- 1 Appendix F: Estimation Errors of Fourier Coefficients for Random Balance Design
- 2 Sampling
- Based on the definition of Fourier coefficients $C^{(\theta)}_{00\cdots r_i\cdots 00}$ in eq. (13) and eq. (14), we
- 4 have

$$C^{(\theta)}_{00 \cdot r_i \cdot 00} = E_{\theta}(g(G(\theta_1), \dots, G(\theta_n))e^{-\mathbf{i}(r_i \theta_i)})$$

$$= (\frac{1}{2\pi})^n \int_0^{2\pi} \dots \int_0^{2\pi} g(G(\theta_1), \dots, G(\theta_n))e^{-\mathbf{i}(r_i \theta_i)}d\theta_1 \dots d\theta_n$$

$$= \frac{1}{2\pi} \int_0^{2\pi} E_{\theta}(g(G(\theta_1), \dots, G(\theta_n)) \mid \theta_i)e^{-\mathbf{i}(r_i \theta_i)}d\theta_i$$

$$= \frac{1}{2\pi} \int_0^{2\pi} u(\theta_i)e^{-\mathbf{i}(r_i \theta_i)}d\theta_i$$

$$= E_{\theta}(u(\theta_i)e^{-\mathbf{i}(r_i \theta_i)})$$
(F1)

6 where

7
$$u(\theta_i) = E_{\theta}(g(G(\theta_1), ..., G(\theta_n)) | \theta_i).$$
 (F2)

- 8 Eq. (D2) suggests that, if we know $u(\theta_i)$, then the estimation of $C^{(\theta)}_{00\cdots r_i\cdots 00}$ can be
- 9 reduced to a one-dimension estimation. For a sample with size N, $C^{(heta)}{}_{00\cdots au^{....}00}$ can
- 10 be estimated by

11
$$\hat{C}^{(\theta,u)}_{00\cdots r_i\cdots\cdots 00} = \frac{1}{N} \sum_{j=1}^{N} [(u(\theta_i^{(j)}))e^{-\mathbf{i}(r_i\theta_i^{(j)})}].$$
 (F3)

- For a grid sample with the same size N in eq. (39), the estimation of $C_{00\cdots r,-00}^{(\theta)}$ based
- on eq. (F3) is essentially a numerical integral using the rectangle rule, which has a
- 14 relatively high accuracy since the estimate error will decay at a rate of squared
- sample size (see Appendix C for details). However, we are not able to know $u(\theta_i)$
- 16 exactly. Using eq. (F2), the model $y = g(G(\theta_1),...,G(\theta_n))$ can be decomposed as
- 17 follows,

18
$$g(G(\theta_1),...,G(\theta_n)) = u(\theta_i) + \xi_{-x_i}$$
 (F4)

- where ξ_{-x_i} is the random noise independent from $u(\theta_i)$, which is resulted from the
- 2 uncertainty in other parameters. In view that

$$E(u(\theta_i)) = E(E_{\theta}(g(G(\theta_1),...,G(\theta_n)) | \theta_i))$$

$$= E(g(G(\theta_1),...,G(\theta_n)))$$

4 based on eq. (F4), we get

5
$$E(\xi_{-x_1})=0.$$
 (F5)

- 6 Using the well known fact about the variance decomposition (Bickel and Doksum
- 7 2001)

8
$$V(g(G(\theta_1),...,G(\theta_n)))=V(E_{\theta}(g(G(\theta_1),...,G(\theta_n))|\theta_i))+E(V(g(G(\theta_1),...,G(\theta_n))|\theta_i),$$

9 we have

10
$$V(\xi_{i}) = E(V(g(G(\theta_{1}),...,G(\theta_{n})) | \theta_{i}))$$

$$= V(g(G(\theta_{1}),...,G(\theta_{n}))) - V(E_{\theta}(g(G(\theta_{1}),...,G(\theta_{n})) | \theta_{i}).$$

