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ABSTRACT Biological organisms exist over a broad temperature range of �15�C to þ120�C, where many molecular pro-
cesses involving DNA depend on the nanoscale properties of the double helix. Here, we present results of extensive molecular
dynamics simulations of DNA oligomers at different temperatures. We show that internal basepair conformations are strongly
temperature-dependent, particularly in the stretch and opening degrees of freedom whose harmonic fluctuations can be consid-
ered the initial steps of the DNA melting pathway. The basepair step elasticity contains a weaker, but detectable, entropic contri-
bution in the roll, tilt, and rise degrees of freedom. To extend the validity of our results to the temperature interval beyond the
standard melting transition relevant to extremophiles, we estimate the effects of superhelical stress on the stability of the base-
pair steps, as computed from the Benhammodel. We predict that although the average twist decreases with temperature in vitro,
the stabilizing external torque in vivo results in an increase of ~1�/bp (or a superhelical density of Dsxþ 0:03) in the interval
0–100�C. In the final step, we show that the experimentally observed apparent bending persistence length of torsionally uncon-
strained DNA can be calculated from a hybrid model that accounts for the softening of the double helix and the presence of tran-
sient denaturation bubbles. Although the latter dominate the behavior close to the melting transition, the inclusion of helix
softening is important around standard physiological temperatures.
INTRODUCTION
DNA is the common substrate of genetic information in all
living organisms. The mechanical properties of the DNA
double helix play a crucial role in the molecular processes
related to the replication and the regulated transcription of
this information: examples include the tight wrapping of
DNA around histone (1) and histonelike (2) proteins in pro-
karyotes, and sequence recognition by other molecules such
as the TATA-box binding protein (3). With biological
organisms living at very different temperatures (so-called
extremophiles thrive over a temperature range of �15�C
to þ120�C (4,5)), the question arises of how the properties
of DNA vary with temperature.

To discuss the basic ideas of this article regarding the
temperature dependence of the DNA double-helix elasticity
at different length scales, it is useful to briefly consider
generic springlike degrees of freedom. In the simplest
example of a harmonic spring, the excitation free energy
has the form FðxÞ ¼ 1=2 kx2, where k is the spring stiffness.
In a molecular mechanics force field, this functional form
applies to bond lengths and suitable bond angles. Deforma-
tions lead to a purely energetic or enthalpic response. The
stiffness of such springs is independent of temperature,
kðTÞ ¼ kh, whereas the amplitude of the corresponding ther-
mal fluctuations, hx2i ¼ kBT=k, is directly proportional to
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the temperature. A first complication arises if the mechani-
cal force field is anharmonic. In this case, the linear
response of the system to external forces and torques
described by a harmonic approximation becomes tem-
perature-dependent. The opposite extreme from enthalpic
springs is entropic springs, with kðTÞ ¼ �ksT and
hx2i ¼ kB=ð�ksÞ independent of temperature. Such springs
represent the behavior of soft matter at much larger scales.
The best-known examples are the entropic springs substitut-
ing random-walk-like polymer chains in the theory of rub-
ber elasticity (6). In this case, ks<0 as the entropy
decreases with the extension of the polymer chain. As a
result, a rubber band under a mechanical load contracts
when its temperature is raised. The nanoscale elasticity of
DNA combines all these complications. The double helix
has a well defined average shape and its local behavior is
not dominated by fluctuations. However, since the descrip-
tion results from integrating out more microscopic degrees
of freedom, nanoscale force fields necessarily represent
temperature-dependent deformation free energies. In the
harmonic approximation and over a finite temperature
range, the temperature dependence can always be written
in the form kðTÞ ¼ kh � Tks and can be inferred from the
amplitude of thermal fluctuations observed at different tem-
peratures, kðTÞ ¼ kBT=hx2iT . For ks% ¼ 0, the results can,
at least formally, be extrapolated to a temperature higher
than those used to calibrate the harmonic model. If, as turns
out to be the case, ks>0, the results cannot be extrapolated
beyond a spinodal temperature Ts ¼ kh=ks, where the spring
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ceases to resist extension and thus becomes mechanically
unstable. Consistency requires that the spinodal temperature
be much higher than the actual melting temperature, Tm,
where the two DNA strands separate. In this case, the nano-
mechanical description of the double helix remains valid for
Tm<T � Ts, even though this state now only represents a
metastable local free-energy minimum and no longer the
global free-energy minimum. If DNA only undergoes partial
melting, the mechanical properties of a given basepair step
can be described by two-state spring models, which account
for the different structures and elastic properties in the helix
and coil sections of the molecule (7–9). For the calculation
of suitable averages, the relative statistical weights of the
two states need to be inferred from sequence-dependent
models of DNA melting (10–13). Interestingly, external me-
chanical forces and torques may change the relative stability
of the helix and coil states and hence modify the melting
temperature (14).

In this article, we address the temperature-dependent
properties of DNA over a wide span of length scales. We
start from an atomistic model (15), with which we investi-
gate DNA oligomers at different temperatures, thereby ex-
tending previous molecular dynamics (MD) results of the
ABC consortium (16,17). The central part of our work deals
with the nanoscale structure, elasticity, and stability of the
double helix. In particular, we propose and parameterize a
temperature-dependent generalization of the rigid-base
and rigid-basepair models of DNA (18). Although our sim-
ulations were performed for torsionally unconstrained
DNA, we estimate the effects of superhelical stress by intro-
ducing temperature-dependent torques estimated from the
Benham model (14). Biological control of such a torque
can serve to regulate spontaneous DNA opening at tran-
scription start sites (19). In particular, the introduction of
positive superhelical stress makes it possible to stabilize
the double helix in a temperature interval beyond the stan-
dard melting transition (14), which is comparable to the
conditions under which extremophiles exist. In the final
step, we consider DNA on the wormlike chain level. We
coarse-grain the nanoscale model to determine the tempera-
ture-dependent persistence length of the double helix (20)
and reevaluate a recent kinked wormlike chain model (8)
to account for the presence of transient denaturation bubbles
(7) in the estimation of the apparent persistence length of
DNA (9).

The article is organized as follows. The Models and
Methods section describes the temperature-dependent
rigid-base and rigid-basepair models, the MD simulations,
the coupling with the Benham model, the coarse-graining
to the wormlike chain model, and the inclusion of transient
denaturation bubbles in the calculation of an apparent
bending persistence length. Details of the analysis of the
simulation data are described in the Supporting Material.
In the Results section, we present our findings for the
entropic contribution to the DNA nanoscale elasticity.
This contribution is particularly strong for the internal base-
pair elasticity. At the basepair step level, the effect is weaker
but detectable, and it results in a softening of the large-scale
stiffness of the molecule. In the Discussion section, we
address the temperature dependence of internal fluctuations
of the double helix, the path to the melting transition, the
effect of superhelical stress on the properties of the dou-
ble helix in vivo, and the large-scale bending rigidity
of DNA, including the temperature dependence of the
apparent persistence length over the whole experimentally
studied temperature interval. The article closes with a brief
conclusion.
MODELS AND METHODS

DNA elasticity in the rigid-base and rigid-basepair
models

We consider the fluctuations of the DNA double helix at two
successive nanoscale levels, 1), inside the basepair (intra
parameters), and 2), between adjacent basepairs (step
parameters). In both cases, the conformation is described
by a six-dimensional vector, q ¼ ðq1;.; q6Þ, corresponding
to the relative orientation and position of the relevant objects
(bases or basepairs), in conventional notation: buckle, pro-
pel, opening, shear, stretch, and stagger in the first case,
and tilt, roll, twist, shift, slide, and rise in the second (18).

