
Supporting information: Collective response of

zebrafish shoals to a free-swimming robotic fish

Multi-target tracking

The control input to the robotic fish is computed using a real-time two-dimensional multi-
target tracking algorithm developed in MATLAB. The tracking algorithm takes as input
640× 480 pixel raw image frames at five frames per second from an overhead camera and
outputs the position and velocity estimates for each target in the tank.

Our goal is to estimate the position, velocity, and size of the fish and the robot as they
move within the experimental tank. We use these values to describe the instantaneous

state of the target i at a frame k given by X i[k] =
[

ri vi Ai 1
]T

, where ri ∈ R
2 is

the two-dimensional position, vi ∈ R
2 is the two-dimensional velocity, and Ai is the area

in pixels. The state vector is augmented with 1 so that the mapping from pixel to cm
(measurement model) is linear. The measurement of the target i, Zi[k] ∈ R

3 consists of
two-dimensional pixel measurement of the center of the target and the area in pixels.

To obtain the position measurements in a frame, we first isolate the targets on the
image plane by subtracting a running background computed from raw images [1]. The
resulting foreground consists of pixel blobs whose center is recorded as two-dimensional
position measurement. The robot is identified on the basis of the blob size on the image
(> 200 pixels).

We implement a Bayesian framework to recursively predict the state estimate at a
future time-step using a motion model, F , and update the same at the current time-step
using a measurement model, H . The state estimate and measurement for target i at a
future frame k + 1 is related to the current estimate at k according to

X i[k + 1] = F (X i[k],ω)

Zi[k + 1] = H(X i[k + 1],η),
(1)

where ω ∈ R
6 is the disturbance, and η ∈ R

3 is the measurement noise. If (1) is linear
and ω and η are Gaussian white, the state X i and measurement Zi are also Gaussian
and (1) can be written in matrix form. With linear models and Gaussian representation,
given a measurement Zi[k], a Kalman filter estimates the state X i[k] optimally in the
sense of minimum mean square error [2–4].
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Assuming ω and η to be Gaussian, we model F ∈ R
6×6 as a constant velocity motion

model [3] of the form

F =


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







1 0 ∆t 0 0 0
0 1 0 ∆t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1










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

, (2)

where ∆t = 0.2 (in seconds) is the time difference between successive frames. Given a
pixel to cm ratio p computed using select points on the image known distance apart and

the center of the observation region
[

c1, c2
]T

, the measurement model H is

H =





p 0 0 0 0 c1
0 p 0 0 0 c2
0 0 0 0 1 0



 . (3)

The covariance for ω and η are diagonal matrices cov(ω) = diag{1, 1, 10, 10, 2, 0} (in cm2,
cm2, cm2/s2 cm2/s2, pixels2) and cov(η) = diag{1, 1, 16} (in pixels2, pixels2, pixels2). The
output at each step of the Kalman filter is a the mean and covariance of the state.

For tracking multiple targets, the correct measurement must be associated to each
target before a measurement update is performed. We use a global nearest-neighbor algo-
rithm that minimizes the combined distance between measurements and target estimates
to match measurements to targets [5,6]. Targets are automatically initialized with unas-
sociated measurements and sustained until no measurement is found within a confidence
region defined by a two-dimensional Chi-square distribution [3, 7]. Upon an occlusion
when two blobs merge into one on the foreground, one of the tracks is automatically
terminated and re-initialized after the occlusion. The robotic fish is rarely lost during
the five-minute trial period, although the fish, due to their small size (2-3 pixels on the
image) and water surface ripples may get lost and recovered more frequently. Background
clutter and noise is reduced through careful use of lighting and a single-color surface. The
estimates along with the error covariance and control inputs are written to a data file for
subsequent analysis. Figure S1 shows robot and fish trajectories during the last minute
in a five-minute trial.

Robot control

The estimates of robot position rR[k] and velocity vR[k] are used to calculate the control
input u[k]. The control signal is sent every 3/5-th of a second. The robot follows a set of
sixteen equally spaced waypoints ws, s = 1, . . . , 16 clockwise on a 40 cm circle centered
in the tank. At each frame k, the desired direction of movement of the robot is computed
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Figure S1. Tracks of zebrafish (dashed) with the robot(solid) from the last minute in a
five minute experiment.

as

v̂d
R[k] =

ws[k]− rR[k]

‖ws[k]− rR[k]‖
, (4)

where ws[k] is the waypoint-to-reach at the current time-step. The value of waypoint-to-
reach is updated at frame k′ when the robot reaches within a threshold distance of the
current waypoint-to-reach. The control input is a function of the error e = sin(θ), where
θ = arg(v̂R[k]− vd

R[k) is the angle between the robot direction of motion and the desired
direction of motion. The control input is computed in a PID loop as

u[k] = Kpe[k] +Ki

k
∑

l=k′

e[l]∆t +Kd

∆e[k]

∆t
, (5)

where Kp, Ki, and Kd is the proportional, integral and derivative control gains and
∆e[k] = e[k] − e[k − 1]. The control gains are tuned to obtain the minimum error in
test trials performed over five minutes. Figure S2 compares the robot trajectory to the
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waypoints on the tank region, and shows the corresponding error through time. For ad-
ditional details on the tracking and control algorithm and its implementation refer to [8].
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Figure S2. Robot trajectory with reference to waypoints (a) and the error (b).

Synopsis of experimental data on fish response

In this section, we compare values of group response, behavior, and interaction with the
robot between all experimental conditions performed as part of this study. In addition
to the main text, we show the values of group speed (Fig. S3), for the group response;
average percentage time spent freezing (Fig. S4) for the group behavior; and distance to
robot (Fig. S5), and minimum distance to robot (Fig. S6) for the interaction with the
robot. For experiments where group response and behavior are measured, the values are
shown for conditions, No robot, Fixed, 0Hz, 1Hz, 2Hz, and 3Hz. For experiments where
group interaction with the robot is measured, values are shown for all conditions except
where the robot is absent.
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Figure S3. Average values of speed across all conditions. The highest group speed was
when the robot was not present, and lowest when the robot was swimming with a
tail-beat frequency of 2Hz. Error bars represent ± standard error mean.
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Figure S4. Average values of percentage time freezing across all conditions. Error bars
represent ± standard error mean. The lowest percentage time was when no robot was
present and the highest when the robot was swimming with a tail-beat frequency of
2Hz, although this value also had the largest error bar.
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Figure S5. Average values of distance to robot across all conditions. The fish were on
average closest to the robot when it was not moving at all, and furthest when the robot
was swimming with a tail-beat frequency of 3Hz. Error bars represent ± standard error
mean.
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Figure S6. Average values of minimum distance to robot across all conditions. At any
time, the minimum distance was computed by comparing individual distances of the fish
to the robot. The highest and the lowest values were at 3Hz and 0Hz respectively.
Error bars represent ± standard error mean.
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Figure S7. The polarization distributions had two distinct peaks at low and high
values. Polarization distributions for each trial are shown in different colors.


