Combining position weight matrices and document-term matrix for efficient extraction of associations of methylated genes and diseases from free text

Arwa Bin Raies¹, Hicham Mansour², Roberto Incitti² and Vladimir B. Bajic^{1,*}

¹Computational Bioscience Research Centre (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

²Bioscience Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

Supplementary Information S1

Description of different computations

Information Gain

$$G(t) = -\sum_{i=1}^{m} P(c_i) \log P(c_i) + P(t) \sum_{i=1}^{m} P(c_i|t) \log P(c_i|t) + P(\bar{t}) \sum_{i=1}^{m} P(c_i|\bar{t}) \log P(c_i|\bar{t})$$

where m is the number of classes, $P(c_i)$ is the probability of the class c_i , P(t) is the probability of the term t, $P(c_i|t)$ is the probability of a class given the term, $P(\bar{t})$ is the probability that the term does not appear, and $P(c_i|\bar{t})$ is the probability of the class given the term does not appear.

Term-Frequency Inverse-Document-Frequency

$$TF - IDF = tf \times log \frac{N}{n}$$

where tf number of times a term occurs in a sentence, N is the total number of sentences, and n is the number of sentences in which the term appears.

Z-score Normalization

$$\dot{v} = rac{v - \overline{A}}{\sigma_A}$$

where v is a value of attribute A, \overline{A} is the mean of the attribute A, and σ_A is the standard deviation of the attribute A.