In the harmonic approximation, the Gibbs free energy
reduces to a quadratic form:

G
�
q; s; T

� ¼ 1

2

�
q� q

0
ðs; TÞ�tkðs; TÞ�q� q

0
ðs; TÞ�; (1)

where T is the temperature, s is the DNA sequence, and we
have introduced the six-dimensional equilibrium conforma-
tion q

0
ðs; TÞ and the 6 � 6 stiffness matrix kðs; TÞ. The

latter describes the couplings between the fluctuations of
the different degrees of freedom and is proportional to the
inverse of the covariance matrix,

Cðs; TÞ ¼ kBT kðs; TÞ�1
: (2)

For the rigid-base(pair) model of DNA, previous studies
have extracted the sequence-dependent elastic parameters
at room temperature, T0 ¼ 300 K, from the analysis of
DNA and DNA-protein crystallographic structures (21),
from MD simulations of DNA oligomers (17,22), or from
combinations of both approaches (23). Note that for an
ensemble of crystal structures, the passage from the
observed covariance matrix to the stiffness (Eq. 2) relies
on the existence of an effective temperature governing the
ensemble of experimentally observed conformations
(22,23). This approach can therefore not be used to study
the actual temperature dependence of the mechanical prop-
erties of DNA. Instead, we extend previous MD simulations
of DNA oligomers (16,17) to a broad range of temperatures
Biophysical Journal 105(8) 1904–1914
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to study the sequence and temperature dependence of DNA
structure and elasticity.
Inclusion of temperature effects

The knowledge of the elastic parameters at T0 gives no
information on their temperature dependence around T0,
which depends on the relative importance of the enthalpic
and entropic contributions:

G
�
q; s; T

� ¼ H
�
q; s; T0

�� T S
�
q; s; T0

�
: (3)

Here, H and S are quadratic forms:
H
�
q; s; T0

� ¼ 1

2

�
q� qh

0
ðsÞ�t k

h
ðsÞ�q� qh

0
ðsÞ� (4)

� � 1� s
�t �

s
�

S q; s; T0 ¼
2
q� q

0
ðsÞ k

s
ðsÞ q� q

0
ðsÞ : (5)

From Eq. 3, the temperature-dependent elastic parameters
kðs; TÞ and q

0
ðs; TÞ of Eq. 1 can be written in terms of

enthalpic and entropic contributions. For the stiffness, the
relation is simply

kðs; TÞ ¼ k
h
ðsÞ � Tk

s
ðsÞ ¼ k

0
ðsÞ � ðT � T0Þ ksðsÞ; (6)

where k
h
and k

s
are the enthalpic and entropic contributions

to the stiffness, and k
0
ðsÞhkðs; T0Þ is the stiffness at room

temperature.
Although the covariance matrix for the fluctuations

(Eq. 2) takes the simple form C ¼ kBTðkh � Tk
s
Þ�1, the

equilibrium conformation q
0
ðs; TÞ has a more complex

behavior, and in particular does not vary linearly with
temperature:

q
0
ðs; TÞ ¼ �

k
h
� Tk

s

��1�
k
h
qh
0
� Tk

s
qs
0

�
:

To facilitate the estimation of the temperature-dependent
contribution in the following numerical study, we consider

the linear expansion of the latter expression around T0:

q
0
ðs; TÞxq0

0
ðsÞ � ðT � T0Þ q00ðsÞ; (7)

where q0
0
ðsÞhq

0
ðs; T0Þ is the equilibrium conformation at

room temperature, and q0
0
ðqh

0
; qs

0
; k

h
; k

s
Þ is the first-order

coefficient.
The presence of two parameters in both Eqs. 6 and 7 sig-

nifies that the temperature-dependent elastic model involves
twice as many parameters as the model at a single tempera-
ture, ðk

0
; q0

0
Þ. In the following sections, we estimate these

new parameters ðk
s
; q0

0
Þ from MD simulations of DNA olig-

omers. For different temperatures and sequences, q
0
ðs; TÞ is

estimated from the mean value of the conformational distri-
bution, and kðs; TÞ is estimated by inverting the covariance
Biophysical Journal 105(8) 1904–1914
matrix (Eq. 2). Because Eqs. 6 and 7 have a linear temper-
ature dependence, the parameters can then be computed by
linear regression.
Simulations of DNA oligomers

Theprotocol for theMDsimulationswas chosen to be as close
as possible to that used by the ABC consortium (16,17). The
oligomers used in the simulation were 18-mers built from
tetranucleotide repeats: an oligomer termed xyzw has the
sequence GCzw xyzw xyzw xyzw GC (uppercase letters
are basepairs conserved in all oligomers). Thus, the oligomer
AAAC has the sequence GCACAAACAAACAAACGC. To
eliminate possible end effects, we excluded the four terminal
basepairs at either end of the oligomers from our analysis.

We simulated four 18-mers of dsDNA (AAAC, AGAT,
GCGC, GGGG) at five different temperatures (273 K,
283 K, 300 K, 325 K, and 350 K) for 50 ns each. This
data set contains all unique dinucleotide sequences and
includes the influence of different flanking sequences for a
limited sample (see Table S1 in the Supporting Material).
The two types of basepair (AT and GC) appear in nine
different trinucleotides and are used for studying intra
parameters. The 10 unique dinucleotides appear within sin-
gle tetranucleotides, except for AA, which appears in two
contexts (AAAC and CAAA, both in the oligomer
AAAC). Our data set is therefore less comprehensive than
the ABC study at room temperature but more varied than
the previous generation of MD simulations (22).

Each oligomer was constructed in the B-DNA conforma-
tion and simulated in Amber (24) for 50 ns in 150 mM
KCl. The parameters and protocol of the simulations can
be found in Lavery et al. (17). In particular, the DNA force
field includes the parmbsc0 backbone parameters (15). We
assumed that these force fields remain valid for double-heli-
cal DNA in the temperature interval under consideration.
Water was modeled with the TIP4P/Ew model (25), which
was designed to reproduce the structural and dynamical prop-
erties of water in a broad temperature range (273–350 K), in
contrast to the SPC/E model used in most ABC runs. The
results obtained with both solvents were compared at room
temperature and exhibited no significant difference (17).

The temperature and pressure, P¼ 1 atm, during the sim-
ulations were controlled with the Berendsen algorithm (26).
The simulations were stable at all temperatures with the
same time step, t ¼ 2 fs. Note that 350 K is beyond the
experimental melting temperature of short oligomers;
melting does not occur in the simulations, due to the limited
sampling time and/or to limitations in the force fields.
Analysis of the trajectory

DNA conformations were analyzed with the program
Curvesþ (27), which uses commonly accepted conventions
for the definitions of the helical parameters (18,28). From



TABLE 1 Sequence-averaged standard deviations of the

different degrees of freedom

Buckle Propel Opening Shear Stretch Stagger

11.62� 9.37� 4.53� 0.30 Å 0.12 Å 0.43 Å

Tilt Roll Twist Shift Slide Rise

4.46� 7.10� 6.76� 0.71 Å 0.71 Å 0.35 Å

All values given are at 300 K, si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðqi � q0i Þ2iT0

q
. These reference

values were used to express all covariance/stiffness elements in dimension-

less units.
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the distributions of the basepair and basepair-step parame-
ters, we checked the validity of the harmonic approximation
of the free energy (Eq. 1) at all sampled temperatures (see
Figs. S2 and S3, and the detailed discussion in the Support-
ing Material). For all sequences, we then computed the
mean values and covariance matrices, which were inverted
to compute the stiffness matrices (Eq. 2). The entropic
and enthalpic parameters were estimated by linear regres-
sion of 1), each element of the 6 � 6 stiffness matrix (Eq.
6) and 2), each degree of freedom of the equilibrium values
(Eq. 7). We included a systematic estimation of statistical
errors for the computed quantities by the block-averaging
method (29). We used the weighted-least-squares fitting
algorithm (30), which provides error estimates on the fitted
model: the latter is therefore depicted by a shaded area
corresponding to one standard-error deviation rather than
a single line (see, for instance, Fig. 1 B). To discriminate
the cases where the effect of temperature can be reliably
estimated, we introduced a criterion based on the f-test
(30), a statistical test that compares the accuracy of the
two-parameter enthalpic þ entropic model with that of a
one-parameter enthalpic model. The different steps of this
analysis procedure, as well as its validation on artificially
generated data, are described in more detail in section II
of the Supporting Material.
Effects of superhelical stress in biological DNA

We augment a thermodynamic model that efficiently pre-
dicts the local opening properties of superhelical DNA
(19) by adding the temperature and basepair step depen-
dencies of torsional energetics, the computation of which
is included in this article. Here, we briefly describe the
model, and we refer the reader to a study by Jost and
co-workers (19) for more details on the formalism.

