
1

Supplementary Information

Optimizing a Global Alignment of Protein Interaction
Networks
Leonid Chindelevitch, Cheng-Yu Ma, Chung-Shou Liao and Bonnie Berger

This appendix presents a formal description of our algorithm and a running-time bound with proof.

Algorithm

Local search heuristics do not appear to perform well from a theoretical point of view. Papadimitriou and
Steiglitz [7] have shown that no local search algorithm (like 2-Opt) that takes polynomial time per move
can guarantee a constant approximation ratio for TSP unless P = NP. In addition, it has been shown
that a sequence of exponential moves might be required by 2-Opt before halting [6] and an analogous
result [2] has been extended to 3-Opt and k-Opt.

Although the worst-case analysis of the 2-Opt algorithm is pessimistic, the average-case analysis is
considerably more optimistic. A significant discovery [2] has shown that the expected approximation
ratio to the optimum is bounded by a constant. A similarly optimistic result for running time has been
obtained as well. That is, the expected number of moves is polynomially bounded. Furthermore, 2-Opt
outperformed almost all the local search and greedy algorithms in experimental results for TSP [3].
More precisely, 2-Opt (or k-Opt) gave better final tours than other local search algorithms for TSPLIB
instances [3] with respect to both approximation ratio and running time.

The technique of iterative edge swaps is, however, not limited to TSP. For example, Arya et al. [1]
proved the approximability of the well-known facility location problem with local search techniques.
Another example, Pardalos et al. [8] demonstrate that the traveling salseman problem can be easily
formulated as a special case of the quadratic assignment problem and the k-opt alorithm also can be
apply on it. It is also the basis of an algorithm for graph randomization, which attempts to produce a
random graph with a given degree distribution [10]. It can be shown [9] that the corresponding Markov
chain converges to the uniform distribution on the set of all connected simple graphs with the given
degree distribution, thus giving an exact algorithm.

In this study, without loss of generality, the initial mapping can be considered as the special case of
our problem with α = 0 (i.e. one where only sequence information is used), which is the problem of
finding a maximum-weight mapping in a bipartite graph. In other words, a maximum-weight mapping
in the bipartite graph can be obtained by joining pairs of proteins in the two networks, where the weight
of an edge is given by the sequence similarity of the two proteins. This mapping can be obtained by
the well-known Hungarian algorithm in polynomial time [5] and sped up with extensive use of priority
queues and decomposition techniques [4]. The initial mapping can also be replaced by an arbitrary global
alignment of pairwise PPI networks based on other approaches.

We apply both the 2-Opt and 3-Opt techniques in our algorithm. The 3-Opt technique, compared
with 2-Opt, considers at most three edges of a mapping in each round and determines whether the
objective is improved by swapping these edges. Given a maximum weighted bipartite mapping M∗ in
G = (X ∪Y,E), we define a vertex subset preferY (x) ⊆ Y for each x ∈ X such that preferY (x) consists
of highly weighted neighbors of x in Y and the size of preferY (x) is bounded by a constant c. For every
y ∈ Y , a vertex subset preferX(y) ⊆ X is similarly defined to consist of highly weighted neighbors of y in
X and its size is also bounded by c. Our aim is to repeatedly find candidates e′ = (u, v) and e′′ = (p, q),
v, q ∈ preferY (x), u, p ∈ preferX(y), to swap e = (x, y) with, where e, e′, e′′ ∈ M∗, such that the

2

weight of the new mapping w(M∗ \ {e, e′} ∪ {e1, e2}) or w(M∗ \ {e, e′, e′′} ∪ {e1, e2, e3}) increases, where
e1 = (x, v), e2 = (u, y) for 2-Opt, and e1 = (x, v), e2 = (u, q), e3 = (p, y) or e1 = (x, q), e2 = (u, y),
e3 = (p, v) for 3-Opt; the chosen move is the one that increases the weight of the resulting matching the
most.

Algorithm 1 : Given a weighted bipartite graph G = (X ∪ Y, E) with parameters α and c, find the
optimum mapping M∗.
1: Initialize a maximum weighted mapping M∗ by the Hungarian algorithm;
2: Compute topology similarity t(e) and weight w(e) for each edge e ∈ M∗, where the weight w(e) =

αt(e) + (1− α)s(e);
3: Find a candidate set S consisting of every edge e = (x, y) ∈ M∗ which satisfies the following 2-Opt

conditions (or the 3-Opt conditions) (?):

3-1. there is e′ = (u, v) ∈ M∗ with v ∈ preferY (x) and u ∈ preferX(y) (or there are e′ = (u, v),
e′′ = (p, q) ∈ M∗ with v, q ∈ preferY (x) and u, p ∈ preferX(y));

3-2. For e1 = (x, v) and e2 = (u, y), swap(e, e′) = {w(e1)+w(e2)+α(t(e1)+t(e2))}−{w(e)+w(e′)+
α(t(e) + t(e′))} > 0 (or swap(e, e′, e′′) = {w(e1) + w(e2) + w(e3) + α(t(e1) + t(e2) + t(e3))} −
{w(e) + w(e′) + w(e′′) + α(t(e) + t(e′) + t(e′′))} > 0, for e1 = (x, v), e2 = (u, q), e3 = (p, y) or
e1 = (x, q), e2 = (u, y), e3 = (p, v));

