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I. Brownian Dynamics Simulations
A. System with a Single Intermediate. Brownian dynamics simula-
tions were performed on the combined time-dependent potential
Gðx;X ; tÞ=G0ðxÞ+GLðX − xÞ+ 8ðX0 ±Vt−XÞ2�2, where ± in-
dicates the stretching/relaxation protocol, x= xðtÞ is the extension
of the molecule, X =XðtÞ is the extension of the molecule-linker
construct, and X0 is the initial stage-to-cantilever base separation
(or trap-to-trap separation). G0ðxÞ is the intrinsic molecular
potential and GLðL=X − xÞ is the potential of the linker teth-
ering the molecule to the pulling device; both are detailed below.
The spring constant of the pulling device 8= 5  pN=nm repre-
sented an atomic force microscope (AFM) cantilever.
The free-energy profile G0ðxÞ of the system with a single in-

termediate (Fig. 3A), suitable for running Brownian dynamics
simulations, was constructed as follows. The positions and heights
of the minima (N, I, U) and the maxima of the free-energy profile
were fixed according to the “true” parameters (Table 1), with the
origin (0, 0) chosen in state N. These positions were then connected
by five piecewise quadratic polynomials according to the following:
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where ðxb1; gb1Þ= ðX‡
NI;ΔG

‡
NIÞ, ðxw2; gw2Þ= ðxb1 +X‡

IN ; gb1 −ΔG‡
INÞ,

ðxb2; gb2Þ= ðxw2 +X‡
IU ; gw2 +ΔG‡

IUÞ, and ðxw3; gw3Þ= ðxb2 +X‡
UI ;

gb2 −ΔG‡
UIÞ are the positions of the barriers and wells (maxima

and minima), and κw1, κw2, κw3, κb1, κb2 are the corresponding
stiffnesses (curvatures). The polynomials were matched at posi-
tions x1, x2, x3, x4, where x1 =X‡

NI=2 and the other xi’s and κi’s were
determined by requiring the derivatives dG0ðxÞ=dx to be continu-
ous at these matching points.
An anharmonic linker was explicitly accounted for as a worm-

like chain with the potential
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which can be obtained by integrating the worm-like chain force–
extension relation (1). The contour length Lc = 30 nm and the
persistence length Lp = 0:4 nm represented a polypeptide linker.
The conformational dynamics of the molecule and linker were

assumed to be diffusive and governed by the corresponding Lan-
gevin equations (2) with a position-dependent diffusion coefficient
of the molecule DmðxÞ:
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where DL = 5× 104 nm2=s is the diffusion coefficient of the linker,
which is slowed down due to the attachment to the pulling device
(e.g., the AFM cantilever) (3). RmðtÞ and RLðtÞ are the Gaussian
random forces with zero mean and the corresponding variances
RmðtÞRmðt′Þ= 2DmðxðtÞÞδðt− t′Þ and RLðtÞRLðt′Þ= 2DLδðt− t′Þ.
The position dependence of the diffusion coefficient (Fig. S3,

solid line) was modeled as follows:
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such that it increased by an order of magnitude upon a transition
from state N to state I, and by another order of magnitude upon
a transition from state I to state U (4). Parameters a1 = 10 and
a2 = 5 control the sharpness of the sigmoidal switches, and b1 =
ðxb1 + xw2Þ=2 and b2 = ðxb2 + xw3Þ=2 are the locations of the
switches, chosen at the inflection points past the first and second
barriers. An additional test with an alternative form ðDmðxÞ∝ x3Þ
of the position dependence of the diffusion coefficient (Fig. S3,
dashed line) confirmed the accuracy of the extracted parameters
(Table S1 and Section VI). The robustness of the proposed method
against the position dependence of the diffusion coefficient can
be understood as a consequence of the fact that the general mean
first-passage time expression (5) involves only the diffusion co-
efficient of the barrier region. Any significant changes, if present,
in the diffusion coefficient have been shown (4) to occur beyond
the barrier region and therefore only have a relatively minor effect
on the accuracy of the barrier parameters extracted with the pro-
posed method.
Force–extension trajectories were generated by numerically