Local opening of DNA basepairs can be described by
the Benham model, a thermodynamic model of DNA under
superhelical stress that couples the standard thermody-
namic description of basepairing with the torsional stress
energetics (31). In the limit of long sequences, this model,
defined in a superhelical density-imposed ensemble, is
equivalent to a similar model in the torque-imposed
ensemble where the constant applied torque can be
computed self-consistently for a given superhelical density
(19,32). In this Ising-like model, the energy of a DNA
configuration constrained by a torque, G, is given by

H ¼ HZB �
X
i

�
G2

2C
qi þ

�
G2

2Ki

þ Gwi

�
ð1� qiÞ

�
; (8)

where HZB is the Zimm-Bragg Hamiltonian describing the

denaturation of unconstrained DNA (13), qi ¼ 1 if the base-
pair step i is open and 0 if it is closed, and C ¼ 3:1kBT is the
torsional stiffness of unpaired basepair steps. The sequence-
dependent torsional stiffness, Ki, of double-stranded steps
and the natural helical twist, wi, given in Tables S9 and
S10, are temperature-dependent and have been computed
from Tables S5–S8. Computations of equilibrium properties
for a given sequence (like the local opening probabilities hqii)
are then performed using the transfer-matrix method (19).
Coarse-graining the nanoscale elasticity to the
persistence length

Starting from the computed nanoscale stiffness parameters,
we neglect the influence of the intrabasepair deformations
on the large-scale elasticity and consider only the step fluc-
tuations. In an ideal B-DNA helix, only the two bending an-
gles (tilt, t, and roll, r) contribute to the large-scale bending
of the molecule:lp ¼ 2b=½hðt � t0Þ2i þ hðr� r0Þ2i�, where
bx0:34 nm is the average rise. This relation is, however,
not true for the real molecule, where all six step degrees
of freedom contribute to this bending because of local dis-
tortions. We use a coarse-grain calculation (20) that takes
these effects into account to compute the persistence length
from the nanoscale parameters. The simpler tilt-roll relation
is used to compute error bars. Note that because the devia-
tions from the ideal B-DNA helix remain small, the discrep-
ancy between the two methods is typically <5% (20).

From the sequence-dependent parameters obtained from
the simulations, the sequence-neutral persistence length is
computed by averaging the mean rise and the angle fluctu-
ations (covariance matrix) over the 16 possible dinucleo-
tides. The computed values are in the same order of
magnitude as the experimental values, but significantly
lower (~40 nm instead of ~50 nm, or 120 instead of
150 bp). Similar deviations have already been observed by
Becker and Everaers (20), and it is unclear whether this
effect is a consequence of the MD-estimated microscopic
fluctuations or the calculation method. We assumed that
this issue does not influence the computed temperature
dependence and therefore rescaled them by their value at
278 K, following Theodorakopoulos and Peyrard (9).
Hybrid model

We construct a hybrid model by including the temperature
dependence of the double-helical stiffness, computed in
the previous paragraph, in a recently proposed model (9)
Biophysical Journal 105(8) 1904–1914
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shear
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GGGG
roll

stiffness stiffness

covariance/T covariance/T

FIGURE 1 Linear fitting of the stiffness (upper)

and corresponding temperature dependence of the

variance (lower) for two typical diagonal matrix el-

ements. (A) Intrabasepair parameter shear

(sequence AGA). (B) Step parameter roll

(sequence GGGG). In both cases, the data points

rule out a purely enthalpic model (dotted line).

The temperature dependence of the distribution is

compatible with a linear entropic contribution,

within the statistical errors of the simulations

(shaded area). This contribution is stronger within

the basepair (A) than for the step parameters (B).

Note that we plot the covariance divided by the

temperature, which is constant for a purely en-

thalpic phenomenon. All quantities are expressed

in reduced units, defined using the corresponding

standard deviation si (see Table 1).
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that accounts for the reduction of the effective persistence
length of DNA by transient denaturation bubbles. We
describe here the main lines of the calculation; more detail
can be found in Theodorakopoulos and Peyrard (9).

We model DNA polymer elasticity in terms of a heteroge-
neous Kratky-Porod (KP) (33) chain of N segments of
length a with a configurational energy,

H ¼ �
XN
j¼ 1

Jj;jþ1
~Rj ,~Rjþ1; (9)

N þ 1 basepairs (considered as point monomers for
simplicity), and contour length L ¼ Na. ~Rj is a unit vector
joining the jth to the ðj þ 1Þ th basepair, and the local stiff-
ness constants,

Jj; jþ1 ¼ �
1� qjþ1

�
J þ qjþ1J

0;

are weighted averages of hard (J) and soft (J0) couplings,
according to the probability qjþ1 that the ðj þ 1Þ th basepair
is in the unbound (open) state. The local melting fractions,
fqjg, are computed in terms of the Peyrard-Bishop-Dauxois
model (12,34), using only the sequence information and
the molar ion concentration, c, with no further adjustable
parameters (35,36).

The average end-to-end distance can be numerically
computed for the heterogeneous KP model (9), because
the correlation functions factorize. It is then possible to
use it to extract an effective persistence length, l, from the
relationship <r2> ¼ 2lL� 2l2ð1� e�l=LÞ; which is valid
in the continuum limit of the homogeneous KP chain
Biophysical Journal 105(8) 1904–1914
(known as the wormlike chain), and should be quantitatively
adequate as long as l[a.

The above scheme was used in the Theodorakopoulos
and Peyrard model (9), with c ¼ 0:004; J ¼ 6�
10�12erg; and J0 ¼ 0:14� 10�12erg, to compute the effec-
tive persistence length of the phage fragment studied in
Geggier et al. (37). In this work, we incorporated the tem-
perature dependence of the local stiffness constants arising
from harmonic fluctuations, i.e.,

J/J
kbðTÞ

kbð278KÞ; (10)

where kbðTÞ is the temperature-dependent double-helical
bending stiffness, as estimated from the MD simulations.
RESULTS

We simulated four 18-mers of DNA of different sequences
at temperatures of 273 K, 283 K, 300 K, 325 K, and
350 K at fixed pressure. The atomistic trajectories were
analyzed with the conformational analysis software
Curvesþ (27), which provided distributions of intra (inter-
nal basepair) and step (basepair step) parameters. Our data
set includes all unique mono- and dinucleotide sequences.
However, basepairs and basepair steps can be influenced
by the flanking sequences and in some cases (17) can lead
to bimodal parameter distributions. We observe such effects
(see Fig. S3) and deal with them by separately analyzing
each trinucleotide or tetranucleotide sequence fragment
(see Table S1). In this case, for the oligomers we studied,
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the distributions can indeed be approximated as single
Gaussians, compatible with the harmonic approximation
of the free energy. The covariance matrices are inverted to
compute stiffness matrices, from which we estimate the
entropic contribution according to Eq. 6. We include a sys-
tematic estimation of the statistical errors for the matrix
elements, which are fitted independently of each other
(see Models and Methods). Fig. 1 shows typical examples
of such fits for diagonal matrix elements of intra (Fig. 1
A) and step (Fig. 1 B) parameters, where the entropic contri-
bution is apparent.

Note that the different degrees of freedom cannot be
analyzed separately. The passage between the stiffness and
the covariance elements involves a matrix inversion, which
couples the 6 � 6 degrees of freedom and their respective
levels of statistical noise; an example of the complete fitting
procedure is shown in Fig. S5. The good agreement between
the fitted model and the data points in both representations
is therefore nontrivial and validates the approximations
used in our analysis. We now discuss separately the results
obtained for the intra and step parameters.
Internal basepair flexibility

In this section, we describe the effect of temperature on in-
ternal basepair flexibility. As explained previously, we esti-
mate the entropic contribution separately for each sequence
fragment (here trinucleotides) where the harmonic approxi-
mation is valid. Fig. 2 shows the temperature evolution of
the stretch and opening stiffnesses, averaged over the A-T
(Fig. 2 A) and C-G (Fig. 2 B) basepairs. Note that we use
reduced units, dividing all coordinates by their average stan-
dard deviations, si, at T0 ¼ 300 K (Table 1).
We were not surprised to find that the values depend

strongly on the type of basepair, reflecting the different
number of hydrogen bonds (three for C-G and two for
Opening

Stretch

A A-T stiffness B C
A-T). The effect of temperature emerges in all cases as a
regular linear decrease of the stiffness. We measure the
strength of this entropic contribution by comparing it to
the enthalpic part (Eq. 6). For stretch (Fig. 2, upper), this
ratio is ~0.5 at room temperature, i.e., the stiffness has
already dropped to half its value at 0 K. For opening
(Fig. 2, lower), the effect is weaker (~0.3), and still more
so for the other degrees of freedom.

Interestingly, the influence of base sequence is slightly
different for these two parameters. For stretch, although
the stiffness constant for the C-G basepair at T0 ¼ 300 K
is ~50% larger than that for A-T, the entropic stiffness
(slope) is of the same order: the relative entropic contribu-
tion is therefore stronger for A-T. For opening, on the other
hand, the stiffness of the C-G basepair at room temperature
is three times stronger than that of A-T, but here, the
entropic contribution is also approximately three times
higher, so that its relative weight is similar.

At this level, the error bars still partly reflect the structural
heterogeneity due to the flanking sequences. We therefore
look at the results obtained for the different trinucleotides,
including the remaining degrees of freedom. These results
are summarized in Fig. 3 A, which gives the relative entropic
contribution (as described in the previous paragraph) plotted
against the stiffness at room temperature. In this representa-
tion, the behavior noted previously for opening is reflected
in the fact that the two groups of points are distant horizon-
tally (different stiffness at T0) but have approximately the
same values on the vertical axis.