- Using the relationship of the variances between parameter space and θ -space [see
- 12 eq. (6)], we get

13
$$V(\xi_{-x_i}) = V^{(x_1, \dots, x_n)} - V^{(x_i)}.$$
 (F6)

14 For the estimation of Fourier coefficient $C^{(heta)}_{00 \cdot \eta \cdot 00}$ in eq. (15), we have

$$\hat{C}_{00\cdots r_{i}\cdots 00}^{(\theta)} = \frac{1}{N} \sum_{j=1}^{N} (g(G(\theta_{1}^{(j)}), ..., G(\theta_{n}^{(j)})) e^{-\mathbf{i}(r_{i}\theta_{i}^{(j)})})$$

$$= \frac{1}{N} \sum_{j=1}^{N} [(u(\theta_{i}^{(j)}) + \xi_{i}^{(j)}) e^{-\mathbf{i}(r_{i}\theta_{i}^{(j)})}]$$

$$= \frac{1}{N} \sum_{j=1}^{N} [(u(\theta_{i}^{(j)}) e^{-\mathbf{i}(r_{i}\theta_{i}^{(j)})}] + \frac{1}{N} \sum_{j=1}^{N} \xi_{i}^{(j)} e^{-\mathbf{i}(r_{i}\theta_{i}^{(j)})}$$

$$= \hat{C}_{00\cdots r_{i}\cdots 00}^{(\theta,u)} + \hat{C}_{00\cdots r_{i}\cdots 00}^{(\theta,\xi)},$$
(F7)

16 where

17
$$\hat{C}_{00 \cdot r_i \cdot 00}^{(\theta, \xi)} = \frac{1}{N} \sum_{i=1}^{N} \xi_i^{(j)} e^{-\mathbf{i}(r_i \theta_i^{(j)})}.$$
 (F8)

1 For $\hat{C}_{00\cdot r_i\cdot 00}^{(heta,\xi)}=\hat{a}_{00\cdot r_i\cdot 00}^{(heta,\xi)}-\mathbf{i}\hat{b}_{00\cdot r_i\cdot 00}^{(heta,\xi)}$, with

$$\hat{a}_{00 - r_i - 00}^{(\theta, \xi)} = \frac{1}{N} \sum_{j=1}^{N} (\xi^{(j)}) \cos(r_i \theta_i^{(j)}),$$

$$\hat{b}_{00 - r_i - 00}^{(\theta, \xi)} = \frac{1}{N} \sum_{j=1}^{N} (\xi^{(j)}) \sin(r_i \theta_i^{(j)}),$$

- 3 based on the Central Limit theorem, the coefficient $\hat{a}^{(\theta,\xi)}{}_{00\cdot\eta\cdot\cdots\cdot00}$ and $\hat{b}^{(\theta,\xi)}{}_{00\cdot\eta\cdot\cdots\cdot00}$
- 4 will approximately follow a normal distribution. Specifically,

$$\hat{a}_{00 \cdot r_{i} \cdot \dots \cdot 00}^{(\theta, \xi)} \sim \ddot{N}(0, \frac{V(\xi_{-x_{i}})}{2N}),$$

$$\hat{b}_{00 \cdot r_{i} \cdot \dots \cdot 00}^{(\theta, \xi)} \sim \ddot{N}(0, \frac{V(\xi_{-x_{i}})}{2N}),$$
(F9)

- 6 where $\ddot{N}(u,v)$ represents a normal distribution with mean u and variance v. Eq. (F9)
- 7 indicates that the estimation error decays at a rate of $\frac{1}{\sqrt{N}}$ with an increasing
- 8 sample size N. Therefore, the estimation error $\hat{C}^{(\theta,\xi)}_{00\cdots i\cdots 00}$ is much higher than the
- 9 estimation error for $\hat{C}^{(\theta,u)}_{00\cdots r_i\cdots\cdots 00}$, which decays at a rate of $\frac{1}{N^2}$. For a relatively
- large sample size N, if we assume that the estimation error for $\hat{C}^{(heta,u)}{}_{00\cdots r_i\cdots\cdots 00}$ is
- 11 negligible compared to $\hat{C}^{(heta,\xi)}_{00\cdots r_i\cdots 00}$ so that

