### Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease

### **Running title:** Renal developmental progenitors

Orit Harari-Steinberg<sup>1</sup>\*, Sally Metsuyanim<sup>1,2</sup>\*, Dorit Omer<sup>1,3</sup>, Yehudit Gnatek<sup>1</sup>, Oren Pleniceanu<sup>1,3</sup>, Rotem Gershon<sup>1,3</sup>, Sara Pri-Chen<sup>1</sup>, Derya Deniz Ozdemir<sup>4</sup>, Yaniv Lerenthal<sup>5</sup>, Tzahi Noiman<sup>2</sup>, Herzel Ben-Hur<sup>6,7</sup>, Zvi Vaknin<sup>7</sup>, David F Schneider<sup>7</sup>, Bruce J Aronow<sup>8</sup>, Ronald S Goldstein <sup>2</sup>, Peter Hohenstein<sup>4</sup>, Benjamin Dekel<sup>1,3,9</sup>

- 1. The Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children's Hospital, Sheba Center for Regenerative Medicine, Sheba Medical Center, Israel
- 2. Mina and Everard Goodman Faculty of Life Sciences, Bar-IlanUniversity, Ramat-Gan, Israel
- 3. Sackler School of Medicine, Tel Aviv University, Israel
- 4. The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
- 5. Cancer Research Center, Sheba Medical Center, Israel
- 6. L.E.M Laboratory of early detection, Nes Ziona Israel
- 7. Department of Obstet. & Gynecology, Assaf Harofeh, Israel
- 8. Division of Molecular and Developmental Biology, Department of Pediatrics, University of Cincinnati, Childrens Hospital Medical Center, Cincinnati, USA
- 9. Division of Pediatric Nephrology, Edmond& Lily Safra Children's Hospital, Sheba Medical Center, Israel

### \* Orit Harari-Steinberg and Sally Metsuyanim share equal contribution.

#### Correspondence:

Benjamin Dekel M.D., Ph.D.

Pediatric Stem Cell Research Institute

Edmond and Lili Safra Children's Hospital,

Sheba Medical Center,

Tel Hashomer, 52621, Israel

Tel # 03-5302445; Fax # 03-5303637

E-mail: <u>binyamin.dekel@sheba.health.gov.il</u> or <u>benjamin.dekel@gmail.com</u>

### Table of content:

| 1. | Supplementary materials and methods | 5  |
|----|-------------------------------------|----|
| 2. | Supp Fig. 1                         | 8  |
| 3. | Supp Fig. 2                         | 9  |
| 4. | Supp Fig. 3                         | 10 |
| 5. | Supp Fig. 4                         | 11 |
| 6. | Supp Fig. 5                         | 12 |
| 7. | Supp Fig. 6                         | 13 |
| 8. | Supp Fig. 7                         | 14 |
| 9. | Supp Table 1                        |    |
| 10 | . Supp Table 2                      | 16 |

| 11. Supp Table 3 | 17 |
|------------------|----|
| 12. Supp Table 4 | 18 |
| 13. Supp Table 5 | 19 |

#### Supplementary materials and methods:

(2'z,3'e)-6-Bromoindirubin-3'-oxime (BIO) treatment: NCAM1<sup>+</sup> cells sorted by magnetic beads as described below were plated on a 6-well plate ( $2.5X10^5$  cells/well) with or without 1µg Fibronectin plate coating (Biological Industries) and cultured in SFM supplemented with 5uM BIO(Tocris Bioscience). After seven days in the culture, the number of cells was evaluated using Trypan blue.

**Bone morphogenic protein 7 (BMP7) treatment:** NCAM1<sup>+</sup> cells sorted by magnetic beads as described below were plated with or without  $1\mu g$  Fibronectin plate coating and cultured in SFM supplemented with 50ng/ml BMP7 (Peprotech Asia). After seven days in culture, the number of cells was evaluated using Trypan blue.