4: while S 6= ∅ do

4-1. Select an edge e = (x, y) ∈ S with max{ swap(e,e′)
2 , swap(e,e′,e′′)

3 } where e′ = (u, v) and e′′ = (p, q);

4-2. Based on 4-1, swap e, e′ with e1 = (x, v), e2 = (u, y) to obtain a new mapping M∗ \ {e, e′} ∪
{e1, e2} and set S = S \ {e, e′}, or swap e, e′, e′′ with e1 = (x, v), e2 = (u, q), e3 = (p, y) (or
e1 = (x, q), e2 = (u, y), e3 = (p, v)) to obtain a new mapping M∗ \ {e, e′, e′′} ∪ {e1, e2, e3} and
set S = S \ {e, e′, e′′};

4-3. Verify if the newly inserted edges e1, e2 (or e1, e2, e3) satisfy the above conditions (?) with any
other edge e0 and put them into S if necessary;

4-4. Update the topology similarity t(e) for each edge e ∈ M∗ incident to a neighbor in
NGX

(x), NGY
(y), NGX

(u), and NGY
(v) (and NGX

(p), NGY
(q) if necessary), and modify w(e),

swap(e, e′), and swap(e, e′, e′′) accordingly;

end while;
5: Output the final mapping M∗;

3

Note that only the topology similarity t(e) for each edge e ∈ M∗ incident to a vertex in NGX
(x),

NGY
(y), NGX

(u), NGY
(v), NGX

(p), and NGY
(q) would be changed when we swap the edges (x, y), (u, v),

and (p, q) in M∗. In addition, as we consider the weight difference w(M∗ \ {e, e′} ∪ {e1, e2}) − w(M∗)
(or w(M∗ \ {e, e′, e′′} ∪ {e1, e2, e3})−w(M∗)), removing the edge e = (x, y) ∈ M∗ causes the weight loss
w(e), but it also causes neighbors in NGX

(x) and NGY
(y) to lose αt(e). Removing the edges e′ = (u, v)

and e′′ = (p, q) produces an analogous effect. On the other hand, we gain weight w(e1) as well as
αt(e1) from inserting the edge e1 = (x, v). Inserting the edge e2 = (u, y) (or the edges e2 = (u, q) and
e3 = (p, y)) produces an analogous effect. Therefore we let the weight difference, denoted swap(e, e′), be
defined as {w(e1) + w(e2) + α(t(e1) + t(e2))} − {w(e) + w(e′) + α(t(e) + t(e′))} (and swap(e, e′, e′′) =
{w(e1)+w(e2)+w(e3)+α(t(e1)+ t(e2)+ t(e3))}−{w(e)+w(e′)+w(e′′)+α(t(e)+ t(e′)+ t(e′′))} as well).
The second condition of (?) (for 2-Opt and 3-Opt) thus ensures that the objective function increases
after the swap.

Running-time Analysis

Theorem 1 Given a a weighted bipartite graph G = (X ∪ Y,E) with parameters α and c, the running
time of Algorithm 1 is pseudo-polynomial time bounded in the worst case.

Proof. It is readily seen that the cardinality of a maximum-weight mapping M∗ is |M∗| ≤ min{|X|, |Y |}.
Note that the first step of Algorithm 1 to obtain a maximum weighted mapping M∗ by the Hungarian
algorithm takes O(|M∗|3) time.

Let ∆ denote the maximum degree of a vertex in GX and GY , i.e. the largest number of neighbors
a vertex in X ∪ Y can have. Let B denote the largest similarity value for two sequences, i.e. B =
maxx∈X,y∈Y {s(x, y)}. In Step 2, we compute the topology similarity t(e) and the weight w(e) for each
edge e = (x, y) ∈ M∗. Since we consider all possible pairwise combinations between neighbors of x and
neighbors of y, this requires O(|M∗| ×∆2) time.

In Step 3, we find the candidate set S. We first compute the subsets preferY (x) and preferX(y) for
each vertex in X ∪Y . The running time is bounded by O(|X|× |Y |) since it requires O(|Y |) (respectively
O(|X|)) time to find the c highest-weighted neighbors in Y (respectively X) for each vertex x ∈ X
(respectively y ∈ Y), for any constant c. We then find all the edges e′ ∈ M∗ satisfying the properties
(?) for every edge e ∈ M∗. For every edge e = (x, y) ∈ M∗, there are at most c2 edges in M∗ with one
endpoint in preferX(y) and the other endpoint in preferY (x) that e can be swapped with. Each of the
c2 possible weight differences swap(e, e′) and

(
c2

2

)
swap(e, e′, e′′) can be computed in constant time from

the topology similarity and sequence similarity for every edge e ∈ M∗. Hence Step 3 takes O(c4|M∗|)
time.

