SUPPORTING INFORMATION

Genetic Analysis of *Agrobacterium tumefaciens* Unipolar Polysaccharide Production Reveals Complex Integrated Control of the Motile-to-Sessile Switch

Jing Xu¹, Jinwoo Kim², Benjamin J. Koestler³, Jeong-Hyeon Choi^{4†} Christopher M. Waters³ and Clay Fugua^{1*}

¹Department of Biology, Indiana University, Bloomington, IN 47405

²Division of Applied Life Science, Gyeongsang National University, Jinju 660-

701, Korea

³Department of Microbiology and Molecular Genetics, Michigan State University,

East Lansing, MI 48824

⁴ Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN

Running Title: Agrobacterium tumefaciens unipolar polysaccharide control

Keywords: Attachment, Unipolar polysaccharide, Cellulose, Congo Red, VisN-VisR, Biofilm, Motility, c-di-GMP

Table S1. Genes decreased in the $\Delta visR$ mutant as determined by DNA microarray expression profiling (log₂ FC<-0.6, P<0.05)

Gene ID	Gene	Product	log ₂ FC	P value
Atu0574	flgE	flagellar hook protein FlgE	-5.86	<0.01
Atu0573	-	transcriptional regulator	-5.12	<0.01
Atu0555	flgB	flagellar basal body rod protein FlgB	-5.10	<0.01
Atu0562	fliN	flagellar motor switch protein FliN	-4.87	<0.01
Atu0525	agrR	LuxR family transcriptional regulator	-4.48	<0.01
Atu0543	flaB	hypothetical protein	-4.44	<0.01
Atu0561	fliM	flagellar motor switch protein	-4.39	<0.01
Atu0575	flgK	flagellar hook-associated protein FlgK	-4.35	<0.01
Atu0551	flgA	flagellar basal body P-ring biosynthesis protein FlgA	-4.12	<0.01
Atu0560	motA	flagellar motor protein MotA	-3.96	<0.01
Atu0552	flgG	flagellar basal body rod protein FlgG	-3.92	<0.01
Atu0520	cheY	chemotaxis receiver protein	-3.83	<0.01
Atu0554	flgC	flagellar basal body rod protein FlgC	-3.73	<0.01
Atu0576	flgL	flagellar hook-associated protein FlgL	-3.55	<0.01
Atu0571	motD	chemotaxis MotD protein	-3.40	<0.01
Atu0515	-	hypothetical protein	-3.39	<0.01
Atu0563	fliG	flagellar motor switch protein G	-3.37	<0.01
Atu0844	-	hypothetical protein	-3.30	0.01
Atu0519	cheB	chemotaxis-specific methylesterase	-3.26	<0.01
Atu0569	motB	flagellar motor protein MotB	-3.25	<0.01
Atu0568	-	hypothetical protein	-3.19	<0.01
Atu0557	flil	flagellum-specific ATP synthase	-3.17	<0.01
Atu0549	-	hypothetical protein	-3.14	0.01
Atu0585	-	hypothetical protein	-3.09	0.01
Atu0558	flgF	flagellar basal body rod protein FlgF	-3.07	<0.01
Atu0545	flaA	flagella associated protein	-3.07	<0.01
Atu0516	cheY	chemotaxis receiver protein	-3.04	<0.01
Atu0892	-	hypothetical protein	-3.01	<0.01
Atu0542	fla	flagellin	-2.84	<0.01
Atu0514	-	methyl-accepting chemotaxis protein	-2.81	<0.01
Atu0566	-	hypothetical protein	-2.78	<0.01
Atu4345	-	hypothetical protein	-2.78	<0.01
Atu0584	-	hypothetical protein	-2.68	<0.01
Atu0517	cheA	chemotaxis protein histidine kinase	-2.68	<0.01
Atu0577	flaF	flagellar biosynthesis regulatory protein	-2.61	<0.01
Gene ID	Gene	Product	log ₂ FC	P value

Atu4054	exoL	succinoglycan biosynthesis protein	-2.60	<0.01
Atu0553	fliE	flagellar hook-basal body protein FliE	-2.53	0.01
Atu4736	-	methyl-accepting chemotaxis protein	-2.52	<0.01
Atu3977	ina	ice nucleation-like protein	-2.48	<0.01
Atu0579	flgD	flagellar basal body rod modification protein	-2.46	<0.01
Atu4050	exoN	UTP-glucose-1-phosphate uridylyltransferase	-2.45	0.01
Atu0565	-	hypothetical protein	-2.43	<0.01
Atu0521	cheD	chemoreceptor glutamine deamidase CheD	-2.42	<0.01
Atu0567	flaD	flagellin protein FlaD	-2.40	0.02
Atu4049	exoP	exopolysaccharide polymerization/transport protein	-2.39	<0.01
Atu0522	-	hypothetical protein	-2.39	<0.01
Atu0700	-	two component sensor kinase	-2.35	<0.01
Atu0518	cheR	chemotaxis methyltransferase	-2.33	<0.01
Atu1559	-	hypothetical protein	-2.27	<0.01
Atu1233	-	hypothetical protein	-2.26	0.04
Atu3725	-	methyl-accepting chemotaxis protein	-2.25	<0.01
Atu0556	-	hypothetical protein	-2.20	<0.01
Atu2173	тсрА	methyl-accepting chemotaxis protein	-2.13	<0.01
Atu0653	-	hypothetical protein	-2.12	<0.01
Atu3327	exoY	succinoglycan exopolysaccharide synthesis protein	-2.10	<0.01
Atu0578	flbT	flagellar biosynthesis repressor FlbT	-2.09	<0.01
Atu5089	-	hypothetical protein	-2.09	<0.01
Atu4344	clpB	ATP-dependent Clp protease, ATP-binding subunit	-2.08	<0.01
Atu0373	-	methyl-accepting chemotaxis protein	-2.06	<0.01
Atu4052	exoM	UDP-hexose transferase	-2.00	<0.01
Atu2075	cheW	chemotaxis protein	-1.95	0.01
Atu4347	-	hypothetical protein	-1.95	<0.01
Atu4348	vgrG	VgrG protein	-1.92	<0.01
Atu4349	-	hypothetical protein	-1.91	0.01
Atu4346	-	hypothetical protein	-1.90	0.03
Atu4056	exoH	succinoglycan biosynthesis protein	-1.86	0.04
Atu4341	impC	hypothetical protein	-1.85	<0.01
Atu4343	impA	hypothetical protein	-1.79	0.02
Atu4340	impD	hypothetical protein	-1.78	0.02
Atu0547	fliL	flagellar protein	-1.59	0.02
Atu3642	vgrG	vgrG protein	-1.59	0.01
Atu3564	exsH	endo-1,3-1,4-beta-glycanase	-1.58	<0.01
Atu1601	hemN	coproporphyrinogen III oxidase	-1.57	0.05
Gene ID	Gene	Product	log ₂ FC	P value