Microarray analysis: Total RNA from 3 different samples of whole hFK cells cultured in SFM and NCAM1+ cells (magneticly sorted from the same hFK culture) was purified using Trizol reagent (Invitrogen) according to manufacturer's recommendations. All experiments were performed using Affymetrix HU GENE1.0st oligonucleotide arrays http://www.affymetrix.com/support/technical/datasheets/gene\_1\_0\_st\_datasheet.pdf. RNA was used to prepare biotinylated target DNA, according to manufacturer's recommendations. The target cDNA generated from each sample was processed as per manufacturer's recommendation AffymetrixGeneChip Instrument using System an https://www.affymetrix.com/support/downloads/manuals/wt\_sensetarget\_label\_manual.pdf. The quality and amount of starting RNA was

confirmed using an agarose gel or by Bioanalyser(Agilent). After scanning, array images were visually assessed to confirm scanner alignment and the absence of significant bubbles or scratches on the chip surface. The signals derived from the array were analyzed using various quality assessment metrics. Quality control measures were performed according to manufacturer's recommendations. Gene level RMA sketch algorithm (Affymetrix Expression Console and Partek Genomics Suite 6.2) was used for crude data generation. Significantly changed genes were filtered as changed by at least 2 fold (P value 0.05). Genes were filtered and analyzed using unsupervised hierarchical cluster analysis and supervised hierarchical cluster analysis (Partek Genomics Suite and SpotfireDecisionSite for Functional Genomics; Somerville,MA) to get a primary evaluation of the data. Further processing included functional analysis and over- representation calculations based on Gene Ontology and publication data: *DAVID Bioinformatics Resources 6.7* http://apps1.niaid.nih.gov/David/upload.asp, Ingenuity, Database for Annotation (GO), Visualization, and Integrated Discovery. Over- representation calculations are done using Ease. The microarray data was deposited to the Gene Expression Omnibus (GEO), under accession GSE49101.

<u>GUDMAP database analysis:</u> Genomic data for the expression of Ncam1 in developing kidney compartments were retrieved from the GUDMAP database (Harding et al, 2011) using their series of 53 MOE 430, plus two laser-captured and flow-sorted developing kidney samples, as described in Brunskill et al., 2008 (Brunskill et al, 2008). This data set encompassed the following samples: e11.5\_metaneph mesenche11.5\_ureteric bud, e12.5\_Renal vesicles, e13.5\_podocyte cells, e15.5\_anlage of loop of Henle, e15.5\_Cap mesenchyme, e15.5\_cortic collect duct, e15.5\_earlyproximal tubule, e15.5\_Endothelial cells, e15.5\_Medullary collecting duct,e15.5\_Pelvic Mesenchyme, e15.5\_Peripheral

blastema, e15.5\_Podocyte cells,e15.5\_Proximal Tubules, e15.5\_S-shaped body, e15.5\_stage III -IV renal corpuscle, e15.5\_ureter tip\_flank cells, e15.5\_cortic collecting duct cells, e15.5\_Ureteral Smooth Muscle. The RMA-normalized expression table from these was then analyzed by Pearson correlation to identify other probesets and corresponding gene transcripts that were most similarly regulated to the 1426864\_a\_at probe for Ncam1 using a matrix of all individual samples. Geneset enrichment analysis was carried out using Toppgene (Chen et al, 2009) and biological network analysis for shared connectivities across the developing kidney Ncam1-correlated gene set was carried out using Toppcluster(Kaimal et al, 2010).

**IMGN901 dosage screening:** hFK cells were cultured with SFM in a 96-well plate (6000 cells per well). After one day, a single dose of IMGN901 (1.675uM, 0.837uM, 0.418uM, 0.2uM, 0.1uM, 52nM, 26nM, 13nM, 6.5nM, 1.6nM or 0) (ImmunoGen, Inc) was added to the culturing medium. After four days in the culture, changes in cell proliferation were evaluated using MTS, as described above. Another preliminary assay tested other IMGN901 doses (55nM, 45nM, 35nM, 25nM or 0). After four days in the culture, changes in NCAM1+ cell fraction were evaluated using FACS assay, as described above.

Supp Fig. 1: Gene expression coordinately regulated with NCAM1 during mouse kidney development. HeatMap of gene expression in different renal compartments and time points during mouse kidney development and adulthood, that their expression was coordinately regulated with NCAM1 expression. Genomic data was retrieved from the GUDMAP database (Harding et al, 2011) and analyzed using Pearson correlation assay across the normalized gene expression profiles.



**Supp Fig. 2: NCAM1 expression module.** A scheme of the NCAM1 module network. Genomic data was retrieved from GUDMAP database (Harding et al, 2011) and analyzed using Toppcluster (Kaimal et al, 2010).Genes in the Ncam1 expression module that are known to play a role in neurogenesis at some level are highlighted.



