	3.25 (1.06, 9.97)	0.039
Diabetes mellitus	50 (19%)	24 (9%)	2.53 (1.44, 4.43)	0.001
History of stroke	15 (6%)	10 (4%)	1.71 (0.67, 4.35)	0.257
Immobilization ^d	10 (4%)	1 (0%)	10.00 (1.28, 78.12)	0.028
Immunosuppressive therapy	25 (10%)	4 (2%)	8.00 (2.41, 26.57)	0.001
Malignancy	21 (8%)	12 (5%)	2.00 (0.90, 4.45)	0.090
Recurrent urinary tract infection	29 (11%)	2 (1%)	14.50 (3.46, 60.77)	< 0.001
Transplant recipients	8(3%)	0 (0%)	-	
Urinary incontinence	46 (18%)	20 (8%)	2.86 (1.55, 5.25)	0.001
Other condition ^e	14 (5%)	0 (0%)	-	-
Smoke				0.058
No (including ex-smoker)	206 (80%)	222 (86%)	Referent	

37 (14%)

1.59(0.98, 2.58)

DW Bang et al

Active

50 609	$\begin{smallmatrix}1&2&3&4&5&6\\7&8&9&10&1&1&2&3&4\\1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1$	$\begin{array}{c} 555661234555555555555555555555555555555555555$
	40 41 42 43 44 45 46 47 48 49	602 603 604 605 606 607 608

1

^aOdds ratio based on matched analysis taking into account gender, birthday, residency, and follow-up duration

^b Comorbidity conditions are not mutually exclusive

^c Autoimmune disease includes SLE, rheumatoid arthritis, inflammatory bowel disease and other autoimmune diseases

53 (20%)

^d Immobilization includes hemi/para/quadri-plegia

^e Other conditions include use of urinary catheter, device, genitourinary procedures (e.g., prostate biopsy), and congenital anomaly

Table 3. A multivariable conditional logistic regression model for the association between

611 asthma and risk of community-acquired Escherichia coli bloodstream infection

CharacteristicsCaseControl (n= 259)Adjusted	OR ^a (95% CI) p value
--	----------------------------------

BMJ Open

DW Bang et al

Ast	hma characteristics	Total	Unadjuste	d OR Adjuste	ed O
Esc	<i>cherichia coli</i> bloodstream in	ifection			
Tał	ole 4. Association of asthma	control status	and therapy v	with risk of community	/-ac
Au	gustou variables included all valiables		u010.		
	Urinary incontinence ljusted variables included all variables	46 (18%)	20 (8%)	2.37 (1.05, 6.26)	0
	Recurrent urinary tract infection	29 (11%) 46 (18%)	2 (1%) 20 (8%)	13.54 (2.42, 75.65) 2.57 (1.05, 6.26)	0
	Malignancy	21 (8%)	12 (5%)	2.18 (0.59, 8.11)	0
	Immunosuppressive therapy	25 (10%)	4 (2%)	8.51 (1.32, 54.96)	0
	Immobilization	10 (4%)	1 (0%)	39.86 (2.30, 690.42)	0
	Diabetes mellitus	50 (19%)	24 (9%)	2.39 (0.97, 5.87)	0
	Dementia	16 (6%)	7 (3%)	4.14 (0.96, 17.96)	0
	Coronary artery disease	52 (20%)	40 (15%)	0.81 (0.37, 1.77)	0
	Congestive heart failure	19 (7%)	2 (1%)	9.86 (0.93, 104.59)	C
	Chronic renal insufficiency	30 (12%)	4 (2%)	4.76 (1.16, 19.59)	C
	Autoimmune diseases	9 (3%)	3 (1%)	1.79 (0.23, 13.72)	(
	Alcohol addiction	17 (7%)	1 (0%)	32.31 (1.91, 546.18)	C
	gh-risk conditions				
	ctive smoking	53 (20%)	37 (14%)	1.31 (0.69, 2.47)	C
	sthma	37 (14%)	16 (6%)	2.74 (1.11, 6.76)	0
Fo	od allergy	16 (6%)	6 (2%)	3.51 (0.94, 13.11)	0
to	index date	<i>JJ</i> (<i>JT</i> /0)	110 (42/0)	0.50 (0.55, 1.02)	
Int	fluenza vaccination 1 year prior	95 (37%)	110 (42%)	0.58 (0.33, 1.02)	0
ι	Unknown	9 (3%)	8 (3%)	-	
S	Some college or more	110 (42%)	143 (55%)	0.65 (0.28, 1.50)	
]	High school graduate	95 (37%)	87 (34%)	0.89 (0.37, 2.14)	
S	Some high school or less	45 (17%)	21 (8%)	Referent	
Ed	lucation status				(
	Other	37 (14%)	14 (5%)	5.90 (1.85, 18.84)	
(Caucasian (non-Hispanic)	222 (86%)	245 (95%)	Referent	

DW Bang et al

	(n=518)	(95% CI), p-value	(95% CI), p-value
Inhaled corticosteroid therapy (ICS))	$p = 0.009^{b}$	$p=0.079^{4}$
No asthma	465 (90%)	Referent	Referent
Asthma without ICS	35 (7%)	1.90 (0.88, 4.09)	1.99 (0.67, 5.94)
Asthma with ICS	18 (3%)	7.00 (1.59, 30.80)	5.33 (0.90, 31.66)
Asthma status ^c		$p = 0.005^{b}$	<i>p=0.067</i>
No asthma	465 (90%)	Referent	Referent
Remission or inactive asthma	17 (3%)	1.25 (0.45, 3.50)	1.25 (0.25, 6.30)
Active or current asthma	36 (7%)	4.37 (1.80, 10.62)	3.89 (1.23, 12.28)

^a Adjusted variables included all factors reported in the multivariable model (see Table 3) except for dichotomous asthma status

^b P-value for overall comparison

^c Active or current asthma was defined as the presence of asthma-related events including asthma symptoms, or use of asthma medications, and outpatient/emergency department/hospitalization for asthma within one year prior to index date of E coli BSI; Remission of asthma was defined as the absence of asthma-related events > 3 years prior to index date; Inactive (not current) asthma was defined as the presence of asthma-related events within 1-3 years prior to index date.