Supporting Information

Budelli et al. 10.1073/pnas.1313433110

SI Materials and Methods

Constructs. Various PCR and subcloning strategies such as genomic PCR amplification of the C terminal of Kv1.4, making annealed linker oligos containing the Kv1.4 minimal tail sequence (Slo1C-Kv-minT), addition of restriction sites and mutated nucleotides via PCR oligos, site-directed mutagenesis using Stratagene's Quick Change Mutagenesis Kit, and overlap extension PCR were used to make the constructs in Fig. 1.

Xenopus **Oocytes and ND96 Medium for Incubation and Whole-Cell Recording.** Defolliculated *Xenopus* oocytes were injected with 0.5–150 ng of cRNA using a Nanoject II (Drummond Scientific). Injected oocytes were incubated at 18 °C in ND96 complete medium, consisting of ND96 medium plus 2.5 mM sodium pyruvate and penicillin-streptomycin 1 mL/100 mL. The ND96 medium consisted of (in mM) 96 NaCl, 2 KCl, 1.8 CaCl₂, 5 MgCl₂ 5, and Hepes 5 adjusted to pH 7.5. Currents were recorded 2–5 d after injection.

Electrophysiology and Additional Solutions. Two-microelectrode voltage-clamp (whole-cell) recordings from *Xenopus* oocytes were obtained in ND96 medium with 1 mM 4,4'-diisothiocyanatos-tilbene-2,2'-disulphonic acid disodium salt hydrate (DIDS) to block the endogenous chloride conductances. The currents were obtained with an Oocyte Clamp OC-725C amplifier (Warner Instrument Corp.). Recordings were obtained by digitizing at 10 kHz, and low-pass filtering was at 1 kHz. The electrodes were made with borosilicate glass capillaries (World Precision Instruments) pulled with a Sutter Instrument Co. P-87 pipette puller and filled with 3 M KCl.

Patch-clamp recordings were acquired with an Axopatch 200B patch clamp (Molecular Devices), digitized at 100 kHz

1. Nimigean CM, Magleby KL (1999) The beta subunit increases the Ca^{2+} sensitivity of large conductance Ca^{2+} -activated potassium channels by retaining the gating in the bursting states. *J Gen Physiol* 113(3):425–440.

(macroscopic currents) or at 200 kHz (single channel), and were low-pass filtered at 2 kHz for macropatch recording and at 10 kHz for single-channel analysis, unless otherwise indicated. The data were analyzed using pClamp 9 (Molecular Devices), SigmaPlot (Jandel Scientific), Origin (Microcal Software), and custom software for the burst analysis (1).

Solutions for macropatch recordings shown in Figs. 2 *B* and *C*, 3*C*, 4*C*, and 5 and Figs. S2 and S3 *A* and *C* contained in the pipette were (in mM) 140 KMethasulfonate, 1 MgCl₂, and 10 Hepes (for symmetrical K^+) or 140 NaMethasulfonate, 10 KMethasulfonate, 1 MgCl₂, and 10 Hepes (for asymmetrical K^+). Both pipette solutions were adjusted to pH 7.2 using KOH. The bath (intracellular solution) contained (in mM) 140 KMethasulphonate, 10 Hepes, and 1 EGTA, with CaCl₂ and MgCl₂ added as needed to obtain the desired free concentrations, adjusted to pH 7.2 with KOH.

For Figs. 3B and 4A and B, Fig. S1, and Tables S1 and S2, the 0 Ca²⁺ and 0 Mg²⁺ bath (intracellular solution) contained (in mM) 150 KCl, 1 EGTA, 1 EDTA, and 5 mM 2-[(2-Hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid, N-[Tris (hydroxymethyl)methyl]-2-aminoethanesulfonic acid (TES), with the final solution adjusted to pH 7.0 with KOH. The pipette solution for symmetrical K⁺ recording contained (in mM) 150 KCl, 2 mM MgCl₂, and 5 TES (pH 7.0). The pipette solution for asymmetric K^+ recording (Fig. 3B) was the same as the 0 Ca²⁺ and 0 Mg²⁺ solution, except with 140 mM NaCl and 10 mM KCl. Solutions with symmetrical 150 mM KCl were used unless otherwise indicated. Solutions indicated as 0 Ca²⁺ solutions had calculated free $Ca^{2+} < 0.01 \mu M$. To this solution sufficient $CaCl_2$ or $MgCl_2$ was added to obtain the calculated free Ca^{2+} and Mg^{2+} levels indicated in the text. Iberiotoxin was from Tocris Bioscience. The other chemicals and reagents were from Sigma-Aldrich.

