1 Appendix A: Relationship between Conditional Variances in the Parameter Space

- 2 and θ -space
- Using the search function in eq. (5), for each N sampled value of θ_i { $\theta_i^{(1)},...,\theta_i^{(N)}$ },
- 4 we can draw the corresponding sampled values of the parameter $x_i \{x_i^{(1)},...,x_i^{(N)}\}$.
- 5 Combining all parameters together assuming parameter independence, for N random
- 6 samples

$$\begin{bmatrix} \theta_1^{(1)} & \cdots & \theta_n^{(1)} \\ \vdots & \ddots & \vdots \\ \theta_1^{(N)} & \cdots & \theta_n^{(N)} \end{bmatrix}$$

- 8 drawn from the θ -space ($K_{\theta}^{\ n}=\{\theta_1,...,\theta_n\mid 0<\theta_i<2\pi,i=1,...,n\}$), we can get N
- 9 corresponding random samples for the parameters using the search function of eq.
- 10 (5)

11
$$\begin{bmatrix} x_1^{(1)} & \cdots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \cdots & x_n^{(N)} \end{bmatrix},$$

and N corresponding random samples of model output { $y^{(1)},...,y^{(N)}$ } with

13
$$y^{(j)} = g(G(\theta_1^{(j)}), ..., G(\theta_n^{(j)})), j=1,..., N.$$

- Using the N samples from the $\, heta$ -space, we can get an estimate of the $m^{ ext{th}}$ moment
- 15 for the model output *y*,

16
$$\frac{1}{N} \sum_{j=1}^{N} (y^{(j)})^m = \frac{1}{N} \sum_{j=1}^{N} g(x_1^{(j)}, ..., x_n^{(j)})^m = \frac{1}{N} \sum_{j=1}^{N} g(G(\theta_1^{(j)}), ..., G(\theta_n^{(j)}))^m.$$
 (A1)

- 17 It is notable that the random samples drawn from the heta-space can ergodically
- 18 explore the parameter space. Based on the Strong Law of Large Numbers, we have

$$\operatorname{Lim}_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} (y^{(j)})^{m} = E(y)^{m},$$

$$\operatorname{Lim}_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} g(x_{1}^{(j)}, ..., x_{n}^{(j)})^{m} = E_{x}(g(x_{1}^{(j)}, ..., x_{n}^{(j)}))^{m}$$

$$= \iiint_{x_{1}, ..., x_{n}} g^{m}(x_{1}, ..., x_{n}) f(x_{1}, ..., x_{n}) dx_{1} \cdots dx_{n},$$

$$\operatorname{Lim}_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} g(G(\theta_{1}^{(j)}), ..., G(\theta_{n}^{(j)}))^{m} = E_{\theta}(g(G(\theta_{1}^{(j)}), ..., G(\theta_{n}^{(j)}))^{m}$$

$$= (\frac{1}{2\pi})^{n} \iiint_{\theta_{1}, ..., \theta_{n}} g^{m}(G(\theta_{1}), ..., G(\theta_{n})) d\theta_{1} \cdots d\theta_{n}$$
(A2)

- where $f(x_1,...,x_n)$ is the joint probability density function for the set of parameters.
- 3 Thus, based on eq. (A1) and eq. (A2), we have

4
$$E(y)^{m} = E_{y}(g(x_{1}^{(j)},...,x_{n}^{(j)}))^{m} = E_{\theta}(g(G(\theta_{1}^{(j)}),...,G(\theta_{n}^{(j)}))^{m}.$$
 (A3)

5 Based on eq. (A3), it is clear that

6
$$V(y) = V^{(x_1,...,x_n)} = V_{x}(g(x_1^{(j)},...,x_n^{(j)})) = V_{\theta}(g(G(\theta_1^{(j)}),...,G(\theta_n^{(j)})))$$
(A4)

- 7 Eq. (A4) shows that the variance of the model output y can be estimated in the
- 8 θ -space. For the conditional variances in eq. (6), we first consider the expected value
- 9 of y in the parameter space and θ -space,

$$u_x(x_{sub}) = E_x(y \mid x_{sub})$$

$$u_{\theta}(\theta_{sub}) = E_{\theta}(y \mid \theta_{sub})$$
(A5)

- where x_{sub} is a subset of all parameters $\{x_1,...,x_n\}$ with size less than n; and θ_{sub} is
- a subset of $\{\theta_1,...,\theta_n\}$ corresponding to x_{sub} . For a specific value $\theta_{sub}=\theta_{sub}^{(*)}$, based
- on eq. (5), we get $x_{sub} = x_{sub}^{(*)}$. It can be shown that

