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Experimental Details

Two independent experimental setups located in Graz and Geneva have been used to obtain

the experimental results presented in this work. The obtained results can be combined to a

unified picture demonstrating the robustness of the measured data.

Setup 1 (Geneva)

Chemicals. 9,10-dimethyl anthracene (Fluka, 97%) was used as received. N,N-dimethylaniline

(DMA, Aldrich, Reagent Plus R� 99%) was distilled under reduced pressure and stored in the

dark under argon atmosphere. Propyl acetate (PA, Alfa Aesar, 99%) and butyronitrile (BN,

Fluka, purum ≥ 99.0%) were distilled prior to use.

Spectroscopy. Absorption spectra were recorded on a Cary 50 absorption spectrometer.

Emission spectra were recorded on a Cary Eclipse fluorimeter. Nanosecond time-resolved

emission decays in the absence and presence of a magnetic field were recorded using a home-

built time-correlated single photon counting apparatus with a 395 nm laser diode (Picoquant,

LDH-P-C-405) as excitation light source. The emission passing through a polarizer foil at

magic angle with respect to the vertically polarized excitation was recorded. Appropriate filters

were used allowing for the observation of either locally excited state (420 nm interference filter)

or exciplex (600 nm long pass filter). A magnetic field of approx. 150mT was applied using

a set of permanent magnets. The emission was monitored at a geometrical angle of 30◦

with respect to optical excitation. All time traces were recorded in a 800 ns window at a

repetition rate of 500 kHz using a delay generator (Stanford research systems). The absence

of interferences of the magnetic field with the detection system was tested by comparing

emission decays of the pure fluorophore in the absence and presence of a magnetic field. The

samples with 0.05M DMA were prepared in septa-sealed 10mm fluorescence quartz cuvettes

by adding corresponding amounts of DMA via Hamilton syringes to the already degassed

fluorophore solutions. Subsequently the samples were deoxygenated by sparging with argon

for approx. 15 minutes. Contamination of the exciplex time traces by residual locally excited

state fluorescence was precluded by measuring a sample of the fluorophore without quencher

with the longpass emission filter for the exciplex measurements in place.

Setup 2 (Graz)

Chemicals. The quencher DMA (99.5%, purified by redistillation) and the fluorophores

pyrene (99%) and pyrene-d10 (98 atom % D) were purchased from Aldrich and used as re-
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ceived. 9,10-Dimethyl anthracene (Aldrich, 99%) was recrystallized from ethanol. The solvents

butyronitrile (Aldrich, 99%) and propyl acetate (Aldrich, 99.5%) were purified by distillation

prior to use. All samples were prepared and stored under argon atmosphere. Additionally,

oxygen was removed by bubbling solvent-saturated argon through the septa-sealed cuvettes

for 20 minutes directly before every measurement.

Spectroscopy. Absorption spectra were recorded on a Shimadzu UV-3101-PC UV-VIS-NIR

spectrophotometer. The sample fluorescence was measured on a thermostatted Jobin Yvon

Fluoromax-2 spectrofluorimeter. The temperature for fluorescence measurements was held

constant at θ = 22◦ C with the help of a Haake F3 thermostat. The setup used to record

the time-resolved exciplex traces is depicted in Figure S1. In order to record the luminescence

decay as a function of time, the light source was driven by a pulser (Picoquant, PDL-800B)

with a repetition rate adjustable from 40 to 2.5MHz. The pulser also serves to generate the

so-called SYNC signal being the start signal for the time-to-amplitude converter (TAC). As

the signal is generated electronically, no constant fraction discriminator (CFD) has been used

in the SYNC channel. The light source used for excitation of the sample was a 374 nm laser

diode (Picoquant, LDH series, Pulse FWHM 60 ps).1 Right in front of the light source, an

excitation filter 3 (UG1) was placed. The intensity of the light source was adjusted via an iris

2. A cone-shaped reflecting pipe 4 was used to collect the light and guide it directly into the

cuvette 6, where the sample is excited. The sample itself is contained in a thermostattable

sample holder which is located between the pole shoes of an electromagnet. The radiation

emitted by the sample is transported to the detector with the help of a liquid light guide 10

(Lumatec, series 300). A high voltage 12 driven photomultiplier tube (PMT, Hamamatsu,

R5600-U04) in combination with a non-fluorescing emission filter LP 550 11 is used to detect

the optical signal. Its output delivers the stop pulse for the TAC (Ortec, model 567). As the

amplitude of the PMT output signal is only in the range of some 20mV, a pre-amplifier 13

(Ortec, VT120) is used before the signal is transferred to the constant fraction discriminator

(CFD). At the TAC the information from the two signal paths is evaluated and transferred to

the multi channel analyzer (Ortec, EASY-MCA) where a histogram of single photon events is

generated. To study the influence of a magnetic field on the reaction, a magnet power supply

1 in combination with the Helmholtz coils 7 and a DC offset 5 have been used to adjust the

magnetic field strength. On the gaussmeter 9 the actual field value sensed by the hall probe

8 is read off.