Supp Fig. 3: Characterization of hFK cells (A) FACS analysis of surface marker expression in hFK cell cultures. Each marker was tested on at least three independent samples. Data was calculated as the average percentage of expressing cells ±SDEV. (B-C) Immunofluorescence staining of hFK cells cultured with SFM for CD24 (B, red) and EpCAM (C, green). Nuclei were stained with Dapi (blue). Images were obtained using Olympus DP72 camera attached to Olympus BX51 fluorescence microscope and processed via cellSens standard software. (D-E) Isolation of NCAM1+ cells from hFK cells. Representative FACS sorting analysis of NCAM1 expression in hFK cells cultured in SFM at Passage #1. Data are presented in histogram graphs, mean fluorescence intensities (MFI) and percentage of NCAM1 expressing cells. Shown are NCAM1 (right panel) and isotype control (left panel) staining (**D**). (**E**) Validation of sorting purity of NCAM1- (left panel) and NCAM1+ panel) sub-populations. **(F)** (right Characterization of NCAM1 cells sorted from SCM cultures. qRT-PCR analysis of gene expression in NCAM1 cell fractions grown in SCM. Normalization was performed against control GAPDH expression and RQ calculated relative to NCAM1<sup>-</sup> cell fraction. Data were analyzed using SDS 3.2 software and presented as average RQ±SDEV of three replicates. \*\*\*P<0.001, \*P<0.05 versus NCAM1-.





**Supp Fig. 4: Calibration of immunoflorescence staining of SIX2.** Double IF staining of SIX2 (green) and NCAM1 (red) in hFK NCAM1+ (B) and NCAM1- (D) sorted cells. Cells from primary cultures of wilms tumor (A) or adult kidney (D) were used as positive or negative controls (respectively) of the SIX2 staining. Nuclei were stained with Dapi (blue). Images were obtained using Zeiss SLM 510 microscope and processed in ImageJ/Fiji software. Scale: 50µm.

Supplementary Fig. 5: In vitro characterization of NCAM+ cells. (A) Representative graph of selfrenewal in NCAM1+ cells sorted from hFK that was cultured in SCM. Data are presented for each passage as relative number of clones developed from the total number of cells plated. (B) Percentage of surviving NCAM1<sup>+</sup> cells after sorting and culturing with or without BMP7 for 7 days. Each treatment was tested on three independent samples. Number of cells was calculated as percentage of the control group and presented as average of three replicates ±SDEV. (C) Percentage of surviving NCAM1<sup>+</sup> cells after sorting and culturing with or without BIO. Number of cells was calculated as percentage of the control group. (D) Proliferation analysis of hFK cells treated with different dosages of IMGN901 (0-1.675uM) as demonstrated by MTS proliferation assay. OD levels are presented as percentage of the control sample (0uM). (E) FACS analysis of the NCAM1 population in hFK treated with different dosages of IMGN901 (0-55nM). Results are presented as percentage of the sample (0uM). Abbreviations: FIB = control fibronectin coating.





BMP7

FIB+BMP7

Supp Fig. 6: Renal differentiation of hFK cells on chick CAM. (A) hFK cells grafted on the chick CAM. Graft images were obtained using Scion Corporation color digital camera attached to Olympus SZX12. (B) Summarizing table of the amount of hFK cells grafted on the CAM (grafted cells, replicates, visible grafts and grafts with tubule-like formations). (C-E) H&E staining of paraffin embedded sections of  $0.35 \times 10^6$  (C),  $1.25 \times 10^6$  (D) and  $2.5 \times 10^6$  (E) grafted cells. Images were obtained using Scion color digital attached to Olympus BX51TF cameras microscope. (F-K) IF staining of Ki67 (F-H, red) and pan-CK (I-K, green) in paraffin embedded sections of 2.5X10<sup>6</sup> cell grafts. Hoechst 33342 (Blue) was used for nuclear staining. Images were using Olympus AX70 obtain motorized microscope and spectral unmixing using multispectral imaging system (NuanceFX camera and software).



a.

| Cell<br>(X10^6)/Egg | Replicates | Visible<br>Grafts | Grafts with tubule-<br>like formations |
|---------------------|------------|-------------------|----------------------------------------|
| 10                  | 8          | 8/8               | 0/8                                    |
| 5                   | 10         | 10/10             | 1/8                                    |
| 2.5                 | 5          | 5/5               | 3/5                                    |
| 1.25                | 3          | 3/3               | 0/3                                    |
| 0.35                | 3          | 3/3               | 0/3                                    |