iterating the Langevin equations (Eq. S3). Each stretching (re-
laxation) cycle began with the separation X0 = 8:6 nm ð35:6 nmÞ
sufficiently small (large) such that N (U) was initially the pre-
dominantly populated state. One thousand trajectories were
generated in each of the stretching and relaxation protocols at
four nominal loading rates 8V = 10, 40, 200, and 1,000 pN/s. The
values of the extension xðtÞ of the molecule and the extension XðtÞ
of the molecule-linker construct were collected at a sampling rate
of 20 kHz and recorded after averaging over four points. The
force measured by the pulling device, FðtÞ= 8ðX0 ±Vt−XðtÞÞ, and
the extension of the molecule-linker construct, XðtÞ, were ana-
lyzed with the method developed in the main content. The values
of the extension of the molecule, xðtÞ, were only used for the test
of the effects of missed and misjudged events (details in Section II).

B. System with a Cascade of Barriers. Brownian dynamics simula-
tions of the molecule with three intermediates were performed on
the combined potential Gðx; tÞ=G0ðxÞ+GLðX − xÞ+ 8ðX0 ±Vt−
XÞ2=2 with ± corresponding to the stretching/relaxation pro-
tocol. The intrinsic free-energy profile G0ðxÞ of the molecule was
constructed in a similar way to that of the system with a single in-
termediate, which is described above. The positions and heights of
the minima (N, I1, I2, I3, U) and the maxima of the free-energy
profile were fixed according to the “true” parameters (Table S2),
with the origin (0, 0) chosen in state N. The locations of the minima
and maxima were then connected by eight piecewise cubic poly-
nomials via a straightforward generalization of Eq. S8 below. A
worm-like chain linker with the contour length Lc = 600 nm and
the persistence length Lp = 40 nm represented a DNA handle.
The stiffness of the pulling device 8= 0:2 pN=nm represented an
optical trap.
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For simplicity, the force from the linker, ∂GLðX − xÞ=∂X , was
assumed to balance the force from the optical trap, 8ðX0 ± Vt−XÞ,
reducing the Langevin equations of the system to the following:

dx
dt

= −
Dm

kBT

�
dG0ðxÞ
dx

− 8ðX0 ±Vt−XÞ
�
+RmðtÞ; [S5]

whereXðx; tÞ was calculated from ∂GLðX − xÞ=∂X = 8ðX0 ± Vt−XÞ,
given the molecular extension x at time t. The effective diffusion
coefficient of the molecule was taken to be Dm = 2×104 nm2=s.
Each stretching (relaxation) cycle began with the separation

X0 = 500 nm ð710 nmÞ sufficiently small (large) such that N (U)
was initially the predominantly populated state. One thousand
force–extension curves were generated in each of the stretching
and relaxation protocols at four nominal loading rates 8V = 1, 4,
20, and 100 pN/s. The transition times and forces were recorded
directly from the simulations.

C. System with Two Competing Pathways and an Intermediate.
Brownian dynamics simulations were performed on the combined
potential Gðx; y; tÞ=G0ðx; yÞ+ 8ðX0 ±Vt− xÞ2=2, with ± corre-
sponding to the stretching/relaxation protocol.
The 2D free-energy landscape G0ðx; yÞ in the space of two

coordinates, x and y, was designed to contain two transition
pathways, one of which featured an intermediate. The pathway
G1ðxÞ, located at small values of y and containing no interme-
diate, and the pathway G2ðxÞ, located at larger values of y and
containing an intermediate, were incorporated in the expression
for G0ðx; yÞ as follows:

where

and

with x1 = x‡NI , x2 = x1 + x‡IN , x3 = x2 + x‡IU , x4 = x3 + x‡UI , x5 = x‡NU ,
x6 = x5 + x‡UN , and β= 1=kBT. The analytical expressions of G1ðxÞ
and G2ðxÞ are each connected piecewise cubic polynomials with
connecting positions at the minima and maxima, as described in

Section IB. In G0ðx; yÞ, the term ΔG‡
Be

−cðxa− 1Þ2−cðyb− 1Þ2 introduces
a barrier which is Gaussian-centered at (a, b) and separates the
two pathways. The term

�y
b− 1

�8 provides a global constraint on
the y coordinate.
Adopted parameter values are as follows: a= 3:25 nm, b=