Fig. S1. Ca^{2+} and Mg^{2+} no longer increased the mean open-interval duration (mean open time) after the gating ring in Slo1-WT channels was replaced with an 11-residue tail to obtain Slo1C-Kv-minT channels (see Fig. 1). Data from Table S1 are plotted for Slo1-WT channels and for Slo1C-Kv-minT channels lacking the gating ring. Ca^{2+} and Mg^{2+} significantly increased mean open time for Slo1-WT channels, (P < 0.05, paired t test, n = 4) but had insignificant effects on mean open time for Slo1C-Kv-minT channels (P > 0.09, n = 3). Symmetrical 150 mM K⁺ was used (see *Materials and Methods*). Error bars represent SEM.

Fig. 52. Slo1C-KvT channels, which lack a gating ring, are activated by voltage but not by Ca^{2+} . Slo1C-KvT channels have the gating ring replaced with a 74-residue tail (Fig. 1). (*Left*) The macroscopic currents were obtained from inside-out patches in asymmetrical K⁺ (10 mM K⁺ in the pipette and 140 mM K⁺ at the inner membrane surface) with either 0 Ca^{2+} or 200 μ M Ca^{2+} . Patches were first held at 0 mV. A 50-ms prepulse to -100mV was applied; then the voltage was stepped from -100 mV to 240 mV in 20-mV intervals, followed by a step back to 0 mV to measure outward tail currents. (*Right*) Normalized current amplitudes are plotted against voltage in the absence (black) and presence (red) of Ca^{2+} . Currents were reduced somewhat in the presence of Ca^{2+} , but the reduction was not significant (*P* values are indicated). Error bars represent SEM.

Fig. S3. The gating ring is not required for extracellular block by iberiotoxin (lbTX) or tetraethylammonium (TEA) or for activation by accessory β 1 subunits. (*A*) (*Left*) Extracellular application of 60 nM lbTX blocks Slo1-WT and Slo1C-KvT currents similarly in outside-out macropatches. Currents were evoked by stepping from –80 to +180 mV in the absence (black) and presence (red) of 60 nM extracellular lbTX. (*Right*) Normalized I–V plots before (black) and after (red) exposure to lbTX. The blocking effect is virtually the same for Slo1-WT (*Upper*) and Slo1C-KvT (*Lower*) (*n* = 6; *P* = 0.42). (*B*) TEA (2 mM) blocks Slo1-WT and Slo1C-KvT (*urrents in a similar manner.* (*Left*) Whole-cell currents evoked at +70 mV before (black) and after (red) 2 mM extracellular TEA. (*Right*) The blocking effect is the same for Slo1-WT and Slo1C-KvT (*u = 6*; *P* = 0.32). (*C*) The auxiliary β 1 subunit modulates Slo1-WT and SloC-KvT currents in a similar manner. (*Left*) Whole-cell currents evoked at +70 mV before (black) and after (red) 2 mM extracellular TEA. (*Right*) The blocking effect is the same for Slo1-WT and Slo1C-KvT (*u = 6*; *P* = 0.32). (*C*) The auxiliary β 1 subunit modulates Slo1-WT and SloC-KvT currents in a similar manner. Coexpression of β 1 with Slo1-WT or with Slo1C-KvT slows activation. Red traces are with β 1 subunits; black traces are without β 1 subunits. Depolarizing pulses are to +60 mV with a two-microelectrode whole-cell voltage clamp (*Upper Left*) and to +240 mV in macropatches (*Lower Left*). The coexpression of β 1 significantly slows the activation time constant (τ) for both channel types. The macropatch current rising phase was fitted with a single exponential: Slo1-WT, $\tau = 1.85 \pm 0.28$ ms and 7.26 ± 0.56 ms in the presence of β 1 (*P* = 0.0001, *n* = 4); Slo1C-KvT, $\tau = 1.12 \pm 0.07$ ms and 2.94 ± 0.37 ms in the presence of β 1 (*P* = 0.0006, *n* = 6). The Slo1C-Kv-MinT construct also was found to be modulated by β 1, with a significant threefold change of τ , f

