
Supplementary Material

In this document, we detail the mathematical model used, the form of the likelihood function, the prior
distributions for parameters, and the method used to estimate the parameters. Results of our sensitivity
analysis are also provided.

Basic natural history model

Let Xi(t) be the disease state of woman i at time t years after the start of the study, with

Xi(t) ∈ X = {N,S0A, D0A, S0B , D0B , S1, D1, S2, D2, S3, D3, S4, D4} (1)

where

� N indicates no cancer is present;

� S0A and S0B indicate that indolent and aggressive ductal carcinomas in situ (dcis) are present but
not yet diagnosed;

� S1, . . . ,S4 indicate asymptomatic invasive tumours of size ≤ 10mm, 11–20mm, 21–50mm, and
≥ 51mm, respectively;

� D0A, . . . ,D4 indicate corresponding symptomatic cancerous states.

We assume exchangeability between women as no risk factors are recorded. For notational simplicity, we
will drop the subscript in Xi(t) when not referring to a specific individual. Also, for conciseness, we use
θ for the parameter vector containing all unknown parameters.

Let π (X(0)|θ) be the probability mass for each state in X at time 0. Since only asymptomatic women
meet the entry criteria, all entries in π (X(0)|θ) corresponding to D states must be 0. Let

π (X(0)|θ) =
(
πN π0A 0 π0B 0 π1 0 π2 0 π3 0 π4 0

)T
where πk ∈ [0, 1] is the (unknown) probability of starting in state k and πN = 1−

∑4
i=0A πi.

Let the transition rate matrix be Q(θ) equal to

−κ κ(1− γ) 0 κγ 0 0 0 0 0 0 0 0 0
0 −δ0 δ0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −(δ0 + λ0) δ0 λ0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −(δ1 + λ1) δ1 λ1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −(δ2 + λ2) δ2 λ2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −(δ3 + λ3) δ3 λ3 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −δ4 δ4
0 0 0 0 0 0 0 0 0 0 0 0 0



.

Let T01 = 1/12 be the average time (in years) from the start of the study to the first screen,
T02 = 28/12 from the start to the second screen, and T12 = 27/12 the inter-screen period, as derived
from Fagerberg et al (1985).

Using standard properties of Markov processes (Karlin & Taylor, 1975), the probability mass for X(t)
can be derived by evaluating

p (X(t)|θ) = p (X(0)|θ) exp{tQ(θ)}

where exp{·} is the matrix exponential function, which we evaluated numerically in R using the expm

package (Goulet, 2012).
In particular, we can derive the probability mass at the first and second screens to be

u = p (X(T01)|θ) = p (X(0)|θ) exp{T01Q(θ)}, and

v = p (X(T02)|θ) = p (X(0)|θ) exp{T02Q(θ)}
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respectively. Henceforth, the kth element of u (v) we will denote by uk (vk), where the states are ordered
as in Equation (1).

In addition, we can derive the distribution of disease status at the second screen, X(T02), conditional
on disease status at the first screen X(T01), by setting

W = exp{T12Q(θ)}.

The conditional distribution can then be obtained by reading off the appropriate row of the 13 × 13
matrix W .

Screening arm: outcome probabilities

In this section, we describe the components of the likelihood function for the screening arm. There are
ten outcome scenarios, excluding differences in tumour sizes.

Scenario 1: cancer is detected after randomisation but before screening.

This is possible if the woman had asymptomatic cancer at time 0 that became symptomatic by time T01,
or if she had no cancer and a tumour developed and became symptomatic in this time frame (which is
very unlikely given the short period of time). In either case, the relevant entry of u is used.

ρ11 = Pr (symptomatic dcis under Scenario 1) = u3 + u5,

ρ12 = Pr (symptomatic tumour ≤ 10mm under Scenario 1) = u7,

ρ13 = Pr (symptomatic tumour 11–20mm under Scenario 1) = u9,

ρ14 = Pr (symptomatic tumour 21–50mm under Scenario 1) = u11,

ρ15 = Pr (symptomatic tumour ≥ 51mm under Scenario 1) = u13.

(Recall that aggressive and indolent dcis are not distinguished in the data.)

Scenario 2: no cancer is detected until the time of the first screen, when the woman attends
screening and a tumour is found.

Again, this is possible if the woman had asymptomatic cancer at time 0 that was still aymptomatic by
time T01, or if she had no cancer and a tumour developed and remained asymptomatic to time T01.
Again, the relevant entry of u is used to determine the probability of a cancer of the detected size, along
with the sensitivity of the screen, σ, by size, and the probability of attending the first screen (α1).

ρ21 = Pr (asymptomatic dcis under Scenario 2) = α1(σ1u2 + σ2u4),

ρ22 = Pr (asymptomatic tumour ≤ 10mm under Scenario 2) = α1σ3u6,

ρ23 = Pr (asymptomatic tumour 11–20mm under Scenario 2) = α1σ4u8,

ρ24 = Pr (asymptomatic tumour 21–50mm under Scenario 2) = α1σ5u10,

ρ25 = Pr (asymptomatic tumour ≥ 51mm under Scenario 2) = α1σ6u12.

Scenario 3: cancer is detected after attending first screen, but before the second is sched-
uled.