14
$$E_{\theta}(y \mid \theta_{sub} = \theta_{sub}^{(*)}) = E_{y}(y \mid x_{sub} = x_{sub}^{(*)}).$$
 (A6)

16 **Proof:**

15

By drawing N samples for θ_{-sub} (the set of $\{\theta_1,...,\theta_n\}$ excluding θ_{sub}) and the

- corresponding sample for x_{-sub} (the set of $\{x_1,...,x_n\}$ excluding x_{sub}) using the search
- function of eq. (5), the sample mean of $y \mid \theta_{sub} = \theta_{sub}^{(*)}$ and $y \mid x_{sub} = x_{sub}^{(*)}$ can be
- 3 calculated by

$$\frac{1}{N} \sum_{j=1}^{N} (g(\vec{G}(\theta_{-sub}^{(j)}), \vec{G}(\theta_{sub}^{(*)})) = \frac{1}{N} \sum_{j=1}^{N} (g(x_{-sub}^{(j)}, x_{sub}^{(*)})$$
(A7)

- 5 where $heta_{-sub}^{(j)}$ is the $j^{ ext{th}}$ sample for $heta_{-sub}$ and $x_{-sub}^{(j)}$ is the corresponding sample
- for x_{-sub} . The $\vec{G}(\theta_{-sub})$ is a vector version of the search function of eq. (5). For
- 7 example, if $\theta_{-sub} = \{\theta_i, \theta_j\}$, then $\bar{G}(\theta_{-sub}) = \{G(\theta_i), G(\theta_j)\}$. Based on the Strong Law
- 8 of Large Numbers, we have

11

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} g(\vec{G}(\theta_{-sub}^{(j)}), \vec{G}(\theta_{sub}^{(*)})) = E_{\theta}(y \mid \theta_{sub} = \theta_{sub}^{(*)})$$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} g(x_{-sub}^{(j)}, x_{sub}^{(*)}) = E_{x}(y \mid x_{sub} = x_{sub}^{(*)})$$
(A8)

- Based on eq. (A7) and eq. (A8), we prove eq. (A6).
- To calculate the variance of $u_{\theta}(\theta_{sub})$ and $u_{x}(x_{sub})$, we first look at the expected value
- of the m^{th} moment of $u_{\theta}(\theta_{\text{sub}})$ and $u_{x}(x_{\text{sub}})$ (i.e., $E[u_{x}(x_{\text{sub}})]^{m}$ and $E[u_{\theta}(\theta_{\text{sub}})]^{m}$).
- 14 $E[u_x(x_{sub})]^m$ and $E[u_\theta(\theta_{sub})]^m$ can be estimated by drawing N random samples for
- 15 θ_{sub} { $\theta_{sub}^{(1)}$,..., $\theta_{sub}^{(N)}$ } and the corresponding samples for $x_{sub}^{(1)}$ { $x_{sub}^{(1)}$,..., $x_{sub}^{(N)}$ } by
- the search function in eq. (5). Namely,

$$\hat{E}[u_{x}(x_{sub})]^{m} = \frac{1}{N} \sum_{j=1}^{N} (u_{x}(x_{sub}^{(j)}))^{m}$$

$$\hat{E}[u_{\theta}(\theta_{sub})]^{m} = \frac{1}{N} \sum_{j=1}^{N} (u_{\theta}(\theta_{sub}^{(j)}))^{m}.$$
(A9)

18 Based on eq. (A6), the sample averages in eq. (A9) are equal. Namely,

$$\frac{1}{N} \sum_{j=1}^{N} (u_x(x_{sub}^{(j)}))^m = \frac{1}{N} \sum_{j=1}^{N} (u_\theta(\theta_{sub}^{(j)}))^m.$$
 (A10)

2 Using the Strong Law of Large Numbers, we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} (u_x(x_{sub}^{(j)}))^m = E_x(u_x(x_{sub}))^m,$$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} (u_\theta(\theta_{sub}^{(j)}))^m = E_\theta(u_\theta(\theta_{sub}))^m.$$
(A11)

4 Using eq. (A10) and (A11), we get

5
$$E_{x}(u_{x}(x_{sub}))^{m} = E_{\theta}(u_{\theta}(\theta_{sub}))^{m}$$
 (A12)

6 Based on eq. (A12), it is clear that

7
$$V^{(x_{sub})} = V_{x}(E_{x}(y \mid x_{sub})) = V_{\theta}(E_{\theta}(y \mid \theta_{sub})).$$
 (A13)

- 8 Eq. (A13) indicates that the conditional variance of the expected value of model
- 9 output y in the parameters space is equal to that in the θ -space.