Step 4 is an iteration, and we first consider the time complexity of one iteration. The maximum
value of swap(e, e′) and swap(e, e′, e′′) can be found in constant time by using a priority queue. The
swap operation also takes constant time. For the two newly inserted edges of M∗, we verify if they
satisfy the properties (?) in O(c4) time as above. The last step of updating the values of t(e), w(e),
swap(e, e′), and swap(e, e′, e′′) takes O(∆2) time, since only the edges e ∈ M∗ with one endpoint in
NGX

(x) ∪ NGX
(u) ∪ NGX

(p) and the other, in NGY
(y) ∪ NGY

(v) ∪ NGY
(q), are affected. Thus, each

iteration requires O(max{c4,∆2}) time.
Finally, consider the number of iterations of the while loop. The total sequence score is an integer and

varies between 0 and |M∗| ×B, and similarly, the total topology score is an integer and varies between 0
and |M∗|2; the consecutive values of w(M∗) form a strictly increasing sequence whose length is bounded
by (|M∗| ×B + 1)× (|M∗|2 + 1) ∈ O(|M∗|3 ×B). Since Step 4 is the dominating one, Algorithm 1 runs
in O(max{c4,∆2} ×B × |M∗|3) time. We note that the k-Opt technique can also be pseudo-polynomial
time bounded by O(max{c2(k−1),∆2} ×B × |M∗|3). �

4

References

[1] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K. and Pandit, V. Local search
heuristics for k-median and facility location problems. SIAM J. Comput, 33(3) (2004) pp.544–562.

[2] Chandra, B., Karloff, H. and Tovey, C. New results on the old k-opt algorithm for the TSP. In
Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithm (1994) pp.150–159.

[3] Johnson, D.S. and McGeoch, L.A. The traveling salsman problem: a case study in local optimization.
In: E.H.L. Aarts and J.K. Lenstra (eds.). Local Search in Combinatorial Optimization. John Wiley
& Sons, London, (1997) pp.215–310.

[4] Kao, M.Y., Lam, T.W., Sung, W.K., and Ting, H.F. A decomposition theorem for maximum weight
bipartite matchings. SIAM J. Computing, 31 (2001) pp.18–26.

[5] Kuhn, H.W. The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly,
2 (1955) pp.83–97.

[6] Lueker, G. manuscript, Princeton University (1976).

[7] Papadimitriou, C.H. and Steiglitz, K. On the complexity of local search for the traveling salesman
problem. SIAM J. Computing, 6 (1977) pp.76–83.

[8] Pardalos, P.M., Rendl, F. and Wolkowicz, H. The Quadratic Assignment Problem: A Survey and
Recent Developments. In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems,
volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, (1994)
pp.1–42.

[9] Taylor, R. Constrained switchings in graphs. Combinatorial Mathematics, 8 (1980) pp.314–336.

[10] Viger, F., Latapy, M. Efficient and simple generation of random simple connected graphs with
prescribed degree sequence. In Proceedings of the International Computing and Combinatorics Con-
ference, (2005) pp. 440–449.

5

Table S1 shows that the EC ratios improve significantly after applying the 2-Opt and 3-Opt heuristics
to each pair of the older PPI networks; on the other hand, the FC values of the initial mappings and of
those refined by PISwap do not differ substantially. This is similar to the situation observed with the
more recent PPI networks in the main text.

DM-SC CE-SC CE-DM HS-MM
initial 2-Opt 3-Opt initial 2-Opt 3-Opt initial 2-Opt 3-Opt initial 2-Opt 3-Opt

] of swaps 0 97 133 0 38 73 0 71 166 0 43 51

EC ratio 0.48% 0.71% 0.77% 0.67% 0.95% 1.11% 0.52% 1.01% 1.39% 29.75% 37.04% 37.66%

Functional Coherence 0.596 0.595 0.596 0.294 0.292 0.294 0.395 0.395 0.395 0.46 0.469 0.469

Running time (sec.) 236 6 28 228 4 17 1587 16 79 25263 96 887
Table S1. Evaluation of alignments based on the initial mappings produced by Hungarian algorithm;
CE = C. elegans, DM = D. melanogaster, SC = S. cerevisiae, HS = H. sapiens, and MM = M. musculus

Figure S1 shows the results of using PISwap to refine the initial mappings produced by GRAAL,
IsoRank, and PATH on the more recent PPI networks. Just as with the more recent PPI networks,
PISwap significantly improves the EC score of these initial alignments. Similar to the results presented
in the main text, the refining effects on the three alignment tools are different. The refined EC ratios are
nearly double those of the initial mappings obtained by GRAAL; on the other hand, the EC ratios for
IsoRank increase by 15% to 30% after refinement, and those for PATH increase dramatically by a factor
of 3 to 16.

6

Fig. S1. Evaluation of the refinement of the initial mappings obtained by GRAAL, IsoRank and PATH;
each of the blue-series and red-series bars, respectively, represents the result before and after refinement
by PISwap.

