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Figure S1: The distance (MILC, outlined in Methods) and distance ratios (MELP, inset for each
figure) of each gene’s CU frequency to overall CU frequencies of six microbial metagenomes.
The separation between two compared genomes is clearly visible in the MELP distributions
(TS teueeeeueeseeeseesse s s eesseesees e s s ese s s s E s R4 4 E R SRR ERE AR R AR R R R AR e Rt Sae bR nEaes 4

Figure S2: The frequency of all synonymous codons normalised per amino acid in the whole
Sargasso Sea sample (N= 155,865,864) compared to A) Sargasso removed for all sequences
belonging to the Alphaproteobacteria class (N=10,0594,880), B) Sargasso
Alphaproteobacteria only (N=55,270,984), C) Sargasso sample where equal sequence samples
per represented phyla were taken (n=32 sequences from 32 phyla, N=1024); D) Waseca soil
(N=16,224,742), E) US EBPR sludge (N= 4,639,388), F) Santa Cruz whale fall carcass bone (N=
4,730,048), G) obese mouse gut (N=1,510,482), H) lean mouse gut (N= 2,444,470) and I)
human gut (N=11,410,113). The intraclass correlation coefficient (ICC, see Methods) for each
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Figure S3: Metagenomes show codon usage distribution similar to single genomes. The
distance of each gene’s codon usage (CU) frequency form the overall CU of the (meta)genome
and ribosomal reference set, displayed as a Karlin B-plot for A) a single microbial genome
(Escherichia coli, N=4,358) and B) a metagenome (whale carcass, N=33,422). The metagenome
shows the same characteristic distribution as the genome with ribosomal genes closer to the
CU of the ribosomal set than the overall CU of the whole (meta)genome. MELP - the measure
of expression is derived by dividing the gene’s distance to the whole genome with that of the
distance to the ribosomal Protein CU. ... 6

Figure S4: The distribution of CU distances (MILC) from the ribosomal reference set of all
genes in the Sargasso Sea metagenome (meta, N=688,539), all ribosomal protein genes (ribo,
N=1,3049), and 6 most abundant species: Candidatus pelagibacter sp. HTCC7211 (cp, N=214),
uncultured marine gamma proteobacterium EBAC20E09 (eb, N=122), uncultured marine
microorganism HF4000_005D21 80 (hf, N=80), uncultured marine alpha proteobacterium
HOT2CO01 (ho, N=70), Prochlorococcus marinus (pm, N=347) and Psychroflexus torquis (pt,
N=181). The red line marks median distance of all ribosomal genes from the ribosomal
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Figure S5. The distance of each gene’s codon usage (CU) frequency form the overall CU of the
metagenome and ribosomal reference set, displayed as a Karlin B-plot for non-randomised
(left panel) and randomised (right panel) metagenomes for A) the Sargasso Sea (N=688,539),
B) Santa Cruz whale carcass bone (N=33,422), C) US EBPR sludge (N=20,175) and D) acid
mine biofilm (N=79,257) samples. When the amino acid content of a metagenome is kept
constant but codons randomly chosen, the metagenome loses its characteristic shape................ 8



Figure S6: Construction of artificial metagenomes. Artificial metagenomes were constructed
by randomly selecting equivalent number of orthologous sequences for each COG group in the
real metagenome from the NCBI bacterial genomes dataset. CU distance plots were prepared
according to the Methods in the main manuscript. Distance ratios of genes to two axes (the
MELP value) were calculated and the results are presented for all metagenomes in Figure S7.9

Figure S7: Construction of artificial metagenomes. MELP (See methods in the main
manuscript) values were calculated for each real and artificial metagenome, based on the
distances in Figure S6. Distributions generally exhibit more variability in real than in artificial
metagenomes. Differences were quantified in Figure S8........neeneennessiseeseceseessesseesseessesseens 10