1
Also pyrene can be excited at this wavelength as only little excited state population is necessary.

We take advantage of its low-intensity forbidden transition at this wavelength and thereby avoid

direct excitation of the quencher DMA.
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Figure S1: Scheme of the employed setup.

All MFE measurements have been performed at 295K and at a repetition rate of 2.5MHz.

The permittivity of the solvent was adjusted making use of solvent mixtures composed of

butyronitrile and propyl acetate. Light reflections produced at the light guide window facing

the PMT were observed and could be reduced by optically coupling the light guide to the

cuvette using some drops of glycerol (80%). For every sample, measurements at 0 and 500G

were carried out where the field was measured perpendicular to the excitation. The time traces

were obtained by collecting single photon events during 600 s (realtime) at a start-to-stop ratio

of about 40. The high-voltage settings and the light intensity (iris settings) remained equal

during all measurements. Using 10−5M 9,10-dimethyl anthracene, measurements at relative

solvent permittivities of εr = 15 (VPA : VBN = 1 : 1), 20 (VPA : VBN = 1 : 3.3), and 25 (pure

BN) have been performed. The pyrene (10−5M) and pyrene-d10 (10−5M) measurements have

been carried out in pure butyronitrile which has a relative permittivity of 25 at 295 K. DMA

at a concentration of 50mM was used as the quencher in all cases.

In the setup used in Graz the earth magnetic field has been compensated in one direction

whereas in the setup used in Geneva the earth magnetic field was not compensated. Note

that, despite this fact, no differences in the experimental results are observed.

S4



Calculation of the Singlet Probability

The singlet probability pS(t,B0) is given by

pS(t,B0) = Tr
�
P̂S ρ̂(t,B0)

�
(S1)

where P̂S denotes the singlet projection operator, Tr is the trace operation, and the time-

behavior of the spin density matrix ρ̂(t,B0) is obtained from the Liouville-von-Neumann equa-

tion:
d ρ̂

dt
= −i

�
Ĥ , ρ̂

�
+ ˆ̂Kex ρ̂ (S2)

with the initial density matrix given by:

ρ̂(t = 0) =
P̂S

Tr(ρ̂)
(S3)

In the low-viscosity approximation, the exchange interaction can be neglected, thus, the Hamil-

tonian Ĥ for a single radical i only contains contributions from the Zeeman interaction of the

electron spins and the hyperfine interactions according to

Ĥi = giµBB Ŝi ,z +
�

j

aij Ŝi · Îij (S4)

Since only moderate magnetic fields are employed, it is furthermore assumed that gr1 =

gr2 = 2.0023. The influence of the exchange operator ˆ̂Kex accounting for degenerate electron

exchange is then calculated from:

ˆ̂Kex ρ̂ =
1

τex

�
Trn(ρ̂)⊗

1̂

N
− ρ̂

�
(S5)

In this work, the spin correlation tensor approach was used to calculate the singlet probability.

This approach implies a reformulation of Eqs (S2,S3,S5) which allows a more efficient numerical

treatment of the problem in Hilbert space. Details can be found in references [1–3]. Concerning

the exchange rate kex = 1
τex

, a value of τex = 8ns was used in all simulations [4].

Figure S2 shows the singlet probabilities calculated for the system 9,10-dimethyl anthracene/

DMA in the zero and high field limits with and without electron self exchange taken into

account. In Figure S3 the calculated singlet probabilities for pyrene-h10/DMA and pyrene-

d10/DMA are shown as a function of time. Marked differences are observed when electron

self exchange is not taken into account. Only when accounting for electron self exchange, the

experimental data can be properly described.
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Figure S2: Calculated singlet probability as a function of time for 9,10-dimethyl anthracene/
DMA in the zero and high field limit. The dashed lines show the time behavior
obtained when neglecting electron self exchange, whereas the solid lines represent
the time-behavior for τex = 8ns.

