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Appendix C: Estimation Errors of Fourier Coefficients over the Auxiliary Variable s
The rectangle rule is a numerical approach to calculate the integral of a function
w(S). For the calculation of Fourier coefficients over the auxiliary variable s in eq.
(23), we havew (s) =g(G(s))cos(ks) or w(s)=g(G(s))sin(ks). The rectangle rule
first divides the range of s (in this paper, s is between 0 and 27 ) into N small equal
intervals. Each interval will form a rectangle with height determined by f(s) at the mid
points of the interval (see Figure C1 for a better understanding). Then the integral
(Ljﬂw(s)ds) is approximated by the sum of areas of rectangles. Mathematically, the

integral can be calculated as follows,
2 27 ()
Jo w(&)ds =53 w(s) (1)
j=1

2 _
where Wﬁ is the rectangle width and sV is the mid-point at the jth interval
defined by the grid samples in eq. (19). Using eq. (C1), it can be easily shown that the
Fourier coefficients over the auxiliary variable s in eq. (23) can be calculated using

the rectangle rule as follows

[ 3G @5 Gl costis)ds = =3 g(Glplers )., Glole,s ) costis )

1. 9(6(0(@9).... Blp(0,Msin(ks)ds = <- 3 9(G(p(@r ). ... G(p(e s sin(s ).

Thus, the sample mean based on grid samples in eq. eq. (26) is equivalent to the
numerical integral using the rectangle rule. If  (s) is differentiable to the
second-order, the estimation error (e) for the numerical integral using the rectangle
rule decays as the square of interval length (Davis and Rabinowitz 1984).

Mathematically, we have
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where A is the interval length; a is the lower range of integral; and b is the upper

range of integral; and w"(s)is the second derivative. For s between 0 and 27, we

have

3
e<

3Nz X v (s) ()

which suggests that the estimation error decays at a rate of1/ N?with an increasing

sample size.
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Figure C1 Illustration of the numerical integral using the rectangle rule.
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