0:5 nm, c= 6 nm, ΔG‡
B = 25 kBT, ΔG‡

NU = 17:5 kBT, ΔG‡
UN =

1:5 kBT, ΔG‡
NI = 15:5 kBT, ΔG‡

IN = 10:5 kBT, ΔG‡
IU = 18:0 kBT,

ΔG‡
UI = 3 kBT, x‡NU = 2:5 nm, x‡UN = 3:5 nm, x‡NI = 2:0 nm, x‡IN =

1:2 nm, x‡IU = 1:3 nm, and x‡UI = 3:1 nm. Note that the above
parameters of the 2D landscape are not the ones to which the
parameters extracted from the fit to the one-dimensional theory
in Eq. 5 shall be compared. Rather, the parameters of the one-
dimensional potential of mean force (they are listed as “true” in
Table S3) should be used for validating the parameters extracted
from the fit.
Stiffness of the pulling device 8= 0:5 pN=nm represented an

optical trap. The corresponding Langevin equations are as follows:
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The effective diffusion coefficient Dm = 2× 104 nm2=s was used
both in the x and y directions.
Each stretching (relaxation) cycle began with the separation

X0 = 0 nm ð50 nmÞ sufficiently small (large) such that N (U) was
initially the predominantly populated state. One thousand force–
extension curves were generated in each of the stretching and
relaxation protocols at four nominal loading rates 8V = 0.1, 1, 10,
and 100 pN/s. The transition times and forces were recorded di-
rectly from the simulation.

II. Noisy Trajectories. Missed and Misjudged Events. Drift
A. Determining Transition Forces from Noisy Trajectories. The force–
extension curves recorded in Brownian dynamics simulations of
the system with an intermediate suffered, by design, from a low
signal-to-noise ratio (Fig. 3B). As can be seen from Eq. S3, the
extension X evolves in the combined potential of the worm-like
chain linker and the pulling device, thus exhibiting a Boltzmann
distribution with the SD 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8+ 8L

p
, where the stiffness of the

worm-like chain 8L varies with force/extension. In the low-force
region, 8L ∼ 0 and the noise (the width of ±2σ interval) exceeds
2 nm in the extension and 10 pN in the force. In the high-force
region, 8L is large and the noise is reduced. Due to the worm-like
chain nature of the linker, the amount of increase in the extension
upon a transition is small at low forces compared with that at high
forces, which makes it challenging to resolve the states and de-
termine transition forces at low forces (below 30 pN).
To determine transition forces from noisy trajectories, we av-

eraged XðtÞ and FðtÞ data from the simulation using an adaptive
step size. The number of points to be averaged over was de-
termined as follows. The force–extension curves were first fitted
to the worm-like chain curve to find the mean values FNðXNÞ,
FIðXIÞ, and FUðXUÞ, from which XNðtÞ, XIðtÞ, and XUðtÞ were
determined. When X is averaged over n points, the probability
that the value of the extension XðtÞ in state Nmakes an excursion
over the mean value of the extension in state I at time t is ap-
proximately

p∼ exp
�
−
nð8+ 8LÞ

2
�
XIðtÞ−XNðtÞ

�2�
; [S10]

where 8L is the stiffness of the linker at the extension XNðtÞ. At
high forces, the number of points to be averaged over was de-
termined by setting p∼ 10−6, which led to averaging the data over
two points (note that the recorded data were already averaged
over four points, so n= 8). At medium and low forces, n was
determined by setting p∼ 10−3, which led to n∼ 200 around
10 pN and n∼ 20 at 40 pN. Optimal choice of p was set by two
factors: p that is too small usually leads to missed transitions
because short-lived states are averaged away, and p that is too
large usually leads to misjudged events, i.e., when a stochastic
fluctuation in the extension is mistakenly interpreted as a transi-
tion. The averaged force–extension curves and extension–time
curves exhibited three distinct states; transition forces and times
were determined from these curves.

B. Missed and Misjudged Transitions. Missed and misjudged tran-
sitions primarily affect the transition force histograms [PijðFÞ in
Eq. 2]: missed transitions at a force F lead to a decrease in the
height of the bin corresponding to force F in the histogram,
whereas misjudged transitions lead to an increase in the height of
the corresponding bin. Because both missed and misjudged tran-
sitions are short-lived, their effect on the population [NiðFÞ in
Eq. 2] is generally negligible. Therefore, missed and misjudged
transitions affect the rate map almost entirely through their effect
on the histograms.
From the comparison of the transitions recorded by monitoring

the molecular extension xðtÞ with the transitions detected in the

force–extension curves FðXÞ, missed and misjudged transitions
were found to constitute 3–5% of the total transitions, and to be
populated mostly in the low-force region. As the result, the rate
map in Fig. 4A exhibited more scatter at low forces than the
other two rate maps (Fig. 4 B and C), which came from data with
a higher signal-to-noise ratio. Because of the effect of missed/
misjudged transitions, the low-force region ðF ≤ 10 pNÞ on the rate
map was excluded from the fit.