12
$$\hat{C}^{(\theta,u)}{}_{00\cdots \overline{\imath},\cdots\cdots 00} \approx C^{(\theta)}{}_{00\cdots \overline{\imath},\cdots\cdots 00}, \tag{F10}$$

13 then

$$E(\left|\hat{C}_{00\cdots r_{i}\cdots\cdots00}^{(\theta)}\right|^{2}) \approx E(\left|C_{00\cdots r_{i}\cdots\cdots00}^{(\theta)}\right|^{2}) + E(\left|\hat{C}_{00\cdots r_{i}\cdots\cdots00}^{(\theta,\xi)}\right|^{2})$$

$$= \left|C_{00\cdots r_{i}\cdots\cdots00}^{(\theta)}\right|^{2} + \frac{1}{N^{2}} \sum_{j=1}^{N} E[\xi_{-x_{i}}^{(j)} e^{-i(r_{i}\theta_{i}^{(j)})} \xi_{-x_{i}}^{(j)} e^{i(r_{i}\theta_{i}^{(j)})}]$$

$$= \left|C_{00\cdots r_{i}\cdots\cdots00}^{(\theta)}\right|^{2} + \frac{1}{N^{2}} \sum_{j=1}^{N} E[\xi_{-x_{i}}^{(j)}]^{2}$$

$$= \left|C_{00\cdots r_{i}\cdots\cdots00}^{(\theta)}\right|^{2} + \frac{V(\xi_{-x_{i}})}{N}.$$
(F11)

For $\hat{C}^{(heta)}_{00\cdots r_i\cdots 00}=\hat{a}^{(heta)}_{00\cdots r_i\cdots 00}-\mathbf{i}\hat{b}^{(heta)}_{00\cdots r_i\cdots 00}$, if we assume that the estimation error for $\hat{C}^{(heta,u)}_{00\cdots r_i\cdots 00}$

is negligible compared to $\hat{C}_{00\cdot r,\cdot 00}^{(heta,\xi)}$, based on eq. (F9), eq. (F7) and eq. (F1), we have

$$\hat{a}_{00 \cdot r_{i} \cdot 00}^{(\theta)} \sim \ddot{N}(a^{(\theta)}_{00 \cdot r_{i} \cdot 00}, \frac{V(\xi_{-x_{i}})}{2N}),$$

$$\hat{b}_{00 \cdot r_{i} \cdot 00}^{(\theta)} \sim \ddot{N}(b^{(\theta)}_{00 \cdot r_{i} \cdot 00}, \frac{V(\xi_{-x_{i}})}{2N}),$$
(F12)

3 where

$$a^{(\theta)}_{00\cdots r_i\cdots 00} = E[g(G(\theta_1),...,G(\theta_n))\cos(r_i\theta_i)],$$

$$b^{(\theta)}_{00\cdots r_i\cdots 00} = E[g(G(\theta_1),...,G(\theta_n))\sin(r_i\theta_i)].$$

- 5 This also suggests that the estimation error for Fourier coefficient
- 6 $C^{(heta)}_{00 \cdot r_i \cdot \cdots \cdot 00}$ obtained with random balance design sampling is much smaller than that
- 7 with simple random sampling, in view that estimation error for $\hat{C}_{00\cdots r_i\cdots 00}^{(heta,u)}$ is negligible
- 8 compared to $\hat{C}_{00\cdots r\cdot 00}^{(heta,\xi)}$ for random balance design sampling but not for simple random
- 9 sampling.

1011 Reference

- Bickel, P. J., and K. A. Doksum. 2001. Mathematical statistics: basic ideas and
- selected topics, 2nd edition. Prentice Hall, Upper Saddle River, N.J.