1 Appendix C: Estimation Errors of Fourier Coefficients over the Auxiliary Variable s

- 2 The rectangle rule is a numerical approach to calculate the integral of a function
- 3 $\psi(s)$. For the calculation of Fourier coefficients over the auxiliary variable s in eq.
- 4 (23), we have $\psi(s) = g(G(s))\cos(ks)$ or $\psi(s) = g(G(s))\sin(ks)$. The rectangle rule
- 5 first divides the range of s (in this paper, s is between 0 and 2π) into N small equal
- intervals. Each interval will form a rectangle with height determined by f(s) at the mid
- 7 points of the interval (see Figure C1 for a better understanding). Then the integral
- 8 $\left(\int_{0}^{2\pi} \psi(s)ds\right)$ is approximated by the sum of areas of rectangles. Mathematically, the
- 9 integral can be calculated as follows,

10
$$\int_0^{2\pi} \psi(s)ds = \frac{2\pi}{N} \sum_{i=1}^N \psi(s^{(i)})$$
 (C1)

- where $\frac{2\pi}{N}$ is the rectangle width and $s^{(j)}$ is the mid-point at the *jth* interval
- defined by the grid samples in eq. (19). Using eq. (C1), it can be easily shown that the
- Fourier coefficients over the auxiliary variable s in eq. (23) can be calculated using
- 14 the rectangle rule as follows

$$15 \qquad \frac{1}{2\pi} \int_{0}^{2\pi} g(G(\varphi(\omega_{1}s)),...,G(\varphi(\omega_{n}s))) \cos(ks) ds = \frac{1}{N} \sum_{j=1}^{N} g(G(\varphi(\omega_{1}s^{(j)})),...,G(\varphi(\omega_{n}s^{(j)}))) \cos(ks^{(j)})$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(G(\varphi(\omega_{1}s)),...,G(\varphi(\omega_{n}s))) \sin(ks) ds = \frac{1}{N} \sum_{j=1}^{N} g(G(\varphi(\omega_{1}s^{(j)})),...,G(\varphi(\omega_{n}s^{(j)}))) \sin(ks^{(j)}).$$

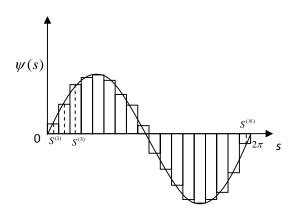
- 16 Thus, the sample mean based on grid samples in eq. eq. (26) is equivalent to the
- 17 numerical integral using the rectangle rule. If ψ (s) is differentiable to the
- 18 second-order, the estimation error (e) for the numerical integral using the rectangle
- 19 rule decays as the square of interval length (Davis and Rabinowitz 1984).
- 20 Mathematically, we have

$$e \le \frac{\Delta^2(b-a)}{24} \max_{s \in [0,2\pi]} \psi''(s)$$

- 2 where Δ is the interval length; a is the lower range of integral; and b is the upper
- a range of integral; and $\psi''(s)$ is the second derivative. For s between 0 and 2π , we
- 4 have

$$e \le \frac{\pi^3}{3N^2} \max_{s \in [0,2\pi]} \psi''(s)$$
 (C2)

- 6 which suggests that the estimation error decays at a rate of $1/N^2$ with an increasing
- 7 sample size.



9 Figure C1 Illustration of the numerical integral using the rectangle rule.

11 References

8

10

Davis, P. J., and P. Rabinowitz. 1984. Methods of numerical integration, 2nd edition.

13 Academic Press, Orlando.