We systematically determine which parameters present a
detectable entropic contribution by applying a quantitative
criterion, comparing the accuracy of the enthalpic þ
entropic model with that of a purely enthalpic one (see
Models and Methods). An entropic contribution is detected
for all sequences with respect to the opening angle and the
three translational parameters stretch, shear, and stagger.
-G stiffness

FIGURE 2 Temperature dependence of the stiff-

ness for the stretch-stretch (upper) and opening-

opening (lower) diagonal terms on the A-T (A)

and C-G (B) basepairs. The reduced units are

defined using the average standard deviation of

each parameter, si, given in Table 1. Here, the error

bars partly reflect the structural heterogeneity due

to the flanking sequences. The effect of tempera-

ture is strongest in these two degrees of freedom:

at room temperature, the average stiffness has

decreased by ~45% and 30%, respectively, with

respect to the values at 0 K (enthalpic stiffness).

Biophysical Journal 105(8) 1904–1914



A B
T=273K T=273KT=650K
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T=650K

Extrapolation
FIGURE 3 Entropic contribution to internal

basepair elasticity: (A) Relative entropic contribu-

tion to the stiffness, compared to the enthalpic stiff-

ness, for different sequences. Note that because the

units are parameter-specific, the values of different

parameters should not be compared. Although the

stiffness of the A-T and C-G basepairs is very

different in the opening direction, the relative

entropic contribution is similar. (B) Illustration of

the sequence-averaged range of fluctuations in

the different degrees of freedom for T ¼ 273 K

and extrapolated to T ¼ 650 K, i.e., close to the

destabilization of the basepair (see text) to empha-

size the temperature effect. Note that the colored

rectangles in B correspond to the colors of the

basepair parameters in A. In the directions most

sensitive to temperature, stretch, and opening, the

fluctuations become considerable.
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The error bars are small enough to discriminate the individ-
ual (trinucleotide) sequences, confirming the influence of
flanking sequences on basepairs. The contributions are
strongest for stretch and opening, as noted previously; for
shear and stagger, the relative entropic contribution is
~0.25 at room temperature. In contrast, the two other
angular parameters exhibit very little or no detectable
entropic contribution (for details, see Table S2).

We then look at the equilibrium values, i.e., Eq. 7. The
parameters for which temperature induces an average
displacement are generally also those for which the stiffness
changes; the average stretch increases, as does the average
opening, but mainly for G-C. The other parameters do not
exhibit a systematic effect.
Basepair step flexibility: parameterization of a
T-dependent rigid-basepair model

We now focus on the step parameters. Our oligomers
contain the 10 unique dinucleotides, each located within a
single tetranucleotide except for AA, which is present in
two sequence contexts (see Table S1).

The stiffness values for the step parameters are less uni-
form than those for the intra parameters, as is the effect of
temperature. For most sequences, an entropic contribution
is found for the two bending angles, tilt and roll, and for
the translational-parameter rise. The relative weight of this
contribution, defined in the previous section as (ks �
300 K)=kh, spans the intervals 0.25–0.5, 0.15–0.35, and
0.25–0.4, respectively, depending on the sequence. As an
example, Fig. 1 B shows the roll-roll diagonal elements of
the GG dinucleotide: the entropic contribution clearly
emerges from the statistical errors but is indeed smaller
than for shear. More surprisingly, the twist and shift stiff-
nesses exhibit a very low sensitivity to temperature.

The temperature dependence of the equilibrium step pa-
rameters is a question of considerable interest: amodification
of the spontaneous basepair stacking would be an evolu-
Biophysical Journal 105(8) 1904–1914
tionary challenge to organisms living at high temperatures.
Such a modification is not observed in the data. The only
parameter where a clear and sequence-independent tendency
emerges out of statistical noise is rise, which typically in-
creases by 2–3% in the temperature interval considered.
The equilibrium twist angle decreases by 1–2� for about
half of the sequences (e.g., TA, GC, and GA) and remains
approximately constant for the other ones, except in the
case of CG, where it increases, yielding an average decrease
of ~0.5�. The relation between the living temperature of or-
ganisms and supercoiling is discussed in the next section.

These results show that the entropic effect on basepair step
elasticity is detectable, butmore limited than that on basepair
elasticity. Note that this conclusion may also be affected by
slower equilibration times, which would require a greater
computational effort to resolve. Our analysis provides, to
our knowledge, the first parameterization of a temperature-
dependent rigid-basepair model of DNAwhere the entropic
contributions are sequence-dependent. Altogether, themodel
includes 156 nonzero entropic parameters in addition to the
270 parameters required for describing the elasticity at a sin-
gle temperature. It is also the first model, to our knowledge,
that systematically includes confidence intervals for these
parameters, which can be used to estimate error bars for
the quantities computed at the coarse-grain level, as we
show in the next paragraph. The model parameters are given
in Tables S5 and S7. Note that for the AA dinucleotide,
treated in two different sequence contexts, we arbitrarily
chose the values computed for the CAAA data set, where
the mean values are closer to those reported in crystallo-
graphic structures (21), and where we had more data points.
DISCUSSION

Temperature dependence of soft vibration modes

Our results demonstrate that the basepair internal stiffness
contains an important entropic contribution. This contribu-
tion is strongest for the stretch and opening degrees of
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freedom (Fig. 3 B). Although A-T and G-C basepairs differ
by their enthalpic stiffness constants, they show similar
ratios, ks=kh (see also below). In an experimental setting,
the corresponding temperature sensitivity of soft vibration
modes might be accessible via Raman spectroscopy or
neutron scattering.

Few studies have dealt with the temperature dependence
of these spectra. Among those that have, the only one (to our
knowledge) that focuses on the frequency shifts in the dou-
ble helix is that of Grimm and Rupprecht (38). The neutron-
scattering spectra in that study exhibit a mode at ~1.1 THz
(4.5 meV) at 193 K, which softens to ~0.85 THz at 300 K,
i.e., a relative softening of ~20–25%, or, in our terms, a rela-
tive entropic weight at room temperature of ~0.45, consis-
tent with our results. These numbers must be treated with
some caution, however, since the data only allow a qualita-
tive estimation of this softening. Another problem is the
indexing of the associated mode with respect to the base
and basepair degrees of freedom. From the distributions in
our simulations, we estimate that the internal basepair vibra-
tions have frequencies between 0.6 THz (opening) and
2.4 THz (stretch); the latter value has been reported in
Raman spectra (39). The step frequencies are generally
lower, in the 0.3–0.6 THz range. This indexation thus
requires further experimental support, but if the observed
mode corresponds indeed to an intrabasepair eigenmode,
it is in qualitative agreement with the entropic contribution
observed in our simulations.
The path to the melting transition

Our harmonic model is the first-order approximation of the
DNA double-helical free energy. For obvious reasons, these
fluctuations have to be bounded for the model to be valid:
the eigenvalues of the stiffness matrix have to be positive.
Within our description of the temperature-dependent stiff-
ness, kðTÞ ¼ kh � Tks, the double helix is thus predicted
to become unstable at Ts ¼ kh=ks, known in the thermody-
namics literature as the spinodal temperature (40). Depend-
ing on the sequence, this temperature is estimated to be
between 550 and 660 K (Table S4). As a comparison, we
note that the spinodal temperature of liquid water at atmo-
spheric pressure, Tsx600 K (41), is comparable to the value
we estimate for the double helix.

These large values signify that our biologically relevant
range of temperature (273–350 K) remains far below the
limit of (meta)stability of the double helix, thus justifying
the approximation of constant kh and ks values: the melting
transition occurs before these values change significantly.
Note that the double helix might still exist as a metastable
state for temperatures Tm<T<Ts.

The eigenvector associated with the decomposition of the
basepair at Ts reflects the directions for which the fluctua-
tions are most sensitive to temperature. Fig. 3 B shows
that the basepair is destabilized in the stretch direction,
with a simultaneous partial opening. Qualitatively, these
directions may also indicate the direction of the kinetic
pathway toward melting.

With our MD simulations, sampling only double-helical
states, we rely in the following on standard theories of
DNA melting (11,13) to provide information on the relative
stability of single-stranded DNA and the thermodynamics of
bubble formation.
DNA in vivo: torque control of the local opening
probability

How do our results apply to DNA in living cells, in partic-
ular for extremophiles living at temperatures close to or
above 85�C, the typical melting temperature of uncon-
strained DNA (42)? In these organisms, many proteins
bind to double-helical DNA (43), and the opening of a sig-
nificant fraction of the molecule would probably be lethal. It
has been suggested that the double helix could be stabilized
by over-twisting (14). Maintaining DNA under superhelical
stress by specific enzymes could thus be one of the strategies
used by extremophiles to keep their DNA closed even
beyond 85�C. In vivo, the double helix is therefore not
free, as in our simulations, but in a constrained torsional
state. Consequently, one may wonder if this constraint can
affect the elastic and structural properties of the DNA
double helix and therefore modify local physicochemical
features like the binding constants of transcription enzy-
matic complexes.

