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Appendix A: Relationship between Conditional Variances in the Parameter Space
and @ -space
Using the search function in eq. (5), for each N sampled value of 8 {0%,...,6™},
we can draw the corresponding sampled values of the parameter X {Xi(l),...,xi(N)}.
Combining all parameters together assuming parameter independence, for N random
samples

oL ... 9®
drawn from the @-space (K,"={4,...,6,|0<6 <2x,i=1,..,n}), we can get N
corresponding random samples for the parameters using the search function of eq.

(5)
X . x®
]
and N corresponding random samples of model output { y, ..., y™ } with
y? =9G@6")....G(6,"), j=1,..., N.

Using the N samples from the &-space, we can get an estimate of the m™ moment

for the model output y,

N

iZ(y(”)m =iZg(xf”,-..,xn“>)”‘ =i2 9(G(0"),.... G(6,")™. (A1)
N 4= N = N =
It is notable that the random samples drawn from the @-space can ergodically

explore the parameter space. Based on the Strong Law of Large Numbers, we have
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Lim~ > 0" =E()"

N —w

N
Lim%zg(xl(j)""’ Xn(j))m = Ex(g(xi(j),-.., Xn(j)))m
j=1

= J'J.J‘ 9" (Kgreees X, ) F (X ey X, )X -+ 0X (A2)
Limﬁzg(G(Hl”)),___,G(an”)))m = Ea(g(G('gl(j)),---,G(en(j)))m

1 n m
=) J” g"(G(8),+G(6,))d4,---dé,

..... 0,

where f(x,...,X,) isthe joint probability density function for the set of parameters.
Thus, based on eq. (A1) and eq. (A2), we have
E(y)" =E.(90",.. %, )" = E,(9(G(4)....G(6,")". (A3)
Based on eq. (A3), it is clear that
V(y)=V &) =V (g(x?,... x,) =V,(9(G©6Y),....G(6,7)) (A4)
Eg. (A4) shows that the variance of the model output y can be estimated in the
@ -space. For the conditional variances in eq. (6), we first consider the expected value

of y in the parameter space and &-space,

ux(xsub) = Ex(y| Xsub)

(A5)
UH(Hsub) = Ea(y | Hsub)

where X, is asubset of all parameters {X,..., X, } with size less than n; and 6, is

a subset of {,,...,8,} corresponding to X, . For a specific value 6,, =6,,", based
on eq. (5), we get X, = X, . It can be shown that
Eﬂ(y | Hsub = Hsub(*)) = Ex(y | Xsub = Xsub(*)) : (A6)

Proof:

By drawing N samples for 6, (the set of {8,...,6,} excludingd,,) and the
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corresponding sample for X_, (the setof {X,..., X, } excluding X, ) using the search

™)

sub — sub can be

function of eq. (5), the sample mean of y|6,, =6,,”and y|x

calculated by

. 13 .
_Z(g(G( —sub J)) G( sub( ))) :WZ(Q(X—sub(J)’ Xsub( )) (A7)
j=1

where 0, is the /™ sample for 6, and x " is the corresponding sample

for X . The G(6 ) is a vector version of the search function of eq. (5). For

sub

example, if0 , ={6,,0,}, then G(6.,) ={G(6,),G(9,)}. Based on the Strong Law

of Large Numbers, we have

Lim—y ZQ(G(H 0 ").G(0u)) = By (¥ 0 = 0,
N —0 , (A8)

LI m Z g(x—sub(J)’ Xsub(*)) = Ex (y | Xsub = Xsub(*))

N —

Based on eq. (A7) and eq. (A8), we prove eq. (A6).

To calculate the variance of u,(6,,) and U,(X,), we first look at the expected value

th

of the m™ moment of u,(6,,) and u,(Xy,) (e, E[u, (X,,)]" and E[u,(0,,)]").

Elu, (x,,)]" and E[u,(6,,)]" can be estimated by drawing N random samples for

Hsub {H @

o e 0,,"} and the corresponding samples for X, {x X, ")} by

sub [ sub

the search function in eq. (5). Namely,

Bl )l = 20, 00"
i (A9)
E[ue( ub)] Z(ue( sub(J)))m'

Based on eq. (A6), the sample averages in eq. (A9) are equal. Namely,



1Q dam 1 -
WZ(UX(XSUJ”)) =WZ(U9(6’SU.J“))) : (A10)
j=1 j=1
Using the Strong Law of Large Numbers, we have

Iim%z (U X(Xsub(j)))m = Ex (U x(Xsub))ma

N—w j

L (A11)
I imﬁz (u H(Hsub(j)))m = EH (u G(esub))m'
N—>o0 j=1
Using eq. (A10) and (A11), we get
Ex (U X(Xsub ))m = Ee (U Q(HSUD ))m (A12)
Based on eq. (A12), it is clear that
V(XM) =Vx(Ex(y | Xsub)) :VH(EH(y | esub)) . (A13)

Eg. (A13) indicates that the conditional variance of the expected value of model

output y in the parameters space is equal to that in the & -space.