Figure S8: Construction of the artificial metagenomes from the NCBI bacterial genome
datasets. Real metagenomes were decomposed into respective COG functional categories and
the artificial metagenomes were generated by sampling the equivalent number of orthologous
sequences for each COG group of the real metagenome from the bacterial genomes section of
the NCBI, regardless of the phyletic composition. MELP distributions were calculated for each
metagenome and the distributions (shown in Figure S7) were compared on quantile-quantile
plots and evaluated statistically. On overall, the real metagenomes exhibit statistically
significant difference in CU distribution variability, while the artificially generated
metagenomes tend to adopt more similar and uniform codon usage distribution..........cccoccuu.n. 11

Figure S9: Comparison of gene enrichment for each functional COG supercategory. The top
and low 3% of genes by gene expressivity values are shown for 4 metagenomes: Santa Cruz
whale fall microbial mat (N=40,916), Antarctica whale fall bone (N=30,503), US (N=20,175)
and OZ EBPR SIUAEE (NZ29,754). cceerreeerseesseesssesssessssessssesssssssssesssssssssssssssesssssssssssssssessssssssssssssssssesssssess 12

Figure S10: Lean vs. obese gut microbiomes. Comparison of gene enrichment for each
functional COG supercategory. The top and low 3% of genes by gene expressivity values are
shown for all 3 gut metagenomes: lean human (N=47,765), lean (N=4,955) and obese mouse
(N=4,058). Categories highlighted in yellow show the loss of optimisation for two metabolic
functions in ODESE MOUSE FAUNA. ...ttt ss b es b p e 13

Figure S11: Comparison between enrichment profiles in real (A) and artificially assembled
metagenomes (B). Artificial metagenomes were assembled from a random selection of NCBI
bacterial genomes by maintaining constant function distribution of genes (COG categories) for
the original metagenome and with the same total number of genes: (artificial) Sargasso Sea
N=688,539, (artificial) acid mine biofilm N=79,257 and (artificial) Santa Cruz whale fall bone
N=33,422 . The enrichment patterns visible in real metagenomes are substantially diminished
in artificially assembled MetagenOmMIES. ... rreneineeereieieseesesse s seesses s sesse s sss s ss s sneas 14

Figure S12: Comparison of the fraction of GC content in ribosomal genes and genes of whole
metagenomes. The resulting fractions were tested with the binomial test for each
metagenome. All metagenomes show significant differences in GC content between ribosomal
genes and all genes of the MEtAENOMIE. ...ttt 15
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Figure S1: The distance (MILC, outlined in Methods) and distance ratios (MELP, inset for each figure) of each
gene’s CU frequency to overall CU frequencies of six microbial metagenomes. The separation between two
compared genomes is clearly visible in the MELP distributions (inset).
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Figure S2: The frequency of all synonymous codons normalised per amino acid in the whole Sargasso Sea
sample (N= 155,865,864) compared to A) Sargasso removed for all sequences belonging to the
Alphaproteobacteria class (N=10,0594,880), B) Sargasso Alphaproteobacteria only (N=55,270,984), C) Sargasso
sample where equal sequence samples per represented phyla were taken (n=32 sequences from 32 phyla,
N=1024); D) Waseca soil (N= 16,224,742), E) US EBPR sludge (N= 4,639,388), F) Santa Cruz whale fall
carcass bone (N= 4,730,048), G) obese mouse gut (N= 1,510,482), H) lean mouse gut (N= 2,444,470) and 1)
human gut (N= 11,410,113). The intraclass correlation coefficient (ICC, see Methods) for each comparison is
also shown.
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Figure S3: Metagenomes show codon usage distribution similar to single genomes. The distance of each gene’s
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Figure S4: The distribution of CU distances (MILC) from the ribosomal reference set of all genes in the
Sargasso Sea metagenome (meta, N=688,539), all ribosomal protein genes (ribo, N=1,3049), and 6 most
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Psychroflexus torquis (pt, N=181). The red line marks median distance of all ribosomal genes from the
ribosomal reference set.