To account for this effect, we use a recently proposed
method that allows the efficient computation of DNA
melting properties under superhelical stress imposed by an
applied torque (19). Augmenting the Benham model to
incorporate the temperature and basepair step dependencies
of twisting energetics studied in this article (see Models and
Methods), we evaluate the suitable torque needed to stabilize
the double helix at high temperatures and combine this esti-
mation with our previous results to estimate the elastic prop-
erties of the biologically relevant constrained helix.

As a function of the temperature, we compute the torque
needed to maintain an open fraction of 1% for the
genomic sequence of the extremophilic bacteria Thermus
thermophilus. This fraction corresponds to the typical open-
ing probability ofEscherichia coli under standard physiolog-
ical temperature and superhelical density Dsx� 0:06 (19).
This propensity to open is mainly located at gene promoters
and transcription start sites (19), enhancing gene expression
by polymerase enzymes (44). The constraining torque in-
creases with temperature (see Fig. S6), and as noticed in
previous studies by Benham (14), the model predicts that
the stability of the double helix can be maintained only up
to a critical temperature, which depends on the sequence
(data not shown). In Fig. 4, we plot the different contributions
of the average basepair step stability. At high temperatures,
thermal destabilization of pairing and stacking (gray dashed
Biophysical Journal 105(8) 1904–1914



FIGURE 4 Stabilization of the DNA double helix in vivo by superhelical

stress for temperatures between 273 K and 380 K, where extremophile or-

ganisms exist. Although unconstrained DNA (gray dashed line) is unstable

at high temperatures, the contribution of the average twist in the free energy

(dotted line) maintains the stability of the double helix (black solid line) for

an additional 15 K, with an almost constant opening penalty of ~0.2 kcal/

mol. Above a critical temperature Tc z 378 K (dots), the contribution

from the twist stiffness of the double helix (dash-dotted line) prevents

further stabilization. The superhelical stress opposes the spontaneous

decrease of the average twist, and results in an ~1�/bp increase in the

considered interval.
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line) is prevented by the contribution of the average twist
(dotted line) in the free energy of the constrained helix, main-
taining an almost constant basepair-step opening penalty of
0.2 kcal/mol (black solid line). Above a certain temperature,
the stabilization is limited by the strong twisting stiffness of
double-stranded steps (dash-dotted line), and the double
helix starts to melt. For T. Thermophilus, we find a critical
temperature of 106�C, which is 15�C higher than the melting
temperature in the absence of superhelical constraints. Inter-
estingly, this value is close to the highest living temperatures
of extremophilic organisms, suggesting that the stability of
the double helix may indeed be the limiting condition for
their existence.

At this limit, the stabilizing torque is surprisingly low
ð� 2 kBTÞ. Although the resulting twist excess is important
in 1% of open basepairs (~33�/bp, close to the average twist
of B-DNA; see Fig. S7), the action of the torque results only
in a weak local twist excess for double-stranded regions,
ranging from 0.8�/bp for stiff basepair steps to 2.5�/bp for
soft ones. These values should be compared to the typical
twist standard deviation at room temperature (~6�/bp). For
comparison, adding 1� to the spontaneous twist per basepair
increases the superhelical density, Ds, by ~0.03. At the
rigid-basepair level of description, the properties of the
constrained helix can therefore be described in the regime
of linear response, where the equilibrium conformation is
displaced but the elasticity remains identical to that of the
Biophysical Journal 105(8) 1904–1914
relaxed helix. The stiffness parameters extracted from our
simulations, with their limited temperature dependence,
are therefore relevant to biological DNA. Using these
parameters, we compute the mean conformation at the crit-
ical temperature by relaxing the sequence-neutral helix
under the suitable torque. The resulting twist modification
is shown in Fig. 4: the external torque goes against the small
spontaneous twist decrease and results in an average in-
crease of ~1� in the interval under consideration, between
0�C and the critical temperature.

Note that the computed values correspond to the base
content of a specific organism and neglect the influence of
other physicochemical parameters (ionic strength), as well
as alternate structural transitions that may contribute to
releasing the superhelical stress, in particular the B-Z tran-
sition (45). These contributions may therefore shift the
computed critical temperature in an organism-dependent
way (for instance, we estimate that Tc ¼ 90�C for E. coli).
However, since they are (at first order) purely enthalpic,
they should not modify the basic mechanism.

Altogether, our results show (14) that under constraints,
double-stranded DNA can exist above the typical DNA
melting temperature. Our simulations make it possible to
compute its elastic and structural properties, which remain
close to those of unconstrained DNA at room temperature.
These observations explain how similar molecular mecha-
nisms of DNA-protein associations can exist for organisms
living in the whole temperature range (43). Locally, the
melting profiles may also be driven out of equilibrium by
in vivo active processes, in particular transcription (46),
which may induce a transient superhelical addition (or
removal) in the same range of values computed here (47).
Large-scale flexibility of unconstrained DNA

As a final point, we address the (apparent) large-scale
bending flexibility of DNA. At the wormlike-chain level,
the details of themolecule are averaged out and the flexibility
is described by the bending persistence length, lpðTÞ, i.e.,
the bending correlation length of the polymer, which is
related to the bending stiffness, kbðTÞ, by the relation

lpðTÞ ¼ b
kbðTÞ
kBT

; (11)

where b is the length of a rigid element of the polymer.

Within the rigid-basepair model, these parameters can be
derived from the nanoscale structure and elasticity via a sys-
tematic coarse-graining procedure (20). We note that the
three step parameters most influential in terms of large-scale
bending are also the ones for which the effect of temperature
is strongest. Not surprisingly, our estimate for the bending
stiffness, kbðTÞ, of the DNA double helix exhibits a weak,
but noticeable, temperature dependence (Fig. 5, gray line;
shaded area indicates the estimated error bar).



FIGURE 5 Persistence length of sequence-averaged DNA, multiplied by

temperature and rescaled by its value at 278 K. In this representation, a

purely enthalpic stiffness yields a temperature-independent value (dotted

line). The markers; and- are the experimental data points from Geggier

et al. (37) obtained with two types of ligase enzymes. Gray solid line: MD-

derived values of the persistence length, with the estimated error bars

(shaded area), i.e., the contribution from the double-helical elasticity;

dashed line: contribution predicted from the denaturation bubbles (9); black

solid line: the hybrid model, including both contributions.
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Recent measurements (37) have indeed ruled out a tem-
perature-independent stiffness, kb (Fig. 5, dotted horizontal
line). However, the data included in Fig. 5 show a temper-
ature effect, which is considerably stronger than expected
from our results for the DNA double helix. In addition
to softening the double helix, the flexibility of DNA may
also increase due to the presence of transient denaturation
bubbles that generate local kinks (7,8). In a different
study, two of the authors of the article presented here
quantitatively implemented this idea and reproduced the
dramatic decrease of the apparent stiffness in the premelt-
ing stage (Fig. 5, last datapoint) (9). However, at lower
temperatures, the bubble formation is insufficient to repro-
duce the experimental slope if the stiffness of the double
helix is assumed to be independent of T (Fig. 5, dashed
line).

Here, we present the results from a hybrid model, which
accounts for the temperature dependence of the double-
helical stiffness, as well as for the effect of bubbles,
and which is in good agreement with the experimental
data (Fig. 5, solid line). At physiological temperatures, the
two effects contribute equally strongly. Closer to the melting
transition, the unharmonic effects dominate.
CONCLUSION

The nanoscale mechanical structure and elasticity of the
DNA double helix can be inferred from the analysis of crys-
tallographic data and MD simulations. To date, there is
almost no information on how these properties vary with
temperature. In this article, we present results fromMD sim-
ulations of DNA oligomers at different temperatures. We
show that entropy plays a significant role in double-helical
elasticity, both inside the basepair and, to a lesser extent,
between successive basepairs.

At the internal-basepair level, this entropic contribution is
particularly strong in the stretch and opening degrees of
freedom. With increasing temperature, it results in a signif-
icant broadening of the harmonic fluctuations in these direc-
tions of the basepair plane, which can be considered the
initial step of the DNA melting pathway.

At the basepair step level, the entropic contribution is
weaker but detectable. It is strongest in the roll, tilt, and
rise degrees of freedom relevant to the large-scale bending
rigidity. We include the resulting temperature dependence
of the persistence length of the DNA double helix in a
description of kinking in transient denaturation bubbles.
Our predictions for the effective large-scale bending stiff-
ness agree with the experimentally measured values for
standard physiological conditions up to temperatures close
to the melting temperature of DNA.