This is possible if the woman (i) had asymptomatic cancer by time T01 but was undetected, or (ii) had no
cancer and a tumour developed, and became symptomatic by time T02. The probability of a cancer of the
detected size is determined by the relevant entry of W , along with the probability of attending the first
screen (α1), testing negative (1− σ) by size, having cancer of a size no greater than the subsequently
detected size (from the relevant entry of u) and tumour growing to the detected size and then being
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detected (from the relevant entry in W ).

ρ31 = Pr (symptomatic dcis under Scenario 3)

= α1[u1W1,3 + (1− σ1)u2W2,3 + u1W1,5 + (1− σ2)u4W4,5],

ρ32 = Pr (symptomatic tumour ≤ 10mm under Scenario 3)

= α1

[
u1W1,7 +

3∑
k=2

(1− σk)u2kW2k,7

]
,

ρ33 = Pr (symptomatic tumour 11–20mm under Scenario 3)

= α1

[
u1W1,9 +

4∑
k=2

(1− σk)u2kW2k,9

]
,

ρ34 = Pr (symptomatic tumour 21–50mm under Scenario 3)

= α1

[
u1W1,11 +

5∑
k=2

(1− σk)u2kW2k,11

]
,

ρ35 = Pr (symptomatic tumour ≥ 51mm under Scenario 3)

= α1

[
u1W1,13 +

6∑
k=2

(1− σk)u2kW2k,13

]
.

Scenario 4: no cancer is detected until the time of the second screen (given that woman
attended the first), when the woman attends screening and a tumour is found.

This is possible if (i) the woman had asymptomatic cancer by time T01 but was undetected during
first screen, and it remained aymptomatic to time T02, or if (ii) she had no cancer at the time of the
first screen, a tumour developed and remained asymptomatic to time T02. Again, the probability of this
outcome is determined by the probability of attending the two screens (α1 and α21), the sensitivity of the
screens for the one or two tumour sizes (1− σ), having cancer of a size no greater than the subsequently
detected size (relevant entry of u) and tumour growing to the detected size from each possible size at
the first screen (from W ).

ρ41 = Pr (asymptomatic dcis under Scenario 4)

= α1α21{σ1[u1W1,2 + (1− σ1)u2W2,2] + σ2[u1W1,4 + (1− σ2)u4W4,4]},
ρ42 = Pr (asymptomatic tumour ≤ 10mm under Scenario 4)

= α1α21σ3

[
u1W1,6 +

3∑
k=2

(1− σk)u2kW2k,6

]
,

ρ43 = Pr (asymptomatic tumour 11–20mm under Scenario 4)

= α1α21σ4

[
u1W1,8 +

4∑
k=2

(1− σk)u2kW2k,8

]
,

ρ44 = Pr (asymptomatic tumour 21–50mm under Scenario 4)

= α1α21σ5

[
u1W1,10 +

5∑
k=2

(1− σk)u2kW2k,10

]
,

ρ45 = Pr (asymptomatic tumour ≥ 51mm under Scenario 4)

= α1α21σ6

[
u1W1,12 +

6∑
k=2

(1− σk)u2kW2k,12

]
.

Scenario 5: negative results on both screens.

This is possible if the woman (i) had asymptomatic cancer by time T01 that remained asymptomatic to
time T02 and was undetected during both screens, or (ii) if she had no cancer at the time of the first
screen and a tumour developed and remained asymptomatic to time T02 and was not detected at the
second screen, or (iii) if she were free of the disease for the whole time period. The probability of this
scenario is thus obtained by summing over the probabilities of these disjoint events.
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ρ5 = Pr (Scenario 5)

= α1α21

{
v1 + (1− σ1)u1W1,2 + (1− σ1)2u2W2,2

+

6∑
k=2

(1− σk)

u1W1,2k +

k∑
j=2

(1− σj)u2jW2j,2k

 .

Scenario 6: no cancer detected in a woman who missed the second screen but attended the
first.

This is possible if the woman had asymptomatic cancer by time T01 but was undetected during first screen
and remained asymptomatic until the end of the study period, or if she were cancer free at the first screen
and developed asymptomatic cancer thereafter, or if she were free of the disease for the full duration of
the study. Again, the probability of the scenario is derived by summing over these possibilities.

ρ6 = Pr (Scenario 6)

= α1(1− α21)

{
u1

(
W1,1 +

6∑
k=1

W1,2k

)
+ (1− σ1)u2W2,2

+

6∑
k=2

k∑
j=2

[(1− σj)u2jW2j,2k]

 .

Scenario 7: cancer is detected after missing scheduled first screen, but before the second
is scheduled.

This is possible if the woman had asymptomatic cancer by time T01 but was undetected as she missed
the first screen, or if she had no cancer and a tumour developed and became symptomatic by time T02.
The probability of a cancer of the detected size is determined by summing over the all consistent tumour
sizes (or lack of a tumour) at the time of the first screen. Note that this is necessary as it is known that
that individual did not have symptomatic cancer by that time point, and so we cannot simply inspect
the absorbing probabilities in v.