NON-RANDOMISED SAMPLE

RANDOMISED SAMPLE

>

40
L

MILC Metagenome
35

a5
L

20 25
L L

15
L

Sargasso Sea

e
w
o
=
=]

w |
o

20
I

15

MILC Metagenome

10
L

/

05
L

T T T

2 3
MILC Ribosomal

4 1 2 3
MILC Ribosomal

o

MILC Metagenome
15 20 25 30 a5

10

0.5

Santa Cruz Whale Carcass Bone

w
o

=4
o

20 25
L L

15

MILC Metagenome
10
L

05

’i

v : : T r
05 10 15 20 25
MILC Ribosomal

T
30

T T T T T
35 0.5 10 15 20 25 3.0

MILC Ribosomal

35

(@)

35
L

30
L

MILC Metagenome

10

0.5
L

20
L

15
L

US EBPR Sludge

@

15 20 25 30
L L L L

MILC Metagenome

1.0
L

0.5
1

0.5 10 15 20 25

MILC Ribosomal

30

35 05 1.0 15 20 25 30

MILC Ribosomal

35

O

s

a0
'

MILC Metagenome

1.0

05

25
L

20
L

15
L

Acid Mine Biofilm

w
o

30
s

25
L

15
L

MILC Metagenome
20

1.0
L

/

05

T T
05 1.0 15 20 25

MILC Ribosomal

® Metagenome

T
3.0

T T T T T T
35 05 1.0 15 20 25 30

MILC Ribosomal

@® Ribosomal Protein Genes

T
a5

Figure S5. The distance of each
gene’s codon usage (CU) frequency
form the overall CU of the
metagenome and ribosomal reference
set, displayed as a Karlin B-plot for
non-randomised (left panel) and
randomised (right panel)
metagenomes for A) the Sargasso Sea
(N=688,539), B) Santa Cruz whale
carcass bone (N=33,422), C) US
EBPR sludge (N=20,175) and D) acid
mine biofilm (N=79,257) samples.
When the amino acid content of a
metagenome is kept constant but
codons randomly chosen, the
metagenome loses its characteristic
shape.



Soil

* Soil Ribosomal Protein Genes

B Soil Metagenome

Figure S6: Construction of
artificial metagenomes.
Artificial metagenomes were
constructed by randomly
selecting equivalent number of
orthologous sequences for each
COG group in the real
metagenome from the NCBI
bacterial genomes dataset. CU
distance plots were prepared
according to the Methods in the
main manuscript. Distance ratios
of genes to two axes (the MELP
value) were calculated and the

T
3

T
3

T
MIL(ZD Ribosomal

T
MIL(23 Ribosomal
Artificial Soil

¢ Artificial Soil Ribosomal Protein Genes

T
1
W Arificial Soil Metagenome

-+

T T T results are presented for all
SWoUsD 0TI metagenomes in Figure S7.