**Supp Fig 7: Chronic renal disease model of 5/6-Nephrectomy (5/6Nx) in NOD/SCID mice (A)** S chema of in vivo experiments:5/6Nx in NOD/SCID mice was performed in two steps (Nx1-unilateral nephrectomy & Nx2-2/3 nephrectomy). One week after the second step, hNPCs were injected directly into the remnant kidney (transplantation #1-3) in three cycles, with three weeks intervals between each injection. Blood and urine were collected two weeks after each cell injection (sample collection #1-3). Starting on the 10<sup>th</sup> week mice were fed by high protein

food followed by another blood and urine sample collection (#4). 14 week after the second step of the Nx the mice were sacrificed and the kidneys were removed for IHC or gene expression analysis. (B) hNPCs were labeled with CM-Dil Cell Tracker Mice injected with saline served as controls. Sections of the injected kidneys were then analyzed by confocal microscopy. While saline injected kidney show no detectable signal, hNPCs are seen in the injected kidneys as soon as 24h after the injection and are still detectable at 2 weeks. (C) RT-PCR for human-specific  $\beta$ 2-microglobulin (*hB2m*) was performed to validate the presence of human cells in the injected mouse kidney. Representative Real time PCR amplification plot demonstrates amplification in the hNPC-injected mouse kidneys, but not in untreated (naïve) or saline-injected kidneys. Mouse  $\beta$ -Actin ( $m\beta$ -actin) served as endogenous control. (D) IHC with human specific antibody for pan-Cytokeratin /MNF116 is shown in positive control hFK tissue (left panel), and in two negative control NOD/SCID kidney tissues: healthy/naive mouse kidney (MK-naïve, middle panel) and in 5/6 Nx kidney injected with saline (MK-5/6 saline, right panel). (E) IHC with human antibody for EMA in MK-5/6 saline (right panel) and in positive control human adult kidney (AK) tissue (right panel). (F) IHC with human antibody for ENPEP is shown in both MK-5/6 saline (left panel) and AK (right panel) tissues. Bar represents 200micron.

# Supp Table 2: Differential expressed genes in NCAM1+ cells

| <b>Biological process</b>                                  | Gene                           | Reference                   |
|------------------------------------------------------------|--------------------------------|-----------------------------|
| positively regulation cell cycle/cell division/cell growth | p21 protein-activated kinase 3 |                             |
| positively regulation cell cycle/cell division/cell growth | CCA2                           |                             |
| positively regulation cell cycle/cell division/cell growth | CDC6                           | (Boronat & Campbell, 2008)  |
| positively regulation cell cycle/cell division/cell growth | CDKN3                          |                             |
| positively regulation cell cycle/cell division/cell growth | BUB1                           | (Taylor et al, 2001)        |
| positively regulation cell cycle/cell division/cell growth | CEP55                          | (van der Horst et al, 2009) |
| positively regulation cell cycle/cell division/cell growth | NUF2                           | (Sundin et al, 2011)        |
| positively regulation cell cycle/cell division/cell growth | SIM1                           |                             |
| positively regulation cell cycle/cell division/cell growth | PDZ-binding kinase             | (Park et al, 2010)          |
| positively regulation cell cycle/cell division/cell growth | EEF1B2                         | (Byun et al, 2009)          |
| positively regulation cell cycle/cell division/cell growth | MKI-67                         |                             |
| positively regulation cell cycle/cell division/cell growth | PBX2                           | (Capellini et al, 2008)     |
| positively regulation cell cycle/cell division/cell growth | TOP2A                          | (Pode-Shakked et al, 2009)  |
| positively regulation cell cycle/cell division/cell growth | ETV1                           |                             |
| positively regulation cell cycle/cell division/cell growth | STOML2                         | (Song et al, 2012           |
| terminal epithelial differentiation                        | CDH1                           |                             |
| terminal epithelial differentiation                        | EpCAM                          |                             |
| terminal epithelial differentiation                        | Grhl2                          |                             |