ρ71 = Pr (symptomatic dcis under Scenario 7)

= (1− α1)[u1W1,3 + u2W2,3 + u1W1,5 + u4W4,5]

ρ72 = Pr (symptomatic tumour ≤ 10mm under Scenario 7)

= (1− α1)

[
u1W1,7 +

3∑
k=2

u2kW2k,7

]
ρ73 = Pr (symptomatic tumour 11–20mm under Scenario 7)

= (1− α1)

[
u1W1,9 +

4∑
k=2

u2kW2k,9

]
ρ74 = Pr (symptomatic tumour 21–50mm under Scenario 7)

= (1− α1)

[
u1W1,11 +

5∑
k=2

u2kW2k,11

]
ρ75 = Pr (symptomatic tumour ≥ 51mm under Scenario 7)

= (1− α1)

[
u1W1,13 +

6∑
k=2

u2kW2k,13

]
.
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Scenario 8: no cancer is detected until the time of the second screen (for a woman who
missed the first), when the woman attends screening and a tumour is found.

This is possible if the woman had asymptomatic cancer by time T01 but was undetected as she missed
the first screen, or if she had no cancer and a tumour developed and remained asymptomatic by time T02.
The relevant entry of v is used to determine the probability of an asymptomatic cancer of the detected
size, along with the probability of missing the first screen (1− α1), attending the second screen given
that the first was missed (α21c) and sensitivity of the screen (σ) by size.

ρ81 = Pr (asymptomatic dcis under Scenario 8) = α21c(1− α1)[σ1v2 + σ2v4],

ρ82 = Pr (asymptomatic tumour ≤ 10mm under Scenario 8) = α21c(1− α1)σ3v6,

ρ83 = Pr (asymptomatic tumour 11–20mm under Scenario 8) = α21c(1− α1)σ4v8,

ρ84 = Pr (asymptomatic tumour 21–50mm under Scenario 8) = α21c(1− α1)σ5v10,

ρ85 = Pr (asymptomatic tumour ≥ 51mm under Scenario 8) = α21c(1− α1)σ6v12.

Scenario 9: negative results for the second screen, given that the first was missed.

This is possible if the woman had asymptomatic cancer by time T02 which was missed on the second
screen, or if she were free of the disease. The summation of the relevant entries of v is used to determine
the probability of getting negative results for the second screen, along with the probability of missing
the first screen (1−α1), attending the second given that she missed the first (α21c), and testing negative
(1− σ) if she had asymptomatic cancer.

ρ9 = Pr (Scenario 9) = α21c(1− α1)

{
v1 +

6∑
k=1

[(1− σk)v2k]

}
.

Scenario 10: missed both screens.

This is possible if the woman had cancer that remained asymptomatic to time T02, or if she were free of
the disease.

ρ10 = Pr (Scenario 10) = (1− α1)(1− α21c)

[
v1 +

6∑
k=1

v2k

]
.

Control arm: outcome probabilities

In this section, we describe the components of the likelihood function for the control arm. There are two
outcome scenarios, excluding differences in tumour sizes.

Asymptomatic at the end of study.

This is possible if the woman had cancer that remained asymptomatic to time T02, or if she were free
of the disease. The summation of the relevant entries of v is used to determine the probability of being
asymptomatic under the control arm.

ρasym = Pr (asymptomatic under control arm) = v1 +

6∑
k=1

v2k.

Symptomatic at the end of study.

This is possible if the woman had cancer that became symptomatic by time T02. The relevant entry of
v is used to determine the probability of a cancer of the detected size.

ρsym1 = Pr (symptomatic dcis under control arm) = v3 + v5,

ρsym2 = Pr (symptomatic tumour ≤ 10mm under control arm) = v7,

ρsym3 = Pr (symptomatic tumour 11–20mm under control arm) = v9,

ρsym4 = Pr (symptomatic tumour 21–50mm under control arm) = v11,

ρsym5 = Pr (symptomatic tumour ≥ 51mm under control arm) = v13.
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Outcome probabilities for the 11-state model

The derivation of the outcome probabilities for the model with no indolent cancers can be derived from
the above formulation by setting the proportion initially indolent and the proportion of cancers that are
indolent to 0.

Derivation of long-run behaviour

The absorption probabilities of D-states and quasi-stationary distributions on the S-states can be ob-
tained in different ways. The first is to insert ‘large’ values of t in Pr (X(t)|θ) = Pr (X(0)|θ) exp{tQ(θ)}.
The larger t, the closer to the actual long-run behaviour, but the greater the risk of numerical overflow
issues in deriving the quasi-stationary distributions. We therefore used a range of values of t to check
for consistency.

The second is to reformulate the model as a series of ordinary differential equations determined by
Q with an additional ‘birth’ and ‘death’ term, µ, that represent influx into the non-cancerous state and
efflux from the detected states. The quasi-equilibrium distributions are then obtained by setting each
differential equation in the series to 0 and solving, which is straightforward due to their being linear. On
doing so, the µ terms cancel. This leads to the same results as the first method when point estimates of
the parameters are inserted. In order to obtain the absorption probabilities of the D-states we can use
classical theory of Makov chains; see e.g. Karlin & Taylor (1975).