-

€ Z
alousg O

Acid Mine

* Acid Mine Ribosomal Protein Genes

T
3

T
3

T
2

MILC Ribosomal

MIL& Ribosomal
Artificial Acid Mine

* Artificial Acid Mine Ribosomal Protein Genes

* 7| @ Acid Mine Metagenome

£ 4
BwoUsD DI

swiouss SN

= 1| B Arificial Acid Mine Metagenome

Sargasso

* Sargasso Ribosomal Protein Genes

B Sargasso Metagenome

T
3

T
3

T
MIL(ZD Ribosomal

T
MIL(23 Ribosomal
Artificial Sargasso

* Artificial Sargasso Ribosomal Protein Genes

B Artificial Sargasso Metagenome

-4

€ 4
awousn oI

€ Z
alousg O

-



New Whale 1

Acid Mine

Soil

Sargasso

T 1 1T 1
vt £ 2 L 0

Aysuag

Aysuag

| I — ——
S ¥ £ 2 L 0

Aysuag

| I I B B B B |
a5 FEZ L0

Aysuag

1.8

16

1.4

1.2

1.0

0.8

06

12

1.0

0.9

08

07

1.4

1.2

1.0

0.8

06

MELP

WMELP

MELP

MELP

Artificial Sargasso

Human

Obese Mouse

Lean Mouse

T 11711
89 0

Zk

Aysuag

Aysuag

| S . E— —
0z S 0L §

Apsuag

Aysuag

1}

1.2

1.0

0.9

0.8

16

1.4

12

1.0

0.8

0.6

0.4

16

1.4

1.2

1.0

0.8

0.6

16

1.4

1.2

1.0

0.8

06

MELP

MELP

MELP

MELP

Artificial New Whale 1 Artificial Lean Mouse

Artificial Acid Mine

Artificial Soil

Apsuag

| . — ——

29 %0

Apsuag

| I I I S B |

[43

g8t o0

Apsusg

| I S |

cl

88¥%ca0

Apsuag

!

12

1.0

0.9

0.3

12

1.0

0.9

0.3

1.0

09

0.8

MELP

MELP

MELP

MELP

Artificial Human

Artificial Obese Mouse

Figure S7: Construction of
artificial metagenomes. MELP
(See methods in the main
manuscript)  values  were
calculated for each real and
artificial metagenome, based
on the distances in Figure S6.
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Real vs. Artificial Metagenome Q-Q Plot

Artificial vs. Artificial Metagenome Q-Q Plot
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Figure S8: Construction of the artificial metagenomes from the NCBI bacterial genome datasets. Real
metagenomes were decomposed into respective COG functional categories and the artificial metagenomes were
generated by sampling the equivalent number of orthologous sequences for each COG group of the real
metagenome from the bacterial genomes section of the NCBI, regardless of the phyletic composition. MELP
distributions were calculated for each metagenome and the distributions (shown in Figure S7) were compared on
quantile-quantile plots and evaluated statistically. On overall, the real metagenomes exhibit statistically
significant difference in CU distribution variability, while the artificially generated metagenomes tend to adopt

more similar and uniform codon usage distribution.
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Figure S9: Comparison of gene enrichment for each functional COG supercategory. The top and low 3% of

genes by gene expressivity values are shown for 4 metagenomes: Santa Cruz whale fall microbial mat
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Figure S10: Lean vs. obese gut microbiomes. Comparison of gene enrichment for each functional COG
supercategory. The top and low 3% of genes by gene expressivity values are shown for all 3 gut metagenomes:
lean human (N=47,765), lean (N=4,955) and obese mouse (N=4,058). Categories highlighted in yellow show the
loss of optimisation for two metabolic functions in obese mouse fauna.
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Figure S11: Comparison between enrichment profiles in real (A) and artificially assembled metagenomes (B).
Artificial metagenomes were assembled from a random selection of NCBI bacterial genomes by maintaining
constant function distribution of genes (COG categories) for the original metagenome and with the same total
number of genes: (artificial) Sargasso Sea N=688,539, (artificial) acid mine biofilm N=79,257 and (artificial)
Santa Cruz whale fall bone N=33,422 . The enrichment patterns visible in real metagenomes are substantially

diminished in artificially assembled metagenomes.
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SUPPLEMENTARY TABLES

Table SI: Names of metagenomes used in this project, their NCBI Project IDs and references for the original
sequencing projects.

* In-house assembly of trace data.

tMetagenomes downloaded preassembled.

Metagenome NCBI Project ID | Reference
TGlobal Ocean Sampling Expedition Metagenome, the Sargasso Sea 13694 (1)
version 1

tWaseca County Farm Soil Metagenome 13699 (2)
TWhale Fall Metagenomes 13700

*5-Way (CG) Acid Mine Drainage Biofilm Metagenome 13696 (3)
*Human Distal Gut Biome 16729 (4)
*Lean Mouse 1 Gut Metagenome 17391 (5)
*Obese Mouse 1 Gut Metagenome 17397

*US EBPR Sludge Metagenome 17657 (6)
*(OZ EBPR Sludge Metagenome 17659

Table SI1: Number and length of metagenomic sequences used in the study, number of ORFs assigned through
homology to the STRING/COG database and using the 3-nearest neighbour consensus rule and the number of
ORFs used in MILC and MELP calculations.