C. Effect of Baseline Drift. The effect of baseline drift was in-
corporated in the simulated transition force histograms by in-
troducing Gaussian-distributed deviations to each transition force
(6) and convolving the populations NðFÞ in each state with the
same Gaussian distribution according to the following:

~NðFÞ=
Z

1
σF

ffiffiffiffiffi
2π

p exp
�
−

1
2σ2F

�
F −F′

�2�N �F′�dF′: [S11]

Values σF = 1:6 pN and σF = 0:8 pN were used for unfolding and
refolding transitions, respectively, reflective of the fact that re-
folding transitions happen at relatively low forces where drift
effect is relatively small.

III. Algorithm for Counting Trajectories in a Given State
Collecting the input N iðFÞ in Eq. 2 (or “trajectories in state i at
F” in Eq. 3) can be automated through a simple algorithm. Let
the state of interest be i, and all of the states directly connected
to i be fjgðj= 1; 2; . . . ;mÞ. For any transition from state i to state j,
the corresponding transition forces and transition times are
F ij = fFijg and Tij = ftijg. F ij and Tij are arrays composed of in-
dividual transition forces Fij and times tij, respectively, collected
from all force–time trajectories at a given nominal loading rate.
Similarly, the transition forces and times for the reversed tran-
sitions—from state j to state i—are F ji = fFjig and Tji = ftjig.
Although the number of trajectories in a specific state can be
found either from the transition forces or transition times, the
nonmonotonic behavior of the force at the rip makes the algo-
rithm in the time domain more convenient.
At a given time t, the average force experienced by the bio-

molecule in state i is F =FðtÞ. The number of trajectories that
enter state i from state j can be found with the MATLAB
function “sum” as sumðTji ≤ tÞ. Similarly, the number of trajec-
tories that leave the state i to state j is sumðTij ≤ tÞ. The number
of trajectories in state i at force F can then be found according to
the following algorithm:

N iðFðtÞÞ=
Xm
j= 1

�
sum

�
Tji ≤ t

�
− sum

�
Tij ≤ t

�
+N 0

i ; [S12]

where N 0
i is the number of trajectories in state i at time t= 0.

Let us apply the above algorithm to the system with a single
intermediate (Figs. 3 and 4A) to determine N IðF = 30 pNÞ, the
number of trajectories in the intermediate (I) at force F = 30 pN.
Data for this illustration are taken from 1,000 trajectories gener-
ated in the stretching protocol via Brownian dynamics simulations
at the nominal loading rate 8V = 10 pN=s. There are four types
of transitions involved: N→ I and U→ I increase the number of
trajectories in I, whereas I→N and I→U decrease the number
of trajectories in I. The recorded transition times for each type
of transition, TNI = ftNIg, TIN = ftINg, TIU = ftIUg, and TUI = ftUIg,
are listed in the boxes in Fig. S1. From the force–time trajectories,
we find that the force F = 30 pN corresponds to the time t= 9:92 s
at this loading rate. Transitions that occurred within the time in-
terval from t = 0 s to t = 9.92 s are highlighted in gray in Fig. S1:
among them are 2,127 N→ I transitions, 1,777 I→N transitions,
17 I→U transitions, and 7 U→ I transitions. Because the
stretching protocol starts with all of the trajectories in the state N,
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N 0
I = 0. Applying the algorithm in Eq. S12, we find the fol-

lowing:N IðF = 30 pNÞ=N Iðt= 9:92 sÞ= sumðTNI ≤ 9:92 sÞ− sum
ðTIN ≤ 9:92 sÞ− sumðTIU ≤ 9:92 sÞ+ sumðTUI ≤ 9:92 sÞ= 2;127−
1;777− 17+ 7= 340:

IV. Standard Deviations of the Rates on the Rate Map
The transformation (Eqs. 2 and 3) converts the mechanical fin-
gerprints of a system into the rate map. To compute the SDs σ
(Eq. 4) of the force-dependent rates on the map, we first de-
termine the SD of each component in the transformation: σ of
the counts in the numerator and σ of the number of trajectories
in a specific state in the denominator. Then, σ of the rate is
calculated using the SE propagation method.
Because molecular transitions are affected by thermal noise

from the environment, counts in each bin of the transition force
histogram are subject to fluctuations. The fluctuating count in
a given bin of the histogram satisfies the binomial distribution with
the mean n=Ncp and the variance σ2 =Ncpð1− pÞ, where Nc is
the total number of counts in the histogram and p is the prob-
ability that the transition force falls within this bin. The variance
can be expressed in terms of n and Nc as σ2 = nð1− n=NcÞ. For
a specific bin with the measured count PðFÞΔF, the corre-
sponding variance is then σ2PðFÞΔF =PðFÞΔ  Fð1−PðFÞΔ  F=NcÞ,
where the expected value n is replaced with the measured count
PðFÞΔ  F. Note that, due to reversible transitions (“hopping”), Nc
can differ from the total number of trajectories.
Similarly, the number of trajectories in a specific state at force F

is subject to fluctuations and satisfies the binomial distribution.
For a state with the measured number of trajectories NðFÞ, the
corresponding variance is σ2NðFÞ =NðFÞð1−NðFÞ=NtÞ, where Nt
is the total number of trajectories at the given nominal loading
rate. In our simulations, Nt = 103.
The errors in the counts and the number of trajectories in a

specific state propagate into the resulting rate through the SE
propagation rule:

σ2lnðkðFÞÞ =
�
∂lnðkðFÞÞ
∂PðFÞ

�2
σ2PðFÞ +

�
∂lnðkðFÞÞ
∂NðFÞ

�2
σ2NðFÞ

=
σ2PðFÞ
PðFÞ2 +

σ2NðFÞ
N ðFÞ2 =

σ2PðFÞΔF
ðPðFÞΔFÞ2 +

σ2NðFÞ
N ðFÞ2

=
1

PðFÞΔF −
1
Nc

+
1

NðFÞ−
1
Nt
:

[S13]

with the quantities Nc, Nt, PðFÞΔF, and NðFÞ defined as above.
The correlation between the fluctuations in PðFÞΔF and NðFÞ
is negligibly weak. Furthermore, 1=Nc + 1=Nt � 1=ðPðFÞΔFÞ+
1=NðFÞ in most cases. We finally have

σlnðkðFÞÞ ≈
�

1
PðFÞΔF +

1
NðFÞ

�1
2

: [S14]

It is worth pointing out that the SD σlnðkðFÞÞ computed above only
accounts for the stochastic error. The systematic error in the
measurement should be accounted for separately.

V. Expression for the Rate k(F ). Comparing Force-Clamp and
Force-Ramp Data
The expression for the force-dependent rate kðFÞ derived in ref. 7
strictly holds for a constant-force (“force-clamp”) experiment.
For this expression to be sufficiently accurate for a force-ramp
experiment, the applied force F = 8ðVt− xÞ must be close to
F ≈ 8Vt throughout the transition over the barrier. This requires
the well of the molecular potential to be much stiffer than the
“spring” of the pulling device. Although the above requirement
is usually satisfied for the transitions that originate from the

folded state (i.e., unfolding) and “stiff” intermediates, it may
not be satisfied for the transitions that originate from the “soft”
unfolded state (i.e., refolding).
To trace back the first-order correction beyond 8Vt approxi-

mation, we first realize that there is a difference between the
average force ~F the molecule experiences while crossing over the
barrier and the force F recorded as the transition force. The av-
erage force experienced during the transition is ~F = 8ðVt ∓ hxi∪+∩Þ,
where the end-to-end distance of the molecule is averaged over
the well and the barrier regions ð∪+∩Þ of the potential covered by
the transition. The minus (−) and plus (+) signs are for the for-
ward and backward transitions, respectively. In contrast, the force
recorded as the transition force is the average force experienced
by the molecule just before the transition, F = 8ðVt ∓ hxi∪Þ, where
the end-to-end distance is averaged over the well only ð∪Þ. The
difference in hxi∪+∩ and hxi∪ leads to the difference in the tran-
sition force experienced ~F and recorded F.
It is a reasonable approximation to take hxi∪+∩ = x‡=2 and