Priors

Informative prior distributions for tumour-dependent screening sensitivity were developed by fitting a
binomial distribution to the number of detections from Kerlikowske et al (1996) in the relevant size
category (Table 3) with an uniform prior for the sensitivity on (0,1). Using Table 2 in Kerlikowske et al
(1996), we combined the number of cases detected and sample size from the < 50 and ≥ 50 age groups
for each tumour size category. We assumed that the sensitivity rates for dcis and ≥ 51mm tumour are
similar to that for ≤ 10mm and > 20mm tumours respectively. This analysis then yields the following
beta posterior distributions that were carried forward as priors:

σj ∼ Be(77, 5), where j = 2, 3,

σ4 ∼ Be(64, 6),

σj ∼ Be(39, 8), where j = 5, 6.

Thus, for dcis we derived a prior distribution using the sensitivity estimates for tumours ≤ 10mm,
from Kerlikowske et al (1996), while for tumours ≥ 51mm and tumours 20–50mm, we derived priors
using the Kerlikowske et al (1996) estimates for tumours > 20mm. This implies that the priors for
dcis and tumours ≤ 10mm are the same, though the posteriors need not be, and the priors for tumours
20–50mm and ≥ 51mm are the same, though again the posteriors need not be. We did, however, assume
σ1 = σ2, i.e. that there is no difference in the sensitivity for indolent and aggressive dcis.

We incorporated external information on the prevalence of indolent dcis by setting the prior distri-
bution for the probability of getting aggressive breast cancer to be non-informative and incorporating
an additional term in the posterior for each screen in which dcis could be detected, with a parameter
characterising the prevalence of indolent dcis on screening, with an informative prior distribution derived
from Leonard & Swain (2004), in which 51 out of 179 detected but untreated dcis subsequently became
invasive.

γ ∼ U(0, 1),

C1 ∼ Bin(23, η),

C2 ∼ Bin(A11, η) and

C3 ∼ Bin ((12−A11), η) , where

η ∼ Be(52, 129).

This allows length-bias to be accounted for.
The prior density for all the transition parameters, κ, φ and δ were taken to be Exp(0.01) while the

prior density for all other parameters was taken to be ∝ 1.
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To assess the sensitivity to the choice of priors, we performed an alternative analysis in which the point
estimates from the Kerlikowske et al (1996) and Leonard & Swain (2004) were retained but the sample
sizes arbitrarily reduced to half their actual values. The results are presented later in this supplementary
material.

Posterior

To prevent overflow issues we work with the natural logarithm of the likelihood and priors. The log-
posterior is the summation of the log-likelihood function (incorporating both study and control groups
as a summation of the logarithm of two multinomial probability masses, one per arm) and log-priors for
screening sensitivity rates, probability of getting aggressive breast cancer and number of dcis that could
be detected for each screen.

Let N11 to N15 be the number of women in the screening arm falling into Scenario 1 with a dcis or an
invasive tumour of size ≤ 10mm, 11–20mm, 21–50mm, or ≥ 51mm, respectively, N21 to N25, N31 to N35,
N41 to N45, N71 to N75, N81 to N85 be the corresponding numbers for Scenarios 2, 3, 4, 7, and 8, and
N5, N6, N9, and N10 be the numbers falling into Scenarios 5, 6, 9 and 10, respectively. Similarly, letM0

be the number of asymptomatic women in the control arm and M1 to M5 the number of symptomatic
women in these tumour size classes, respectively. Then the log-likelihood function is

log Pr (N ,M|θ) = c+
∑

j∈{1,2,3,4,7,8}

5∑
k=1

Njk log ρjk +
∑

j∈{5,6,9,10}

Nj log ρj

+M0 log ρasym +

5∑
k=1

Mk log ρsym k

where c is a constant that factorises in the Metropolis–Hastings step and hence need not be derived. The
log-posterior (up to a constant) is the sum of the log-likelihood and the log of the density of the prior.

Proposal distributions

Updates to parameters were proposed within a Markov chain Monte Carlo sampler either to individ-
ual parameters or blocks of parameters, followed by the Metropolis–Hastings step. Univariate normal
proposal distributions were used for γ, η, κ, α1, α21, α21c, C1, C2 and C3 and these parameters were
accepted or rejected one at a time. Multivariate normal proposal distributions were used for φ, δ, σ,
A1 and p0 and these parameters were accepted or rejected in batches each time. Specifically, using the
notation ψ? to represent the proposed and ψc the current value of a parameter or block of parameters
ψ, we proposed parameter values from the following distributions.

Univariate:

γ?|γc ∼ N(γc, 0.022);

η?|ηc ∼ N(ηc, 0.022);

κ?|κc ∼ N(κc, 0.000252);

α?1|αc1 ∼ N(αc1, 0.00152);

α?21|αc21 ∼ N(αc21, 0.0022);

α?21c|αc21c ∼ N(αc21c, 0.0062);

C?1 |Cc1 ∼ ND(Cc1, 12);

C?2 |Cc2 ∼ ND(Cc2, 12);

C?3 |Cc3 ∼ ND(Cc3, 0.42);

where ND is a discretised normal.
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Multivariate:

φ?|φc ∼ N

φc,


102

0.12

0.052

0.052

 I4

 ;

δ?|δc ∼ N

δc,


0.052

0.052

0.052

0.22

12

 I5

 ;

σ?j |σcj ∼ N

σcj ,


0.022

0.022

0.022

0.022

0.022

 I5

 ; where j = 2, . . . , 6 and σ?1 = σ?2 ;

A?1|Ac1 ∼ ND

Ac1,


0.52

22

22

0.72

0.32

 I5

 ;

p?0|pc0 ∼ N(pc0, 0.25×



2446 −202 −395 −660 −829 −313 −47
−202 226 −52 18 11 −2 2
−395 −52 8375 −8043 94 27 −6
−660 18 −8043 8961 −254 −28 6
−829 11 94 −254 1016 −45 8
−313 −2 27 −28 −45 370 −8
−47 2 −6 6 8 −8 46


× 10−10).