Figure S3: Calculated singlet probability ∆pS = pS(B0) − pS(0) as a function of time for
pyrene-h10/DMA and pyrene-d10/DMA. The solid lines show the time behavior
obtained when neglecting electron self exchange, whereas the dashed lines represent
the time-behavior for τex = 8ns.
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Calculation of the Singlet Yield / Recombination

In this work a diffusion Green’s function approach [5, 6] has been used to calculate the singlet

yields from:

R(t,B0 | rI) =
t�

0

pS(t,B0) f (t | rI) exp
�
− t

τR

�
dt (S6)

with f (t | rI) denoting the recombination flux, and τR the lifetime of the radical pair. The

recombination flux is then defined as:

f (t | rI) = ka n(rE, t | rI) (S7)

with the time-dependence of n(r , t) given by:

∂n(r , t)

∂t
=

1

r2
∂

∂r
D(r) r2 exp(r/rc)

∂

∂r
exp(− r/rc) n(r , t) (S8)

where rc = e20
4π ε0εr kBT

denotes the Onsager radius. The initial condition (for instantaneous

RIP generation) is taken to be

n(r , t = 0) = δ(r − rI)/4π r2 (S9)

and the system obeys the radiation boundary condition

�
∂n

∂r
+

rc
r2

n − ka
4π r2E D(rE)

n

�����
r=rE

= 0 (S10)

Additional Details on the Simulations Using Model 2

According to the above-listed formulas, the time evolution of the magnetic field effect depends

on the following parameters:

• Diffusive motion: D, rE, rc , hydrodynamic hindrance

• Exciplex: τE , φdiss = kd τE

• RIP: spin evolution, τR , rI , φI , ka = KA kd

At first glance, it might seem that the used model introduces many new freely variable pa-

rameters but, in fact, most of these listed variables are either known, or can be determined in

independent experimental measurements and kept constant during the simulations.

S7



The parameters describing the diffusive motion are known, τE can be determined experi-

mentally, and also φdiss was shown to be experimentally accessible from a plot of the exciplex

lifetime τE as a function of the solvent permittivity εr . Spin evolution can also reliably be

calculated, thus the only unknown parameters are in fact τR , rI , φI , and ka = KA kd . Only

two of these four parameters, namely φI and ka = KA kd , were found to have a pronounced

effect on the result of the simulation (cf. Figure S4), while the influence of the radical ion

pair lifetime τR and the distance where the ions are generated by distant electron transfer rI

is small (when kept in a reasonable range), so that these parameters can be kept fixed during

the simulation.

Figure S4: Influence of the fitting parameters φI (left) and KA (right) on the time-resolved
magnetic field effect. The experimental data can be reproduced with φI = 0.48
and KA = 13M−1. The magnetic field effect amounts to χE = 10.8%. When
varying these two parameters (gray lines) the magnitude as well as the shape of
the time-resolved magnetic field effect are strongly influenced.

The graph on the left hand side of Figure S4 shows the influence of the fitting parameter

φI on the time-resolved magnetic field effect. It can be seen that the magnitude as well as

the shape of the time-resolved MFE are considerably affected when varying φI (gray lines) and

only for φI = 0.48 the experimental data can be well reproduced. The time-resolved MFE

also strongly depends on the fitting parameter KA as becomes obvious from the graph on the

right hand side of Figure S4. The best fit is obtained for KA = 13M−1 and the magnetic field

effect amounts to χE = 10.8%.

S8



As already mentioned above, all other parameters, apart from φI and KA, introduced in the

framework of model 2, usually have only minor influence and can be kept fixed during the

simulations. Typical values for the simulation parameters which have been used in this work

are given in Table S1. Tables S2-S5 list the hyperfine coupling constants that have been used

to calculate the spin evolution of the RIP.

Table S1: Simulation parameters used in this work. The values given apply to the system 9,10-
dimethyl anthracence/DMA at εr = 17. See references [7, 8] for the calculation of
the distant-dependent diffusion coefficient D(r) = γ(r)D.

Parameter Value

rE 6.8 Å
D 220 Å2/ ns (Stokes-Einstein, stick)
γ(r) Deutch-Felderhof
rI 8.5 Å
φd 0.70
τR 100 ns

Table S2: Used hyperfine coupling constants for DMA
•
+. As no experimental values are avail-

able, the values have been calculated using Gaussian03 with UB3LYP/EPRII. For
the rotation of the methyl groups, all relevant geometries have been considered and
Boltzmann-weighted to obtain the values listed in the table.

Value / mT 0.833 -0.428 0.0868 -0.722 1.30

Type 1N 2H 2H 1H 6H
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Table S3: Used hyperfine coupling constants for 9,10-dimethyl anthracene
•
− taken from [9].

Value / mT 0.388 -0.290 -0.152

Type 6H 4H 4H

Table S4: Used hyperfine coupling constants for Py-h
•
−
10 taken from [10].

Value / mT -0.475 0.109 -0.208

Type 4H 2H 4H

Table S5: Used hyperfine coupling constants for Py-d
•
−
10. The values are estimated from the

values for Py
•
− assuming: aD

aH
∼ gn,D

gn,H
� 0.15.

Value / mT -0.0729 0.0167 -0.0319

Type 4D 2D 4D
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