Table S1. Single-channel kinetic properties for SIo1-WT and SIo1C-Kv-minT channels in the absence and presence of Ca²⁺ and Mg²⁺

	Slo1-WT			Slo1C-Kv-minT		
Property	0 Ca ²⁺	100 μ M Ca ²⁺	10 mM Mg ²⁺	0 Ca ²⁺	100 μ M Ca ²⁺	10 mM Mg ²⁺
nPo	0.0022 ± 0.0008	0.91 ± 0.01	0.13 ± 0.06	0.0037 ± 0.0008	0.0043 ± 0.0011	0.0038 ± 0.0005
Po normalized to 0 Ca	1.0	530 ± 110	53 ± 12	1.0	1.2 ± 0.3	1.2 ± 0.4
No. of openings in bursts	1.5 ± 0.2	28 ± 21	4.8 ± 1.12	1.2 ± 0.1	1.4 ± 0.1	1.5 ± 0.2
Open-interval duration	0.77 ± 0.14	7.5 ± 2.3	2.1 ± 0.66	0.14 ± 0.02	0.11 ± 0.02	0.13 ± 0.02
Intraburst closed-interval duration	0.23 ± 0.03	0.20 ± 0.07	0.16 ± 0.03	0.11 ± 0.03	0.093 ± 0.021	0.14 ± 0.04
Burst duration	1.2 ± 0.2	*	11 ± 5	0.19 ± 0.01	0.17 ± 0.01	0.26 ± 0.06
Mean duration of gaps between bursts	540 ± 100	*	77 ± 25	50 ± 13	34 ± 7	47 ± 4

Data were obtained with single-channel recordings from inside-out patches held at +80 mV. Durations are in milliseconds. Slo1-WT data are from four different patches, each containing a single channel with n = 1 in nPo, so that the parameters could be determined readily. Slo1C-Kv-minT data are from three different patches, each containing an unknown number of channels. For Slo1C-Kv-minT channels the mean duration of gaps between bursts for single channels would be greater by a factor of n for the unknown number of channels. For Slo1C-Kv-minT channels the Po was sufficiently low so that openings seldom overlapped; thus the second through fifth parameters could be determined with negligible error. Effective low-pass filtering of 4.47 kHz was used. Data are presented as mean \pm SEM. nPo is number of channels in the patch times their average open probability; Po is the average open probability. *With 100 μ M Ca²⁺ for Slo1-WT channels, the Po was so high that the channel was mostly open, so it was difficult to determine gaps between bursts or burst

*With 100 μM Ca²⁺ for Slo1-WT channels, the Po was so high that the channel was mostly open, so it was difficult to determine gaps between bursts or burst duration.

Table S2. Mean open-interval duration and burst duration are decreased for Slo1C-Kv-minT channels

Property	Slo1-WT	Slo1C-Kv-minT
Open-interval duration	0.77 ± 0.14	0.14 ± 0.02*
No. of opening in bursts	1.5 ± 0.2	1.2 ± 0.1
Intraburst closed-interval duration	0.23 ± 0.03	0.11 ± 0.03
Burst duration	1.2 ± 0.2	0.19 ± 0.01*

Data reformatted from Table S1 to facilitate comparison. Durations are in milliseconds. Data were obtained using single-channel recording with 0 Ca²⁺ and 0 Mg²⁺. Slo1-WT data are from four different patches, each containing a single channel. Slo1C-Kv-minT data are from three different patches, each containing an unknown number of channels. The Po was sufficiently low so that openings seldom overlapped; thus the parameters could be determined. *Open-interval duration and burst duration were significantly decreased (P < 0.02) for Slo1C-Kv-minT channels compared with Slo1-WT channels. Effective low-pass filtering of 4.47 kHz was used. Data are presented as means \pm SEM.

DNAS PNAS