Run-time parameters were tuned on pilot runs.

Markov chain Monte Carlo

MCMC is a simulation-based approach to sample a complicated distribution of a random variable (Albert,
2007). We could simulate a Markov chain and use its trajectory as the sample from the posterior (Albert,
2007), if a Markov chain with a stationary distribution equal to the posterior could be set up. Metropolis–
Hastings algorithm is a common method used to construct a Markov chain that has a specified stationary
distribution. To start the running of Markov chain, we first set iteration i to be 1. The initial conditions
are arbitrary values chosen to be the initial choices of the parameters to be estimated. We then simulate
from the respective proposal distributions, which are functions of two variables—current state of the
chain and the candidate value, and evaluate their densities (Albert, 2007). Proposed values, which are
drawn from densities of the proposal distributions, are accepted or rejected according to log acceptance
probabilities (Albert, 2007). Iteration i is then increased by 1. If the proposed values are rejected, the
Markov chain will have a repeat in the sequence. All these lead to correlated samples of the parameters
with densities equal to the target densities.

Sensitivity analysis

The parameter estimates from the 11-state model, which does not differentiate indolent and aggressive
dcis are shown in Table 1b in the main paper. There are few differences between corresponding pa-
rameters in the two models, with the expectation of a longer sojourn in the dcis class under the model
with no indolent dcis (0.04 years in 13-state model vs 0.2 years in 11-state model), fewer dcis shown by
the absorption probabilities (9% in 13-state model vs 3% in 11-state model) and more dcis amongst the
steady-state proportions of women with undiagnosed cancer (2% in 13-state model vs 10% in 11-state
model). Internal validation indicated the 11-state model (Figure 4 in Supplementary Material) also
provided a good description of the data, and there are few differences between their predictions under
different mammographic screening frequencies (Figure 5 in Supplementary Material) and breast cancer
risks (Figure 6 in Supplementary Material), albeit with fewer predicted ductal carcinomas in situ dcis
in the 11-state model than in the 13-state model.
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Sensitivity analysis to prior

We repeated the analysis using weaker informative priors. The results are shown in Table 8 and Figures
8–10. As can be seen from Table 8, most of the parameter and derived parameter estimates are almost
unchanged. The most significant change observed is the decrease in average sojourn times for 21–50mm
tumour (6.4 years in the main analysis vs 6.1 years in the sensitivity analysis). The model fitted with
weaker priors still describes the data well (Figure 8) and the distributions of tumour sizes, regardless of
screening intervals (Figure 9) or risk levels (Figure 10), remain similar to that of the original 13-state
model.

Annex discussion

We include here various points as there was not enough space to discuss in sufficient length in the main
paper.

Tumour size distribution as incidence varies

Although it seems odd intuitively, from a theoretical perspective, the distribution of sizes must differ
for different baseline incidence rates. The following argument explains why. Imagine two groups, a high
and a low risk group, whose incidence is constant from a starting age (say 50) with age within each
group. Imagine also that they are intensively monitored over a fixed time horizon, say until the age of
75. Under these assumptions, the distribution of the age at first development of a tumour is exponential
(after the starting age of 50, but truncated at 75), with a mean that is smaller for the higher risk group.
Since they are monitored only for a fixed time period, there is therefore on average a longer time period
for the higher risk women to develop a larger tumour and so the higher risk group should have larger
tumours for a given screening frequency.

If, however, both incidence rates are low in absolute terms, the distribution of first tumour develop-
ment within the monitored age range is approximately uniform, and so the increase in time to develop
larger tumours is small. It was not a priori clear whether plausible incidence rates, like those considered
in this study, would lead to a noticeable difference in tumour sizes, however, the results of our analysis
(Figure 3e–3h) suggest that there is almost no such difference.

Limitations of Markov models

As a reviewer points out, an often reported limitation of Markov models is that multiple parameters
(in this context growth rates/sojourn times and sensitivities) are difficult to identify jointly in the es-
timation process, as different combinations of the parameters may have identical, or almost identical,
values of the likelihood, i.e. the same ability to explain the data. This may lead to high correlation
between the estimates of multiple parameters. This issue reflects a lack of information in a dataset
about some characteristics of the model. One solution, and the solution adopted here, is to use Bayesian
methods to incorporate information—and the concomitant uncertainty—from other datasets to inform
non-identifiable parameters (see Lee et al (2011) for an example of this in the context of infectious dis-
eases). In the current context, it is not realistic to expect both progression rates and sensitivities to
be determined using data on screening-based diagnoses only, but by incorporating additional data on
sensitivities from a different study design, this lack of identifiability can be overcome.