Total number Total length of Number of ORFs
of sequences | sequences used (bp) assigned
used

Sargasso Sea 100,1987 585,970,413 688,539
Whale fall Santa Cruz 28,151 29,783,639 33,422
bone
Whale fall Santa Cruz 29,934 30,862,440 40,916
microbial mat
Whale fall Antarctic 26,232 28,868,943 30,503
bone
Waseca farm soil 139,341 144,897,582 88,696
Acid mine biofilm 154,736 206,216,325 79,257
US EBPR sludge 36,222 41,320,987 20,175
OZ EBPR sludge 63,760 81,189,385 29,754
Human gut 79,613 85,004,190 47,765
Lean mouse gut 822,800 65,615,892 4,955
Obese mouse gut 573,519 62,721,309 4,058




Table SI11: Genomes of P. acnes and R. palustris strains used in this project and references for the original

sequencing projects.

Genome NCBI Reference Sequence Note Reference
P. acnes KPA171202 | NC_006085.1 Type IB
()
P. acnes 6609 CP002815 Type IB
(8)
P. acnes 51318 - Type IB | in preparation
P. acnes PRP60 - Type [A
P. acnes 226 - Type [A
P. acnes 434 - Type [A
P. acnes PRP38 AIJP00000000 TypeIC | (9)
P. acnes ATCC11828 | CP003084 Typell | (10)
P. acnes PRP47 - Type Il | in preparation
P. acnes 35934 - Type I1
P. acnes 9880 - NC*
P. acnes 33810 - NC*
P. acnes 440671 - NC*
R. palustris BisA53 NC_008435.1 none
R. palustris BisB18 NC_007925 none (11)
R. palustris BisB5 NC_007958 none
R. palustris HaA2 NC_007778 none
R. palustris CGA009 | chromosome: NC_005296 none (12)
plasmid: NC_005297
R. palustris TIE-1 NC_011004 none none

*not clustered

Table SIV: (Additional File): List of species, the number of genes and their total codon counts per metagenome
for species present in at least two metagenomes for species with at least 2,000 codons per metagenome classified
with the MEtaGenome Analyzer (MEGAN).

Table SV (Additional File): Phylogenetic clade counts of the ribosomal reference set of the Sargasso Sea
metagenome and the whole metagenome classified with the MEtaGenome Analyzer (MEGAN).




Table SVI: The number of genes per COG supercategory in the 6 R. palustris strains that fall within 10% of
COGs with the smallest variation of MILC median and those that fall within 10% of COGs within the largest
variation. The difference of counts per COG category is tested with the binomial test with FDR correction for
greater occurrence in the tight 10% than the whole set and for greater occurrence in the wide 10% than the whole
sample. COG supercategories with p values below 0.05, marked in yellow, show significant difference in count
for the whole set of genes regardless of COG MILC median.

number of number of | FDR corrected number of FDR corrected
COG supercategory genes in genes with p value for genes with p value for
whole sample | tight MILC tight vs. all wide MILC wide vs. all
° [J] Translation, ribosomal
[ structure and biogenesis 967 282 0.00 58 1.00
gp o [A] RNA processing and
§ £ modification 0 0 1.00 0 1.00
c 8 [K] Transcription 1396 79 1.00 188 0.03
-‘% g [L] Replication,
£ recombination and repair 900 95 0.29 111 0.51
.:g: [B] Chromatin structure
= and dynamics 10 0 1.00 0 1.00
[D] Cell cycle control, cell
division, chromosome
partitioning 164 12 1.00 26 0.18
[Y] Nuclear structure 0 0 1.00 0 1.00
6o [V] Defence mechanisms 378 10 1.00 174 0.00
é [T] Signal transduction
e mechanisms 1655 48 1.00 124 1.00
3 [M] Cell
-‘% wall/membrane/envelop
P e biogenesis 1311 57 1.00 189 0.00
ﬁ [N] Cell motility 586 39 1.00 49 1.00
§ [Z] Cytoskeleton 3 3 0.01 0 1.00
a [W] Extracellular
2 structures 0 0 1.00 0 1.00
E [U] Intracellular
trafficking, secretion, and
vesicular transport 448 81 0.00 44 1.00
[O] Posttranslational
modification, protein
turnover, chaperones 965 120 0.00 61 1.00
[C] Energy production
and conversion 1768 163 1.00 157 1.00
[G] Carbohydrate
transport and metabolism 1085 51 1.00 149 0.03
[E] Amino acid transport
and metabolism 2338 104 1.00 81 1.00
£ [F] Nucleotide transport
% and metabolism 401 61 0.00 35 1.00
o [H] Coenzyme transport
1] and metabolism 1031 76 1.00 57 1.00
2 [1] Lipid transport and
metabolism 1438 40 1.00 283 0.00
[P] Inorganic ion
transport and metabolism 1525 76 1.00 110 1.00
[Q] Secondary
metabolites biosynthesis,
transport and catabolism 901 24 1.00 262 0.00
o [R] General function
—g g - prediction only 2872 286 0.27 447 0.00
o g @ [S] Function unknown 1929 499 0.00 107 1.00
S [X] Uncharacterised 0 0 1.00 0 1.00