hxi∪ = 8Vt=ð8+ 8mÞ, where x‡ is the width of the barrier and 8m is
the curvature of the well of the molecular potential. The curvature
8m can be expressed in a unified way in terms of the parameters
on the molecular potential and the parameter ν controlling the
shape of the potential: 8m = 2ΔG‡=½x‡2ð1− νÞ�, where ν= 1=2
corresponds to the harmonic-cusp and ν= 2=3 to the linear cubic
potential. We then have: ~F = 8ðVt ∓ x‡=2Þ and F = 8Vt=½1+
ð1− νÞ8x‡2=ð2ΔG‡Þ�. The transition force experienced ~F can now
be expressed in terms of the transition force recorded F: ~F =
F½1+ ð1− νÞ8x‡2=ð2ΔG‡Þ� ∓ 8x‡=2. It is ~F that mimics the role of
the force in a force-clamp measurement; therefore, the expres-
sion for the rate in ref. 7 should be modified by replacing the
force in the force clamp with ~F :

k
	
~FðFÞ



= k0

"
1+

ν8x‡
2

2ΔG‡
∓
νFx‡

ΔG‡

 
1+

ð1− νÞ8x‡2
2ΔG‡

!#1
ν−1

3 exp

(
ΔG‡

(
1−

"
1+

ν8x‡
2

2ΔG‡
∓
νFx‡

ΔG‡

 
1+

ð1− νÞ8x‡2
2ΔG‡

!#1
ν

))
:

[S15]

Detailed analysis shows that the above correction works up to the
first order of 8=8m, which allows the stiffness of the biomolecule
to be as small as ∼ 5 8. With the typical spring constant of an
AFM ∼ 5 pN=nm and an optical trap ∼ 0:3 pN=nm, and with an
additional softening provided by the linker, the parameters of
most biomolecules are in the region where the expression for the
rate in Eq. S15 is valid.
The above analysis shows what correction should bemade when

comparing the rates on the rate map (i.e., from force-ramp
measurements) with the rates from constant force measurements.
By converting the force F from the constant force measurements
to F′= ðF ± 8x‡=2Þ=½1+ ð1− νÞ8x‡2=ð2ΔG‡Þ�, one can transfer the
constant force rate kðFÞ onto the rate map as kðF′Þ. The plus (+)
and minus (−) signs are for the forward and backward tran-
sitions, respectively. The reverse conversion should be made
when the rate from the rate map is transferred to the constant
force rate plot. For example, the slight deviation of the constant
force rate from the rate obtained by transforming force-ramp
data can be seen in Fig. S2D and could be corrected with the
above conversion of the force.

VI. Fitting the Rates on the Rate Map
The force-dependent rates, represented by individual branches
on the rate maps, along with their SDs, were fitted to Eq. 5 using
Nonlinear Least Squares (Curve Fitting) function in MATLAB.

Zhang and Dudko www.pnas.org/cgi/content/short/1309101110 4 of 7

www.pnas.org/cgi/content/short/1309101110


The location of the transition barrier, the barrier height, the
intrinsic rate, and their corresponding SDs were extracted from
the fit for each type of transitions. The fitting parameters for the
system with a single intermediate are listed in Table 1. The fitting
parameters for the other two, more complex, systems studied are
listed in Table S2 (system with a cascade of barriers) and Table
S3 (system with two competing pathways and an intermediate).
A competition between transitions originating from the same

state, e.g., the forward transition I→U and the backward tran-
sition I→N, limits the force range covered by the rates on the
rate map for these transitions, which, in turn, increases the un-
certainty in the fitting parameters. The effect is pronounced for
the parameters of the barrier heights of backward transitions,
such as ΔG‡

IN , where the resulting SD obtained by the nonlinear
least-square fitting is usually above 50% of its own value, invalid-
ating such fitting parameters as unreliable. Instead of adopting
the values extracted from the fit in such cases, we propose here
a simple method of calculating the barrier heights for backward
transitions based on the fitting parameters of its complementary
transition. For two complementary transitions i→ j and j→ i,
Arrhenius equation gives k0ij =Aije

−ΔG‡

ij and k0ji =Ajie
−ΔG‡

ji . As these
two complementary transitions share the same barrier, their effec-
tive diffusion coefficients are comparable (Eq. S18), so thatAij ≈Aji.
We can now relate the barrier heights of these two transitions:

ΔG‡
ji =ΔG‡

ij + ln k0ij − ln k0ji: [S16]

The corresponding SD can be calculated based on the standard
rule of error propagation:

σ2ΔG‡

ji
= σ2ΔG‡

ij
+ σ2ln k0ij

+ 2  covΔG‡

ij; ln k
0
ij
+ σ2ln k0ji

: [S17]

We apply the method developed in Eqs. S16 and S17 to calculate
the values of the barrier heights and their SDs for the backward
transitions I2 → I1 and I3 → I2 in Table S2 and I→N and U→ I in
Table S3.
As is mentioned in Section IC, in the case of two competing

dissociation pathways, the parameters extracted from the fit should
be comparedwith the parameters of the 1D potential ofmean force
GPMFðxÞ rather than with the parameters of the 2D landscape
Gðx; yÞ. To determine the potential of mean force along each of the
two pathways, we blocked one pathway at a time and averaged out
the y coordinate in the expression for the potential of mean force
(8). The parameters of the potential of mean force along these two
pathways are indicated as “true” parameters in Table S3.
Fitting parameters extracted from the additional test of the

effect of the position dependence of the diffusion coefficient in
Section IA are listed in Table S1. Force-dependent rates for this
test were generated with the mean first-passage time equation (5),

k−1ðFÞ=
Z
∪

exp
�
−
G0ðxÞ−Fx

kBT

�
dx
Z
∩

exp
�
G0
�
x′
�
−Fx′

kBT

�
Dmðx′Þ dx′; [S18]

and fitted to Eq. 5.

VII. The Limit of Independent Transitions
In the appropriate limit, when the topology of the landscape is
such that the sequential transitions are independent, the trans-
formation in Eqs. 2 and 3 reduces to a sequence of single-barrier
transformations. An example of the free-energy landscape with
a low, soft barrier followed by a higher barrier, along with the
corresponding analysis, is shown in Fig. S2 (compare with Fig. 2).
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Fig. S1. Implementation of the algorithm in Eq. S12 for counting trajectories in a specific state, illustrated with the system containing a single intermediate.
The transition times for the transitions N→ I, I→N, I→U, and U→ I are listed in the boxes next to TNI, TIN, TIU, and TUI, respectively. The force and the cor-
responding time of interest are F = 30pN and t = 9:92 s. Transitions that occur within the time interval ð0,9:92Þs are highlighted in gray; the number of such
transitions is indicated on the Right for each type of transition. The number of trajectories in state I at force F = 30pN is found to be 340.
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Fig. S2. Sequential unfolding transitions on a free-energy landscape with a low, soft barrier followed by a much higher barrier can be viewed as independent
at high pulling speeds where backward transitions are rare. (A) Under a time-varying force, the transition over the second barrier on the potential in black is
essentially equivalent to the transition on the potential in gray. (B) Force–extension trajectories generated on the black potential in A show no overlap be-
tween the forces faced upon arrival into the second well and the forces at the escape from this well. The brace indicates the nonoverlapping region separating
the two clusters of the transition forces. (C) The rupture force distribution for the transition over the second barrier (black histogram) coincides with the
distribution (gray curve) for this transition if it were independent from the transition over the first barrier. (D) The general transformation in Eqs. 2 and 3 (main
text), applied to the transition over the second barrier, reduces to the single-barrier transformation. The resulting force-dependent rate is consistent with the
rate obtained at constant force.

Fig. S3. Free-energy profile of the system with an intermediate (Upper) and the corresponding position-dependent diffusion coefficient (Lower).

Table S1. Parameters from the analysis of the system were Dm(x)∝ x3 (dashed line in Fig. S3)
with Eq. 5

Parameter set lnðk0
NIÞ ΔG‡

NI x‡NI lnðk0
INÞ ΔG‡

IN x‡IN lnðk0
IUÞ ΔG‡

IU x‡IU lnðk0
UIÞ ΔG‡

UI x‡UI

True −6.91 19.0 1.20 7.91 4.0 0.60 −10.58 25.0 1.40 8.82 5.0 1.00
Fit −6.91 20.0 1.20 7.92 5.4 0.68 −10.52 26.2 1.41 8.82 6.0 1.08
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Table S2. Intrinsic rates and barriers (heights and locations) from the analysis of the rate map
in Fig. 4B with Eq. 5