A more fundamental problem with Markov models lies in two assumptions they (typically) make: (i)
that rates at which events occur are constant in time, leading to exponentially distributed sojourn times.
This assumption provides a good first-order approximation (the mean can be estimated accurately) but
not a good second-order approximation (the variance or shape does not agree with how we think the
biology should behave: exponential distributions are right-skewed and, we believe, offer a less intuitive
interpretation than more common distributions such as normal distributions). We have partially obviated
this by distinguishing indolent and aggressive dcis. (ii) The second, fundamentally related issue is that
variability between individuals is not represented within a Markov model. Variability between times is
but is assumed to be driven entirely by the stochasticity generated by a constant hazard. A consequence
is independence between successive events that also serves as a reasonable approximation but does not
fully capture biological reality.
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Length-biased sampling

One important distinction between our estimates for the proportion of dcis that are indolent and past
estimates is that ours account for length-biased sampling. To those encountering length-biased sampling
for the first time, it is counter-intuitive. A popular example in classes on probability illustrates this: if
buses arrive randomly at your bus stop and on average 10 minutes apart1, and you walk to the bus stop,
how long do you expect to wait? A common, but wrong, answer is 5 minutes (using the logic that on
average you arrive half way between buses). In fact, on average you will wait 10 minutes—because of
length-biased sampling. (You’re more likely to arrive in a long gap between buses than a short gap.) In
the current context, if a tumour is slow growing it is far more likely to be detected while it is in a small
pre-invasive state than a faster growing tumour that quickly grows to be larger and invasive is. This
means that study designs like that of Leonard & Swain (2004), in which small tumours are selected and
proportion that are aggressive determined via follow-up, have to be interpreted with care: they provide
estimates not of the fraction of tumours that become aggressive, but of the fraction of detected tumours
in which the tumour becomes aggressive. Nonetheless, the data they have provided are important, and
hence used in our study. To determine the fraction of tumours that ever become aggressive requires
knowing something about the speed of progression, i.e. a modelling study such as the current one.
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Table 2: List of 36 parameters in breast cancer model.
Parameter Notation

Breast cancer incidence rate κ
Probability of getting aggressive breast cancer γ
Detection rate at tumour size (i− 1) δi
Progression rate of tumour from size (i− 1) to i φi
Probability (%) of attending first screening α1

Probability (%) of attending second screening, given that woman attended the first α21

Probability (%) of attending second screening, given that woman did not attend the
first

α21c

Sensitivity (%) of mammography for tumour size (i− 1) σi
Initial probability (%) of being in the thirteen states p0
Probability of detected dcis being aggressive η
Number of women getting positive second screen results, given that both screens
were attended

A1

Number of women detected with aggressive dcis in the first screen C1

Number of women detected with aggressive dcis in the second screen, given that the
first was attended

C2

Number of women detected with aggressive dcis in the second screen, given that the
first was missed

C3

Table 3: Breast cancer cases detected (x) and subsequently detected (n) by tumour size
(Kerlikowske et al, 1996). Data are used for informative prior distribution for screening sensitivity.

Tumour size (mm) x n

dcis 76 80
≤ 10 76 80
11–20 63 68
21–50 38 45
≥ 51 38 45
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Table 4: Detailed list of parameters and derived parameters estimated by the 13-state
Markov model.

Parameters Notation

Breast cancer incidence rate, per 10,000 woman-years κ
Indolent breast cancer incidence rate, per 10,000 woman-years κ(1-γ)
Aggressive breast cancer incidence rate, per 10,000 woman-years κγ
Probability (%) of getting aggressive breast cancer γ
Initial probability (%)
(a) No cancer p01
(b) Indolent dcis p02
(c) Aggressive dcis p04
(d) ≤ 10mm p06
(e) 11–20mm p08
(f) 21–50mm p010
(g) ≥ 51mm p012
Average sojourn time, in years, for different tumour sizes
(a) Aggressive dcis 1

φ1

(b) ≤ 10mm 1
φ2

(c) 11–20mm 1
φ3

(d) 21–50mm 1
φ4

(e) ≥ 51mm 1
δ5

Probability (%) of detecting breast cancer before progression in tumour size

(a) Aggressive dcis → ≤ 10mm δ1
φ1+δ1

(b) ≤ 10mm → 11–20mm δ2
φ2+δ2

(c) 11–20mm → 21–50mm δ3
φ3+δ3

(d) 21–50mm → ≥ 51mm δ4
φ4+δ4

Probability (%) of attending screenings
(a) First screening α1

(b) Both screenings α21

(c) Second screening but not first screening α21c

Sensitivity (%) of mammography for different tumour sizes
(a) dcis (indolent or aggressive) σ1 = σ2
(b) ≤ 10mm σ3
(c) 11–20mm σ4
(d) 21–50mm σ5
(e) ≥ 51mm σ6
Number of aggressive DCIS
(a) Among dcis detected in first screening C1

(b) Among dcis detected in second screening, given that woman attended the first C2

(c) Among dcis detected in second screening, given that woman did not attend the first C3
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Table 5: Parameter estimates and states used in other Markov models.
Author States Estimates

Tabar et al (1995)
No detectable disease MST=1.7 years (40–49yo)
Preclinical but screening-detectable disease MST=3.3 years (50–59yo)
Symptomatic clinical disease MST=3.8 years (60–69yo)

