Competition Between Antiferromagnetism and Ferromagnetism in ${\rm Sr_2RuO_4}$ Probed by Mn and Co Doping J. E. Ortmann¹, Jinyu Liu¹, Jin Hu¹, M. Zhu², Jin Peng¹, M. Matsuda³, X. Ke², Z. Q. Mao^{1*} ¹Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA ²Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48825, USA ³ Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA SI-Fig. S1: Arrott plot of 1.5% Co-doped Sr_2RuO_4 at T = 2 K. The curve does not intersect the vertical axis above the origin, implying that the sample does not form long-range FM order. This, combined with our other magnetization measurements, leads us to instead conclude that Co-doped Sr_2RuO_4 forms short-range FM order. SI-Fig. S2: Susceptibility data of undoped Sr₂RuO₄ sample with substantial SrRuO₃ intergrowth. The arrow indicates the sharp upturn in susceptibility associated with SrRuO₃ intergrowth. This feature is absent in our samples mentioned in the manuscript, indicating that these samples contain negligible SrRuO₃ intergrowth. The inset shows the absence of relaxation in the sample with intergrowth. SI-Fig. S3: Low-temperature upturn of 5% Mn-doped Sr_2RuO_4 plotted on log(T) scale. We do not observe the expected log(T) temperature dependence, which excludes the possibility that Mn-doping results in a Kondo effect.