Parameter set ln
	
k0
NI1



ΔG‡

NI1 x‡NI1 ln
	
k0
I1N



ΔG‡

I1N x‡I1N

True −6.95 18.0 2.00 5.88 5.0 1.50
Fit −6.80 ± 0.11 18.7 ± 1.5 2.01 ± 0.05 5.96 ± 0.12 6.5 ± 2.9 1.40 ± 0.07

ln
	
k0
I1 I2



ΔG‡

I1 I2
x‡I1 I2 ln

	
k0
I2 I1



ΔG‡

I2 I1
x‡I2 I1

True −5.79 17.0 1.40 5.39 6.0 1.20
Fit −5.48 ± 0.19 16.8 ± 2.2 1.47 ± 0.07 5.49 ± 0.10 5.8 ± 2.3* 1.18 ± 0.05

ln
	
k0
I2 I3



ΔG‡

I2 I3 x‡I2 I3 ln
	
k0
I3 I2



ΔG‡

I3 I2 x‡I3 I2
True −7.94 19.0 1.60 6.69 4.0 1.50
Fit −7.52 ± 0.36 18.5 ± 2.3 1.67 ± 0.12 6.82 ± 0.16 4.2 ± 2.5† 1.37 ± 0.09

ln
	
k0
I3U



ΔG‡

I3U x‡I3U ln
	
k0
UI3



ΔG‡

UI3 x‡UI3
True −10.07 20.0 2.00 6.89 2.0 2.50
Fit −9.26 ± 0.50 19.2 ± 1.1 2.17 ± 0.15 7.12 ± 0.28 2.7 ± 1.2 2.20 ± 0.22

*ΔG‡
I2 I1 =ΔG‡

I1 I2 + ln k0
I1 I2

− ln k0
I2 I1

and σ2ΔG‡
I2 I1

= σ2ΔG‡
I1 I2

+ σ2ln k0I1 I2
+2  covΔG‡

I1 I2
, ln k0I1 I2

+ σ2ln k0I2 I1
.

†ΔG‡
I3 I2 =ΔG‡

I2 I3 + ln k0
I2 I3

− ln k0
I3 I2

and σ2ΔG‡
I3 I2

= σ2ΔG‡
I2 I3

+ σ2ln k0I2 I3
+ 2  covΔG‡

I2 I3
, lnk0

I2 I3
+ σ2ln k0I3 I2

.

Table S3. Intrinsic rates and barriers (heights and locations) from the analysis of the rate map
in Fig. 4C with Eq. 5

Parameter set ln
	
k0
NU



ΔG‡

NU x‡NU ln
	
k0
UN



ΔG‡

UN x‡UN

True −9.94 19.7 2.84 5.38 3.1 3.45
Fit −9.51 ± 0.12 18.5 ± 0.9 2.80 ± 0.07 5.46 ± 0.22 3.6 ± 1.2 3.43 ± 0.24

ln
	
k0
NI



ΔG‡

NI x‡NI ln
	
k0
IN



ΔG‡

IN x‡IN

True −6.20 17.4 2.02 1.75 9.9 1.18
Fit −6.12 ± 0.05 16.7 ± 1.4 1.96 ± 0.04 1.87 ± 0.18 8.7 ± 1.4* 1.27 ± 0.11

ln
	
k0
IU



ΔG‡

IU x‡IU ln
	
k0
UI



ΔG‡

UI x‡UI

True −5.35 17.0 1.27 2.02 7.9 1.82
Fit −5.19 ± 0.13 18.4 ± 4.0 1.31 ± 0.06 2.05 ± 0.34 11.1 ± 4.0† 2.11 ± 0.31

*ΔG‡
IN =ΔG‡

NI + ln k0
NI − ln k0

IN and σ2ΔG‡
IN
= σ2ΔG‡

NI
− σ2lnk0

NI
+ 2  covΔG‡

NI , ln k0NI
+ σ2lnk0

IN
.

†ΔG‡
UI =ΔG‡

IU + ln k0
IU − ln k0

UI and σ2ΔG‡
UI
= σ2ΔG‡

IU
+ σ2ln k0IU

+ 2 covΔG‡
IU , ln k0IU

+ σ2lnk0
UI
.
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