MST=2.6 years (70–74yo)

Duffy et al (1995)
No disease
Preclinical but detectable disease MST=2.3 years
Clinical disease

Duffy et al (1997) — 3-state model
No detectable disease MST=2.4 years (40–49yo)
Preclinical screen-detectable disease MST=3.7 years (50–59yo)
Symptomatic clinical disease MST=4.2 years (60–69yo)

Duffy et al (1997) — 5-state model

No detectable disease For 50–59yo:
Preclinical node negative disease λ1=0.00176
Preclinical node positive disease λ2=0.23
Clinical node negative disease λ3=0.18
Clinical node positive disease λ4=0.85

Wu et al (2010) — 3-state model
Disease-free
Pre-clinical cancer MST=2.02 years
Clinical cancer

Wu et al (2010) — 5-state model

Disease-free λ1=0.0025
Pre-clinical localised tumour λ2=0.3371
Pre-clinical non-localised tumour λ3=0.2897
Clinical localised tumour λ4=1.2230
Clinical non-localised tumour

Table 6: Informative priors used in the MCMC.
Prior Source Distribution Point

estimate (%)
95% CI (%) Estimated

point
estimate (%)

Estimated
95% CI (%)

σ1,σ2

Kerlikowske
et al (1996)

Be (77, 5) 95.0 87.7–98.6 88.3 83.0–92.2
σ3 Be(77, 5) 95.0 87.7–98.6 90.2 86.5–93.3
σ4 Be(64, 6) 92.6 83.7–97.6 91.1 87.8–94.0
σ5 Be(39, 8) 84.4 70.5–93.5 91.9 88.7–94.7
σ6 Be(39, 8) 84.4 70.5–93.5 93.2 89.9–96.2

η*
Leonard &
Swain (2004)

Be(52, 129) 28.5 22.0–35.7 27.9 21.5–34.7

*If the eight studies were equally weighted, the point estimate (95% CI) for η is 43.0% (33.0–52.5%).
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Table 7: Data used in the study. Data were extracted from tables and text of Fagerberg et al (1985).
Ten outcomes of the screening group are numbered in square brackets.

Scenario Number of women

Screening group
Detected before screen 1 [1] 10
dcis 0
≤ 10mm 2
11–20mm 6
21–50mm 2
≥ 51mm 0
Asymptomatic at screen 1 38 486
Attended screen 1, given that asymptomatic at screen 1 34 168
Positive screen 1 results [2] 226
dcis 23
≤ 10mm 87
11–20mm 79
21–50mm 32
≥ 51mm 5
Negative screen 1 results 33 942
Detected before screen 2, given that negative screen 1 results [3] 49
dcis 4
≤ 10mm 6
11–20mm 20
21–50mm 17
≥ 51mm 2
Asymptomatic at screen 2, given that negative screen 1 results 33 893
Attended screen 2, given that asymptomatic at screen 2 and attended screen 1 29 336
Positive screen 2 results, given that attended screen 1 [4] A1
Negative screen 2 results, given that attended screen 1 [5] B1
Did not attend screen 2, given that asymptomatic at screen 2 and attended screen 1 [6] 4 557
Did not attend screen 1, given that asymptomatic at screen 1 4 318
Detected before screen 2, given that did not attend screen 1 [7] 22
dcis 2
≤ 10mm 2
11–20mm 9
21–50mm 8
≥ 51mm 1
Asymptomatic at screen 2, given that did not attend screen 1 4 296
Attended screen 2, given that asymptomatic at screen 2 and did not attend screen 1 745
Positive screen 2 results, given that did not attend screen 1 [8] A2
Negative screen 2 results, given that did not attend screen 1 [9] B2
Did not attend screen 2 [10] 3 551

Control group
Asymptomatic at end 37 659
Symptomatic at end 277
Note: The publication did not distinguish screening results at the second screen by attendance at the
first screen: A1+A2=106 where there are 12 DCIS, 39 ≤ 10mm, 45 11–20mm, 9 21–50mm, 1 ≥ 51mm

and B1+B2=29 975.
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Table 8: List of parameter and derived parameter estimates from (a) 13-state model and
(b) rerun of model with weaker priors.