Table SVII: The number of genes per COG supercategory in the 12 P. acnes that fall within 10% of COGs with
the smallest variation of MILC median and those that fall within 10% of COGs within the largest variation. The




difference of counts per COG category is tested with the binomial test with FDR correction for greater

occurrence in the tight 10% than the whole set and for greater occurrence in the wide 10% than the whole
sample. COG supercategories with p values below 0.05, marked in yellow, show significant difference in count
for the whole set of genes regardless of COG MILC median.

number of number of | FDR corrected number of FDR corrected
COG supercategory genes in genes with p-value for genes with p-value for
whole sample | tight MILC tight vs. all wide MILC wide vs. all
° [J] Translation, ribosomal
[ structure and biogenesis 1167 339 0.00 54 1.00
gp 0 [A] RNA processing and
§ g modification 10 0 1.00 0 1.00
c 8 [K] Transcription 1113 87 1.00 132 0.33
-‘% g [L] Replication,
£ recombination and repair 750 51 1.00 86 0.80
.:g: [B] Chromatin structure
= and dynamics 0 0 1.00 0 1.00
[D] Cell cycle control, cell
division, chromosome
partitioning 138 0 1.00 0 1.00
[Y] Nuclear structure 0 0 1.00 0 1.00
» [V] Defense mechanisms 269 3 1.00 12 1.00
% [T] Signal transduction
.gn mechanisms 468 36 1.00 100 0.00
é [M] Cell
© wall/membrane/envelope
Q biogenesis 704 27 1.00 0 1.00
4 [N] Cell motility 0 0 1.00 0 1.00
S [Z] Cytoskeleton 0 0 1.00 0 1.00
5 [W] Extracellular structures 0 0 1.00 0 1.00
E [U] Intracellular trafficking,
3 secretion, and vesicular
transport 186 39 0.00 0 1.00
[O] Posttranslational
modification, protein
turnover, chaperones 578 65 0.56 35 1.00
[C] Energy production and
conversion 1104 71 1.00 66 1.00
[G] Carbohydrate transport
and metabolism 1846 68 1.00 537 0.00
[E] Amino acid transport
and metabolism 1454 61 1.00 103 1.00
£ [F] Nucleotide transport
% and metabolism 652 66 1.00 0 1.00
o [H] Coenzyme transport
1] and metabolism 984 83 1.00 52 1.00
2 [1] Lipid transport and
metabolism 461 22 1.00 101 0.00
[P] Inorganic ion transport
and metabolism 896 78 1.00 121 0.01
[Q] Secondary metabolites
biosynthesis, transport and
catabolism 156 9 1.00 19 0.90
o [R] General function
—g g - prediction only 1538 103 1.00 78 1.00
o g @ [S] Function unknown 962 248 0.00 106 0.90
S [X] Uncharacterized 0 0 1.00 0 1.00
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