It is remarkable that living organisms thrive over an even
broader temperature range. To describe DNA in vivo, we
have assumed that biological organisms control the stability
of the double helix by regulating superhelical stress. We
have estimated the required values from the Benham model
and included the effect in our description of the nanoscale
properties. Overall, we find a remarkably small temperature
dependence of the structure and flexibility of genomic DNA,
compatible with conservation of protein-DNA binding
mechanisms (43).
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I. Dataset

Trinuc Occ
AAA 2
AAC 2
CAA 3
GAT 2
TAG 3
TAT 2
ACA 2
CCC 9
GCG 9
TCT 2

Tetranuc Occ
AAAC 2
CAAA 3
AACA 2
TAGA 3
GATA 2
ACAA 2
GCGC 5
AGAT 2
CGCG 4
GGGG 9
ATAG 2

Table S1: Number of occurrences of trinucleotide (intra parameters) and tetranucleotide (step pa-
rameter) sequences. We analyzed these sequences separately, rather than the central mono- or
dinucleotides where the Gaussian approximation is not valid (see text and Fig. S3).

II. Methods

Analysis of the trajectory DNA conformations were analyzed by the program Curves+ (1), which computes a full
set of helical, backbone and groove parameters. Curves+ uses the commonly agreed “Tsukuba” reference frame for the
description of each base (2), and the Cambridge convention for the names and signs of all helical parameters (3). We
focused on the internal base-pair and the base-pair step deformations. Starting from the time series of these parameters as
provided by Curves+ (and the associated trajectory analysis program Canal), subsequent analysis (Boltzmann inversion,
covariance and matrix inversions, error estimates, Monte Carlo generation of “artificial data”, linear regressions, plots) was
developed in Python, with the use of the Numpy/Scipy libraries (4) and the MatPlotLib library for plotting (5).

We checked for the absence of any melting or end-fraying of the oligomers, using the intra parameters obtained at the
different positions and temperatures (Fig. S2), especially the highest (325K and 350K). Only two cases showed aberrant
values, which were attributed to partial melting and eliminated. We also checked that the distributions are monomodal and
stable at all temperatures (see Fig. S1), and we compute the covariance matrix. By inverting the latter, we get the stiffness
matrix (Eq. 2), which will be used to estimate the enthalpic and entropic contributions according to Eq. 6.

A comparison between the distributions obtained with different occurrences of given sequence fragments shows that
the statistical power is sufficient to resolve the relatively small temperature-induced variations, except in some cases at the
lowest temperatures where kinetics are slower. To quantify this effect, we systematically estimate statistical confidence
intervals for the computed quantities (see next section). Because the runs at the lower temperatures have larger error bars,
their relative weight in the subsequent modeling is proportionnally reduced: to compensate this effect, we conducted more
simulations for this range of temperatures.

Linear fitting of the simulation data To estimate the errors on the computed stiffness, covariance and equilibrium
values, we used the block averaging method (7). This is a generalization of the simple idea that the statistical errors can
be estimated by comparing the values obtained by splitting a trajectory into shorter parts (“blocks”), and computing the
quantity of interest separately for each block.
1
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Figure S1: Free energy functions, obtained by Boltzmann inversion of the MD distributions projected along the 6 step
degrees of freedom (left column: angular, right column: translational), for the GG sequence. Simulated temperatures: 273K
(blue), 283K (green), 300K (black), 325K (orange), 350K (red). The distributions have the same shape at all temperatures
(even 350 K), indicating the absence of melting in the analyzed base-pairs. In particular, they are all monomodal: we
consider the harmonic approximation in the subsequent analysis. Bimodal distributions were observed in some very specific
cases, already noticed in (6).
We separate the enthalpic and entropic contributions by finding the best linear fit for the temperature dependence of
(i) each of the stiffness matrix elements (Eq. 6), and (ii) each degree of freedom of the equilibrium values (Eq. 7). The
weighted least square fitting procedure from (8) gives a reduced weight to data points with poor precision, and provides not
only the best fit parameters (the enthalpic and entropic stiffness contributions), but also error estimates for these parameters
and correlations between them. The values and errors of the stiffness matrix at any temperature can be calculated from
these numbers, as depicted in the plots by a shaded area rather than a single line: see for instance Fig. 1B.

We introduce a quantitative criterion, to discriminate between the cases where the effect of temperature on the data can
be reliably estimated, from those where it is too small to be quantified. The “f-test” (8) compares the accuracy of a model
with an enthalpic and entropic contribution (two parameters) and that of a purely enthalpic model, and determines if the
gain in precision justifies the more detailed model. Our criterion is a threshold on a number obtained from a combination
of this test with the relative uncertainty on the temperature ts and Pearson’s correlation coefficient between the data points.
The two latter contributions were added to eliminate some specific cases where the f-test was positive, while the results of
the fit lacked precision.

Validation of the analysis method The covariance and stiffness matrices are related by an inversion operation (Eq. 2),
which mixes the errors of the different stiffness matrix elements. We made the simplistic hypothesis that the latter are
2
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Figure S2: Mean val-
ues (dots) and standard
deviations (bars) of the
base-pair step parame-
ters computed along the
oligomer CGCG, at the
simulated temperatures:
from 273 K (blue) to 350
K (red) (same color code
as Fig. S1). The outer 4
bps on either side of the
oligomer have been ex-
cluded of the analysis to
eliminate possible end
effects. (Upper panel)
Odd bps (CG steps);
(lower panel) even bps
(GC steps). The over-
all regularity of the val-
ues shows the absence
of long-acting fraying or
melting, even at T =
350K. Comparison
of the values obtained
at the different posi-
tions for the same din-
ucleotide indicates that
for the lowest tempera-
tures, the remaining sta-
tistical noise is some-
times important: see for
instance the mean values
of twist, for the GC steps
(lower panel).
independent. From the fitted stiffness model, the computation of a model-derived covariance matrix (including the error
estimates) then involves (i) generating an ensemble of stiffness matrices representative of the estimated uncertainties by
Monte Carlo ; (ii) inverting each of these matrices and (iii) computing the average and standard deviation of the resulting
ensemble of covariance matrices. The hypothesis of independence of the stiffness errors implies that the computed covari-
ance errors are an upper bound. A comparison with the covariance error bars computed directly on the data shows that
they are indeed larger, but are of same order of magnitude, and can therefore be considered acceptable given the possible
equilibration problems (see for instance Fig. 1, lower panel).

To validate the entire procedure, we apply it to “artificial” trajectories, which were generated so as to mimic the prop-
erties of the real data, but where we know by construction the “true” parameters. The application of the procedure indeed
allows the “input” properties to be recovered within the estimated error bars.
3
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Figure S4: Computation of the statistical errors by the “block averaging” procedure, here for the rise variance of GC at
325K. For each “block size” tb, we split the trajectory into parts, and the “block error” is then given by standard deviation
of the resulting values, divided by the square root of the number of blocks

√
T/tb. When the block size is small compared

to the correlation time of the considered quantity (left part), the block values are not independent, and the computed error is
therefore underestimated. For longer sizes, the samples become uncorrelated and the computed error becomes independent
of the block size: the value of this plateau provides a reliable error estimate. In each case, we compute the confidence
interval (vertical bar) of the computed error, and we fit the curve with an exponential function, yielding the correlation time
τc. The details of the method are given in (7). In most cases, the correlation time is of the order of 1 ns; in some cases
however, the data exhibited very long correlation times, which we attributed to large-scale rearrangements of the molecule:
the computed error was then multiplied by a factor 2 for security.
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II. Internal bp elasticity

Entropic contribution to the stiffness and equilibrium values:
Results for the different parameters and sequences

Seq buckle propel opening shear stretch stagger
AAA ∞ ∞ 2.82± 0.12 5.21± 0.34 2.32± 0.04 3.74± 0.25
AAC ∞ 2.60± 0.19 3.05± 0.12 6.50± 0.46 2.39± 0.04 2.99± 0.14
CAA ∞ ∞ 2.78± 0.12 5.62± 0.31 2.21± 0.04 4.80± 0.48
GAT ∞ ∞ 2.34± 0.15 4.23± 0.33 1.95± 0.05 2.92± 0.14
TAG ∞ ∞ 2.83± 0.13 6.76± 0.55 1.95± 0.04 5.50± 0.44
TAT ∞ ∞ 3.25± 0.20 4.34± 0.21 1.98± 0.04 2.93± 0.13
ACA ∞ ∞ 2.95± 0.09 3.22± 0.13 2.51± 0.06 4.59± 0.38
CCC ∞ 4.44± 0.25 3.41± 0.06 4.15± 0.13 2.51± 0.04 3.94± 0.09
GCG ∞ ∞ 2.90± 0.06 3.91± 0.14 2.22± 0.03 3.58± 0.16
TCT ∞ ∞ 3.38± 0.14 2.91± 0.09 2.50± 0.06 3.40± 0.16

Table S2: Spinodal temperature computed separately for the diagonal elements of the intra-bp stiffness matrix, in units of
300K: ts = kh/(300K.ks). This value is the inverse of the relative entropic weight shown in Fig. 3: an infinite spinodal
temperatures signifies the absence of an entropic contribution (buckle, propeller), and a strong contributions yields a value
close to 1 (stretch, opening).