Parameters
(a) 13-state model (b) With weaker priors

Estimates 95% CI Estimates 95% CI

Probability (%) of getting aggressive breast cancer 91 85–97 92 85–97
Incidence rate (per 10,000 woman-years)
(a) Breast cancer 21 17–25 21 17–25
(b) Indolent breast cancer 2 1–3 2 1–3
(c) Aggressive breast cancer 19 16–23 19 16–23
Initial probability (%)
(a) No cancer 99.23 99.13–99.32 99.23 99.12–99.32
(b) Indolent dcis 0.06 0.03–0.09 0.06 0.03–0.09
(c) Aggressive dcis 0.13 0.01–0.32 0.13 0.01–0.32
(d) ≤ 10mm 0.21 0.02–0.35 0.21 0.02–0.36
(e) 11–20mm 0.26 0.20–0.33 0.26 0.20–0.33
(f) 21–50mm 0.10 0.07–0.14 0.10 0.07–0.14
(g) ≥ 51mm 0.02 0.00–0.03 0.01 0.00–0.03
Average sojourn time, in year, for different tumour sizes
(a) Aggressive dcis 0.0 0.0–0.1 0.0 0.0–0.1
(b) ≤ 10mm 0.8 0.6–1.1 0.8 0.6–1.1
(c) 11–20mm 2.4 1.6–3.5 2.4 1.6–3.4
(d) 21–50mm 6.4 2.5–15.6 6.1 2.5–14.7
(e) ≥ 51mm 0.4 0.1–0.9 0.4 0.1–0.9
Probability (%) of detecting breast cancer before progression in tumour size
(a) Aggressive dcis →≤ 10mm 0 0–1 0 0–1
(b) ≤ 10mm→11–20mm 12 8–15 12 8–15
(c) 11–20mm →21–50mm 51 43–60 51 43–59
(d) 21–50mm→≥ 51mm 87 79–95 87 78–94
Probability (%) of attending screenings
(a) First screening 89 88–89 89 88–89
(b) Both screenings 87 86–87 87 86–87
(c) Second screening but not first screening 17 16–19 17 16–19
Sensitivity (%) of mammography for different tumour sizes
(a) dcis 88 83–92 87 79–93
(b) ≤ 10mm 90 86–93 90 85–94
(c) 11–20mm 91 88–94 92 87–96
(d) 21–50mm 92 89–95 93 89–96
(e) ≥ 51mm 93 90–96 95 90–98
Absorption probability of different tumour sizes
(a) dcis (indolent or aggressive) 9 4–15 9 4–15
(b) ≤ 10mm 10 8–14 10 8–14
(c) 11–20mm 41 35–48 41 35–48
(d) 21–50mm 34 28–41 34 28–41
(e) ≥ 51mm 5 2–9 5 2–9
Steady-state proportion of women with undiagnosed cancer
(a) No cancer 99.4 99.1–99.6 99.4 99.1–99.6
(b) Indolent dcis 0.2 0.1–0.4 0.2 0.1–0.4
(c) Aggressive dcis 0.0 0.0–0.0 0.0 0.0–0.0
(d) ≤ 10mm 0.1 0.1–0.2 0.1 0.1–0.2
(e) 11–20mm 0.2 0.1–0.3 0.2 0.1–0.3
(f) 21–50mm 0.1 0.0–0.1 0.1 0.0–0.1
(g) ≥ 51mm 0.0 0.0–0.0 0.0 0.0–0.0
Steady-state proportion of women with undiagnosed cancer (conditional on some cancer)
(a) Indolent dcis 30 12–53 30 12–54
(b) Aggressive dcis 2 0–4 1 0–4
(c) ≤ 10mm 24 15–33 24 15–34
(d) 11–20mm 33 21–47 33 20–46
(e) 21–50mm 10 5–18 10 5–17
(f) ≥ 51mm 1 0–2 1 0–2



Figure 4: Data versus predictive distribution of tumour sizes, comparing 11-state and 13-
state models. Bars with lines represent data with their 95% classical confidence intervals based on
binomial errors, diamond-shaped points with lines represent modelled proportions and their 95% credible
intervals by 11-state model and circular points with lines represent modelled proportions and their 95%
credible intervals by 13-state model.
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Figure 5: Tumour size distribution for different mammographic screening frequencies, com-
paring 11-state and 13-state models. (a) No screening, (b) annual screening, (c) screening every 2
years, and (d) screening every 5 years. Gray points with lines represent modelled proportions and their
95% credible intervals by 11-state model and black points with lines, to the right, represent modelled
proportions and their 95% credible intervals by 13-state model.
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Figure 6: Tumour size distribution for different rates from no cancer to DCIS, comparing
11-state and 13-state models. (a) Low risk (50% of baseline), (b) normal risk (100%), (c) moderate
risk (150%), and (d) high risk (200%). Gray points with lines represent modelled proportions and their
95% credible intervals by 11-state model and black points with lines, to the right, represent modelled
proportions and their 95% credible intervals by 13-state model.

18



19



20



Figure 7: Histograms of the posterior distributions of estimates.
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Figure 8: Data versus predictive distribution of tumour sizes, comparing 13-state model and
a rerun of it with weaker priors. Bars with lines represent data with their 95% classical confidence
intervals based on binomial errors, diamond-shaped points with lines represent modelled proportions and
their 95% credible intervals by 13-state model with weaker priors and circular points with lines represent
modelled proportions and their 95% credible intervals by 13-state model.
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Figure 9: Tumour size distribution for different mammographic screening frequencies, com-
paring 13-state model and a rerun of it with weaker priors. (a) No screening, (b) annual
screening, (c) screening every 2 years, and (d) screening every 5 years. Gray points with lines represent
modelled proportions and their 95% credible intervals by 13-state model with weaker priors and black
points with lines, to the right, represent modelled proportions and their 95% credible intervals by 13-state
model.

23



Figure 10: Tumour size distribution for different rates from no cancer to DCIS, comparing
13-state model and a rerun of it with weaker priors. (a) Low risk (50% of baseline), (b) normal
risk (100%), (c) moderate risk (150%), and (d) high risk (200%). Gray points with lines represent
modelled proportions and their 95% credible intervals by 13-state model with weaker priors and black
points with lines, to the right, represent modelled proportions and their 95% credible intervals by 13-state
model.
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