Appendix D: Relationships between Fourier Coefficients over the Auxiliary Variable

s and Fourier Coefficients in the θ -space

- Note that this derivation is based on Cukier et al. (1978). However, the original
- 4 proof in Cukier et al. (1978) only examined the relationship between Fourier
- coefficients over the auxiliary variable s and Fourier coefficients in the θ -space for
- 6 frequencies which are harmonics of assigned fundamental frequency of model
- parameters (i.e., $k = r_i^{(s)} \omega_i$). In this derivation, we generalize the relationship for all
- frequencies (i.e., $k = \sum_{i} r_i^{(s)} \omega_i$), so that we are able to calculate higher-order
- 9 sensitivity indices in the sampling scheme based on auxiliary variable s.
- Based on eq.(25), the Fourier coefficient at frequency $k = \sum_{i} r_i^{(s)} \omega_i = \vec{r} \cdot \vec{\omega}^T$
- 11 [where $\vec{r} = (r_1^{(s)}, ..., r_j^{(s)}, ..., r_n^{(s)})$ and $\vec{\omega} = (\omega_1, ..., \omega_n)$] over the auxiliary variable s can
- 12 be calculated as follows,

1

13
$$C^{(s)}_{(\bar{r}\cdot\bar{\omega}^T)} = E_s(g(G(\varphi(\omega_1 s)),...,G(\varphi(\omega_n s)))e^{-i(\sum_i r_i^{(s)}\omega_i)s})$$

- 14 Following Cukier et al. (1978), replace the multiple Fourier transformation of
- 15 $g(G(\theta_1),...,G(\theta_n))$ in eq. (12) into above equation, we have

$$C^{(s)}_{(\bar{r}\cdot\bar{\omega}^{T})} = E_{s} \left\{ \sum_{r_{l}^{(\theta)},\dots,r_{n}^{(\theta)}=-\infty}^{+\infty} C^{(\theta)}_{r_{l}^{(\theta)},...r_{n}^{(\theta)}} e^{\mathbf{i}(r_{l}^{(\theta)}\omega_{l}+\dots+r_{n}^{(\theta)}\omega_{n})s} \right\} e^{-\mathbf{i}(\sum_{i}r_{i}^{(s)}\omega_{i})s}$$

$$= \sum_{r_{l}^{(\theta)},\dots,r_{n}^{(\theta)}=-\infty}^{+\infty} E_{s} \left[C^{(\theta)}_{r_{l}^{(\theta)},...r_{n}^{(\theta)}} e^{\mathbf{i}(r_{l}^{(\theta)}\omega_{l}+\dots+r_{n}^{(\theta)}\omega_{n})s} e^{-\mathbf{i}(\sum_{i}r_{i}^{(s)}\omega_{i})s} \right]$$

$$= \sum_{r_{l}^{(\theta)},\dots,r_{n}^{(\theta)}=-\infty}^{+\infty} E_{s} \left[C^{(\theta)}_{r_{l}^{(\theta)},...r_{n}^{(\theta)}} e^{\mathbf{i}(r_{l}^{(\theta)}\omega_{l}+\dots+r_{n}^{(\theta)}\omega_{n})-(\sum_{i}r_{i}^{(s)}\omega_{i})]s} \right].$$

17 If
$$\left[(r_1^{(\theta)}\omega_1 + \dots + r_n^{(\theta)}\omega_n) - (\sum_i r_i^{(s)}\omega_i) \right] = 0$$
, we have

18
$$E_{s} \left[C^{(\theta)}_{r_{1}^{(\theta)}..r_{n}^{(\theta)}} e^{i[(r_{1}^{(\theta)}\omega_{1} + \cdots + r_{n}^{(\theta)}\omega_{n}) - (\sum_{i} r_{i}^{(s)}\omega_{i})]s} \right] = C^{(\theta)}_{r_{1}^{(\theta)}..r_{n}^{(\theta)}}.$$

1 If
$$\left[(r_1^{(\theta)}\omega_1 + \dots + r_n^{(\theta)}\omega_n) - (\sum_i r_i^{(s)}\omega_i) \right] \neq 0$$
, we have

$$E_{s} \begin{bmatrix} C^{(\theta)}_{r_{l}^{(\theta)}...r_{n}^{(\theta)}} e^{\mathbf{i}[(r_{l}^{(\theta)}\omega_{l}+\cdots+r_{n}^{(\theta)}\omega_{n})-(\sum_{i}r_{i}^{(s)}\omega_{i})]s} \end{bmatrix}$$

$$= C^{(\theta)}_{r_{l}^{(\theta)}...r_{n}^{(\theta)}} E_{s} \begin{bmatrix} \mathbf{i}[(r_{l}^{(\theta)}\omega_{l}+\cdots+r_{n}^{(\theta)}\omega_{n})-(\sum_{i}r_{i}^{(s)}\omega_{i})]s} \\ e \end{bmatrix}$$

$$= 0.$$

- 3 Finally, Fourier coefficient at frequency $k = \vec{r} \cdot \vec{\omega}^T$ over the auxiliary variable s can
- 4 be approximated by the Fourier coefficients in the θ -space as follows,

5
$$C^{(s)}_{(\bar{r}\cdot\bar{\omega}^T)} = C^{(\theta)}_{\bar{r}} + \sum_{\bar{r}'} C^{(\theta)}_{\bar{r}'}$$
 (D1)

- where \vec{r} 'is a vector different from \vec{r} (i.e., $\vec{r} \neq \vec{r}$ ') with $\vec{r} \cdot \vec{\omega}^T = \vec{r} \cdot \vec{\omega}^T$. If a frequency
- 7 set $\{\omega_1,...,\omega_n\}$ is strictly free of interferences as defined in eq. (21), then

8
$$\vec{r} \cdot \vec{\omega}^T \neq \vec{r}' \cdot \vec{\omega}^T$$
, for $1 \le |r_i| \le M$ and $0 \le |r_i'| \le M$.

- 9 Thus, for $\bar{r}' = (r_1', ..., r_j', ..., r_n')$ in eq. (D1), there is at least one $r_j' > M$, for j = 1, ..., n.
- Since the higher order harmonics is negligible (i.e., $C^{(\theta)}_{\bar{r}} \approx 0$ for any of r_j ' > M), we
- 11 can approximate $C^{(s)}_{(ar{r}\cdotar{o}^T)}$ using $C^{(heta)}_{ar{r}}$.Namely,

$$C^{(s)}_{(\bar{r},\bar{\omega}^T)} \approx C^{(\theta)}_{\bar{r}} \tag{D2}$$

for a frequency set $\{\omega_1,...,\omega_n\}$ strictly free of interferences to an order of M.

References

14

15

18 19

16 Cukier, R. I., H. B. Levine, and K. E. Shuler. 1978. Nonlinear sensitivity analysis of multiparameter model systems. Journal of Computational Physics 26:1-42.