Seq buckle (°) propel (°) opening (°) shear (Å) stretch (Å) stagger (Å)
AAA 8.21 -6.25 -1.52 0.0 -0.05 0.21

8.79 -17.45 2.91 0.12 0.01 0.00
AAC 0.0 -5.95 0.0 0.0 -0.06 0.29

5.65 -16.38 2.21 0.14 0.02 0.20
CAA 5.45 0.0 0.0 -0.06 -0.06 0.12

7.34 -11.02 3.92 0.06 0.02 -0.16
GAT 0.0 0.0 1.54 -0.12 -0.08 0.37

-3.40 -13.80 3.13 0.09 0.03 0.13
TAG 3.81 -3.66 0.0 -0.03 -0.06 0.27

6.39 -12.84 5.12 0.05 0.03 0.17
TAT 0.0 0.0 -2.48 0.0 -0.07 0.18

2.81 -11.46 3.52 -0.07 0.04 0.11
ACA 0.0 0.0 -1.12 0.0 -0.06 0.21

4.41 -9.97 1.87 -0.03 0.05 0.08
CCC 1.62 1.90 -1.27 0.03 -0.03 0.0

-1.83 -4.28 0.49 0.01 0.01 -0.25
GCG 5.73 0.0 -1.81 0.0 -0.05 0.18

2.27 -9.27 0.22 0.03 0.02 0.20
TCT 0.0 -7.20 -0.84 0.0 -0.04 0.07

2.71 -13.45 1.19 0.04 0.02 0.05

Table S3: Temperature dependence of the equilibrium values, for the intra-bp parameters. For each sequence, the first line
indicates the entropic contribution at room temperature (T0.q′0(s) in the notation of Eq. 7 in the main text), and the second
line gives the value at room temperature (q00(s)). From these two numbers, the equilibrium value at any temperature T is
given by: q0(s, T ) = q00(s)− (T/T0 − 1)(T0.q

′
0(s)).
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Spinodal decomposition of the base-pairs: temperature and direction

ts [300K] buckle propel opening shear stretch stagger
AAA 2.034 -0.287 0.337 -0.56 0.12 -0.606 -0.33
AAC 2.179 -0.019 0.149 -0.05 -0.014 -0.856 -0.492
CAA 2.102 0.067 -0.051 0.456 -0.057 0.873 0.139
GAT 1.743 0.109 0.156 -0.427 0.04 0.799 0.376
TAG 1.848 0.129 -0.072 -0.065 -0.032 -0.955 -0.246
TAT 1.802 0.075 0.094 -0.479 -0.072 -0.84 -0.213
ACA 1.753 0.096 0.082 -0.565 -0.36 -0.707 -0.188
CCC 1.877 -0.04 -0.14 0.554 -0.23 0.782 0.083
GCG 2.034 0.002 0.213 -0.521 0.039 -0.792 -0.235
TCT 1.802 -0.024 0.141 -0.569 0.361 -0.711 -0.143

Table S4: Spinodal decomposition of the base-pairs: temperature and direction of instability. The components of the
eigenvector are expressed in reduced units of the different parameters, where they have comparable values at T0. It therefore
represents their respective weight in the direction of instability. The element of strongest weight is stretch, then opening.
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III. Step elasticity
All following values are also given in separate ASCII files, with the associated error estimates

Equilibrium values

Param CG CA TA AG GG AA GA AT AC GC
Twist (°) -7.92 0. 4.74 4.30 0. 0. 7.10 0. 2.27 9.943
Tilt (°) 0. 0. 0. 0. 0. 0. 0. 0.93 0. 0.
Roll (°) 2.86 0. -9.60 -2.20 1.10 -3.95 -6.18 -1.59 -2.77 -11.96

Shift (Å) -0.076 -0.192 0.565 -0.436 0. -0.363 0.483 -0.400 0. 0.
Slide (Å) 0.189 0. 0. 0.339 -0.222 0.367 0.169 -0.199 0. 0.956
Rise (Å) -0.49 0. -0.348 -0.128 -0.163 -0.308 -0.161 -0.264 -0.102 0.

Table S5: Temperature dependence of the equilibrium conformation (q′0(s).T0 in the notation of Eq. 7). From these values
and those of Table S6, the equilibrium value at any temperature T is given by: q0(s, T ) = q00(s)− (T/T0 − 1)(T0.q

′
0(s)).

Param CG CA TA AG GG AA GA AT AC GC
Twist (°) 30.30 27.76 31.21 32.37 29.99 33.54 36.2 29.71 32.67 35.56

36.1 37.3 37.8 31.9 32.9 35.1 36.3 29.3 31.5 33.6
27.93 25.69 29.74 28.84 29.93 31.04 33.32 29.02 31.46 33.13

Tilt (°) -0.02 1.80 0.11 -1.66 0.18 -2.21 -0.73 0.30 0.02 0.03
0. 0.5 0. -1.7 -0.1 -1.4 -1.5 0. -0.1 0.
0. -0.01 0. 0.99 0.84 -1.52 -0.28 0. -0.36 0.

Roll (°) 9.74 11.80 8.70 4.31 6.02 1.15 1.35 -0.75 -1.13 -2.86
5.4 4.7 3.3 4.5 3.6 0.7 1.9 1.1 0.7 0.3
8.75 8.36 10.33 2.75 5.28 2.31 2.27 0.21 0.63 1.23

Shift (Å) -0.01 -0.15 0.20 -0.47 0.05 -0.41 -0.01 0.00 0.32 0.01
0. 0.09 0. 0.09 0.05 -0.03 -0.28 0. 0.13 0.
0. 0.18 0. 0.05 0.07 -0.14 -0.01 0. -0.12 0.

Slide (Å) -0.13 -0.40 -0.28 -0.54 -1.16 -0.17 -0.66 -0.80 -0.78 -0.21
0.41 0.53 0.05 -0.25 -0.22 -0.08 0.09 -0.59 -0.58 -0.38
-0.76 -0.57 -1.02 -1.33 -1.64 -1.04 -0.92 -1.08 -1.16 -1.09

Rise (Å) 3.16 3.30 3.17 3.38 3.36 3.27 3.42 3.20 3.39 3.45
3.39 3.33 3.42 3.34 3.42 3.27 3.37 3.31 3.36 3.4
3.26 3.13 3.34 3.38 3.61 3.31 3.37 3.2 3.38 3.37

Table S6: Equilibrium conformations at room temperature, q00 . We give the value estimated from our simulations (bold),
from the analysis of DNA-protein crystallographic structures (9) (second line), and from a previous generation of MD
simulations (10) (third line).
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Stiffness values

Param CG CA TA AG GG AA GA AT AC GC
Twist-twist 0.0 0.0 0.027 0.0 0.0 -0.019 0.0 0.0 0.0 0.0
Twist-tilt 0.0 0.0 -0.003 0.0 0.003 0.0 -0.007 0.0 0.0 0.002
Twist-roll 0.005 0.0 0.0 0.0 -0.002 0.0 0.0 0.0 0.0 -0.006
Twist-shift 0.0 -0.041 0.063 0.0 -0.054 0.033 0.0 0.0 0.0 0.0
Twist-slide 0.0 -0.109 -0.193 0.0 -0.078 0.147 -0.245 0.065 0.0 -0.0
Twist-rise -0.173 -0.154 -0.207 0.0 0.0 0.0 0.066 0.0 0.0 -0.121

Tilt-tilt 0.015 0.0 0.0 0.011 0.005 0.015 0.019 0.007 0.011 0.025
Tilt-roll 0.0 0.0 0.0 0.0 0.0 -0.005 0.0 -0.002 0.0 -0.0
Tilt-shift -0.023 -0.031 0.0 -0.037 0.0 -0.045 -0.103 0.0 0.0 -0.096
Tilt-slide 0.037 0.0 0.0 0.075 0.0 0.124 0.0 0.0 0.0 -0.041
Tilt-rise 0.0 0.0 0.0 -0.095 0.0 -0.099 -0.226 -0.104 0.0 -0.0
Roll-roll 0.020 0.004 0.0 0.0 0.012 0.007 0.005 0.011 0.015 0.011
Roll-shift 0.0 0.0 0.0 0.0 -0.028 0.0 0.071 0.0 0.0 -0.0
Roll-slide 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.121 0.163
Roll-rise -0.141 0.0 0.0 0.104 0.0 0.114 0.0 0.0 0.178 0.250