# Supp Table 3: Primary antibodies used in FACS assays

| Antibody                          | Marker     | Isotype control | Manufacturer   |
|-----------------------------------|------------|-----------------|----------------|
|                                   | identified |                 |                |
| CD24-PE                           | CD24       | Mouse IgG1      | eBioscience    |
| FITC anti-human CD34              | CD34       | Mouse IgG2a     | MiltenyiBiotec |
| PE anti-human CD56 (N-CAM, NCAM1) | NCAM1      | Mouse IgG2a,ĸ   | eBioscience    |
| FITC mouse anti-human CD90        | Thy-1      | Mouse IgG1,ĸ    | BD Biosciences |
| CD133/1 (AC133)-APC               | CD133      | Mouse IgG1      | MiltenyiBiotec |
| CD326 (EpCAM)- FITC               | ЕрСАМ      | Mouse IgG1      | MiltenyiBiotec |
| FITC mouse anti-human CD105       | CD105      | Mouse IgG1      | Serotec Inc.   |

# Supp Table 4: Secondary antibodies used in the FACS assays

| Reagent                               | Manufacturer      |
|---------------------------------------|-------------------|
| Avidin-Fluorescein (Avidin-FITC)      | R&D Systems, Inc. |
| Streptavidin-Allophycocyanin (SA-APC) | R&D Systems, Inc. |
| Alexa Fluor 647 goat anti-mouse       | Invitrogen        |
| Alexa Fluor 488 goat anti-mouse       | Invitrogen        |

# Supp Table 5: Antibodies used in IHC or IF staining

| Primary Antibody                                                | Manufacturer                    | Secondary fluorescent Antibody                  | Manufacturer           |
|-----------------------------------------------------------------|---------------------------------|-------------------------------------------------|------------------------|
| Biotinylated lotus tetragonolobus lectin (lotus)                | Vectorlabs                      | Strepavidin-Cy2                                 | Jackson Immunoresearch |
| Biotinylated dolichos biflorus<br>agglutinin (dolichos)         | Vectorlabs                      | Strepavidin-Cy2                                 | Jackson Immunoresearch |
| Sheep anti-human Tamm-horsfall<br>glycoprotein polyclonal (THG) | Vectorlabs                      | -                                               | -                      |
| SIX2 Rabbit anti-Human                                          | LifeSpan                        | Alexa Fluor® 488 Donkey Anti-Rabbit IgG         | Life technologies      |
| Polyclonal (aa264-277) Antibody                                 | Biosciences                     | (H+L)                                           |                        |
| Purified Mouse Anti-E-Cadherin                                  | BD transduction<br>Laboratories | Alexa Fluor® 594 Goat Anti-Mouse IgG2a<br>(γ2a) | Life technologies      |
| Monoclonl anti-NCAM                                             | Sigma                           | Alexa Fluor® 647 Goat Anti-Mouse IgG1 (γ1)      | Life technologies      |
| SIX2 Antibody                                                   | Novus                           | Alexa 488 conjugated anti-mouse IgG             | Jackson                |
| Anti-Vimentin antibody [RV202]                                  | abcam                           | Alexa 488 conjugated anti-mouse                 | Jackson                |
| E-Cadherin (24E10) Rabbit mAb                                   | Cell Signaling                  | Alexa 550 conjugated or anti-rabbit IgG         | Jackson                |

| Monoclonal Mouse Anti-Human     | DAKO        | ImmPRESS <sup>™</sup> system: anti-mouse-HRP      | Vector                    |
|---------------------------------|-------------|---------------------------------------------------|---------------------------|
| Cytokeratin                     |             |                                                   |                           |
| Anti-MHC class I antibody       | abcam       | Alexa Fluor® 488 Donkey Anti-Rabbit IgG           | Life technologies (IF) or |
| [EP1395Y]                       |             | (H+L) for IF or ImmPRESS <sup>™</sup> Anti-Rabbit | Vector (IHC)              |
|                                 |             | Alkaline Phosphatase for IHC                      |                           |
| Monoclonal Mouse Anti-Human     | DAKO        | ImmPRESS <sup>™</sup> system: anti-mouse-HRP      | Vector                    |
| Cytokeratin                     |             |                                                   |                           |
| EMA (E29)                       | Cell Marque | ImmPRESS <sup>™</sup> system: anti-mouse-HRP      | Vector                    |
| Anti-ENPEP antibody produced in | Sigma       | ImmPRESS <sup>™</sup> Anti-Rabbit Alkaline        | Vector                    |
| rabbit                          |             | Phosphatase                                       |                           |
| CD56 (NCAM1) antibody           |             | ImmPRESS <sup>™</sup> Anti-Rabbit Alkaline        | Vector                    |
|                                 |             | Phosphatase                                       |                           |
|                                 |             |                                                   |                           |