Shift-shift 0.0 0.0 -1.249 0.0 -0.427 0.676 0.0 0.0 0.0 0.0
Shift-slide 0.0 0.273 -0.309 0.431 0.0 0.343 0.0 0.0 -0.623 0.0
Shift-rise 0.0 0.0 0.0 0.675 -0.268 0.847 0.0 0.0 0.0 0.293

Slide-slide 0.866 0.0 0.836 0.0 0.0 0.0 2.002 2.712 1.019 1.225
Slide-rise 0.0 2.177 1.518 0.0 0.0 -0.833 0.0 3.406 1.560 0.0
Rise-rise 5.722 2.613 2.264 3.655 1.537 5.867 5.326 6.833 6.007 3.45

Table S7: Entropic stiffness constants, ks, in units of (kcal/mol)/(deg2.[300K]), (kcal/mol)/(Å2.[300K]), or (kcal/mol)/(deg.Å.[300K]).
From the values k0 at T0=300K (Table S8) and these numerical values, the stiffness at a given temperature T is given by (Eq. 6):
k(T ) = k0 − (T/T0 − 1)ks.

Param CG CA TA AG GG AA GA AT AC GC
Twist-twist 0.0184 0.0169 0.0248 0.0305 0.0386 0.0318 0.0433 0.0422 0.0483 0.034

(0.0227) (0.021) (0.0357) (0.0441) (0.0482) (0.0461) (0.0422) (0.0463) (0.0489) (0.0421)
Twist-tilt* 0.0001 0.0026 0.0001 0.0087 0.0 0.0097 0.0003 -0.001 0.0047 0.0002
Twist-roll 0.008 0.0089 0.0117 0.0094 0.0085 0.0115 0.0107 0.0126 0.0108 0.0062

Twist-shift* -0.0003 -0.0097 0.0125 0.0922 0.0278 0.0805 0.012 -0.0166 0.0192 0.0029
Twist-slide -0.0688 -0.0429 -0.0687 -0.0725 -0.174 -0.1107 -0.216 -0.101 -0.175 -0.139
Twist-rise -0.255 -0.213 -0.212 -0.207 -0.205 -0.218 -0.174 -0.160 -0.189 -0.256

Tilt-tilt 0.0348 0.0284 0.0241 0.04 0.0442 0.0453 0.0416 0.0404 0.0433 0.0459
(0.0278) (0.0275) (0.0245) ( 0.0371) (0.0414) (0.0389) (0.0392) (0.0404) (0.0411) (0.0396)

Tilt-roll* -0.0001 0.001 0.0001 0.0033 -0.0022 -0.0006 -0.0028 0.0003 0.0041 -0.0003
Tilt-shift -0.107 -0.0451 -0.0097 -0.0367 -0.0547 -0.0269 -0.0623 0.0239 -0.0297 -0.1154

Tilt-slide* 0.0017 -0.003 -0.0156 0.0138 0.0101 0.0073 0.0082 -0.0147 -0.0436 -0.0046
Tilt-rise 0.0051 -0.0096 -0.0104 -0.166 -0.219 -0.236 -0.275 -0.0213 0.0575 0.0034
Roll-roll 0.0224 0.0209 0.0178 0.0215 0.0231 0.0231 0.0211 0.0262 0.0261 0.0248

(0.0153) (0.0184) (0.0136) (0.0227) (0.0241) (0.0235) (0.0211) (0.0272) (0.0267) (0.0275)
Roll-shift -0.0019 0.0258 0.0077 0.0248 -0.0025 -0.0036 0.0287 0.0215 0.0338 0.0028
Roll-slide -0.0034 -0.0124 0.0087 -0.0567 -0.036 -0.0788 -0.0262 -0.0369 0.03 0.0904
Roll-rise -0.1039 -0.1066 -0.1016 -0.0447 -0.0251 -0.0066 -0.0292 0.0624 0.104 0.1651

Shift-shift 1.480 1.524 0.781 1.595 1.690 2.257 1.700 1.425 1.526 1.420
(1.346) (1.600) (1.529) (1.657) (1.984) (1.975) (1.430) (1.193) (1.341) (1.761)

Shift-slide* 0.0098 -0.0735 -0.076 0.252 0.1347 0.4312 0.3307 -0.269 -0.3643 -0.0199
Shift-rise* 0.0058 0.0585 0.145 0.3118 -0.022 0.653 0.572 -0.168 0.133 -0.0122
Slide-slide 2.362 1.716 1.457 1.951 2.469 2.373 2.592 4.346 3.559 3.184

(2.034) (2.286) (2.269) ( 2.706) (3.215) (2.914) (2.518) (3.310) (2.974) (2.708)
Slide-rise 1.095 1.314 0.860 1.329 1.928 0.960 1.405 2.857 2.539 2.258
Rise-rise 7.358 6.083 6.967 7.906 8.879 9.468 9.098 10.56 10.35 10.54

(4.390) (6.290) (5.055) (6.388) (7.335) (7.621) ( 8.330) ( 10.50) (9.88) (10.28)

Table S8: Stiffness k0 at room temperature, T0 = 300K, in units of (kcal/mol)/deg2, (kcal/mol)/Å2, or (kcal/mol)/(deg.Å) for angular,
translational, or mixed deformations, respectively. For the diagonal elements of the stiffness matrix, we indicate in parenthesis the
previous MD values from (10), obtained with different force fields, water model, and oligomer sequences. The non-diagonal parameters
indicated with a star should be zero for self-complementary sequences (CG, GC, AT, TA) for symmetry reasons.
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IV. Torque-control of DNA stability

Param CG CA TA AG GG AA GA AT AC GC
w0 (°) 30.3 27.8 31.2 32.4 30.0 33.5 36.2 29.7 32.7 35.6
w′0 (°) -7.9 0.0 4.7 4.3 0.0 0.0 7.1 0.0 2.3 9.9

Table S9: Natural helical twist w for the 10 different base-pair steps. At any temperature T , w = w0 − (T/T0 − 1)w′0
(T0 = 300K) and represents the equilibrium value of "Twist" given in Tables S5 and S6

Param CG CA TA AG GG AA GA AT AC GC
K0 0.81 0.78 1.15 1.47 2.33 1.38 2.09 3.16 3.24 1.84
K ′0 -0.44 -0.72 0.77 -0.35 -0.56 -1.44 -2.30 0.73 0.05 -0.59

Table S10: Torsional stiffness K for the 10 different base-pair steps. At any temperature T , K = K0 − (T/T0 − 1)K ′0
(T0 = 300K) and represents the inverse of the twist-twist element of the matrix k−1 with k the stiffness matrix given in
Tables S7 and S8. In units of 10−2 kcal/mol/degree2.
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Figure S6: External torque applied on DNA in vivo for temperatures between 0°C and 110°C, maintain-
ing a constant open fraction of 1% of the T. thermophilus genome (see text). Without external torque,
the DNA melting occurs at Tm ≈ 91° C. A positive supercoiling maintains the stability of the double
helix for an additional 15° C, up to a critical temperature Tc ≈ 106° C. The resulting twist excess is
shown in Fig. 4 for the double-helical DNA, and on Fig. S7 for the small open fraction, which absorbs
most of this excess.
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Figure S7: Average twist in the ∼ 1% open DNA, as a result of the external torque (Fig. S6). Because
of the much larger twist rigidity of double-helical DNA, the open fraction absorbs much more twist than
the closed parts (compare with Fig. 4).
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Figure S8: Double-helical stability of the individual step sequences, for unconstrained DNA (dashed) and under the
biologically relevant torque (solid lines) as computed in Fig. S6. While the opening penalty becomes approximately
constant at the sequence-neutral level, it is not rigorously true for the individual sequences. In particular, the order
of stability is temperature-dependent, and is also different from that of unconstrained DNA (see for instance GC
and GG). Note that the less stable sequences (upper left) are destabilized by the torque, but the stability of the
double-helix is maintained by the cooperative terms between successive base-pairs.
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Figure S9: Base-pair step sta-
bilities as predicted by the Ben-
ham model (11) (dashed line),
and our model which includes
the sequence- and temperature-
dependent elasticity of the double-
helix (solid line). The differences
are only marginal, since the dom-
inant contribution comes from the
sequence-dependent melting prop-
erties.
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