Atu0550	flgl	flagellar basal body P-ring protein	-1.56	0.01
Atu0646	тсрА	methyl-accepting chemotaxis protein A	-1.50	0.03
Atu4337	impG	hypothetical protein	-1.48	0.04
Atu5091	rcdB	Curdlan synthesis protein	-1.47	<0.01
Atu5442	-	methyl-accepting chemotaxis protein	-1.46	0.03
Atu1724	-	hypothetical protein	-1.43	0.02
Atu3975	glf	UDP-galactopyranose mutase	-1.34	0.05
Atu4329	bexD	polysaccharide export protein	-1.33	0.01
Atu0548	flgH	flagellar basal body L-ring protein	-1.32	0.01
Atu4856	-	nucleotidyltransferase	-1.30	0.01
Atu3974	ina	ice nucleation-like protein	-1.27	0.03
Atu0580	fliQ	flagellar biosynthesis protein FliQ	-1.27	0.03
Atu4338	impF	hypothetical protein	-1.26	0.01
Atu3091	-	hypothetical protein	-1.25	0.05
Atu3640	-	hypothetical protein	-1.24	0.02
Atu3321	-	hypothetical protein	-1.23	0.02
Atu4733	-	hypothetical protein	-1.20	0.01
Atu4331	impM	serine/threonine phosphoprotein phosphatase	-1.15	0.02
Atu0544	-	hypothetical protein	-1.15	0.02
Atu4732	-	fimbrial chaperone	-1.10	0.03
Atu3639	-	hypothetical protein	-1.09	0.03
Atu0572	-	hypothetical protein	-1.08	0.02
Atu0916	ros	transcriptional regulator	-1.07	0.02
Atu4335	impl	putative forkhead-type phosphopeptide- binding protein	-1.02	0.02
Atu2617	cheW	chemotaxis protein	-1.01	0.02
Atu0984	pepN	aminopeptidase N	-0.96	0.04
Atu0523	fliF	flagellar MS-ring protein	-0.93	0.03
Atu4058	exoW	succinoglycan biosynthesis protein	-0.85	0.04

Table S2. Genes increased in the $\Delta visR$ mutant as determined by DNA microarray expression profiling (log₂ FC>0.6, P<0.05)

Gene ID	Gene	Product	log₂FC	P value
Atu3318	-	LuxR family transcriptional regulator	2.70	<0.01
Atu3384	-	hypothetical protein	2.10	0.01
Atu4454	-	RpiR family transcriptional regulator	1.86	0.02
Atu1691	-	GGDEF family protein (DGC2)	1.67	0.04
Atu3419	-	hippurate hydrolase	1.64	0.02
Atu3426	-	putative sulfonate monooxygenase	1.55	0.03
Atu2707	rzcA	rhizobiocin	1.54	0.02
Atu0204	-	hypothetical protein	1.45	0.02
Atu3094	тсрА	methyl-accepting chemotaxis protein	1.23	0.02
Atu3315	galE	UDP-glucose 4-epimerase	1.14	0.03
Atu0203	-	hypothetical protein	1.13	0.02
Atu3842	-	hypothetical protein	1.01	0.04
Atu0681	-	hypothetical protein	0.99	0.03
Atu3644	-	hypothetical protein	0.95	0.04
Atu2179	-	GGDEF family protein (DgcC)	0.91	0.60*
Atu0824	-	hypothetical protein	0.87	0.05

^{*} Although the P value of *dgcC* is larger than 0.05, β gal assay confirmed that *dgcC* was upregulated in the $\Delta visR$ mutant (Fig. 8B).

Table S3 Strains and plasmids

Strain/plasmid	Relevant features	Reference
E. coli		
DH5α/λpir	<i>λpir</i> ; cloning strain	(Chiang & Rubin, 2002)
TOP10 ['] F'	Cloning strain	Invitrogen
S17-1/λpir	λpir ; Tra ⁺ , cloning host	(Kalogeraki & Winans,
917.1/ bir	Himori appiused deper	(1997)
317-1/ лрн (рЕD1)	Himar i conjugal donol	(Lampe et al., 1999)
(PFDT)		
	Noncline type strain: pTiCE9: pAtCE9	(Mataon at al. 1075)
	Nopaline type strain, $p = 0.050$, $p = 0.050$	(Valson et al., 1975)
	$\Delta chu3 (\Delta Atu3035-3037)$	$(A \cup el al., 2012)$
	$\Delta CIVAD (\Delta A (u 2720-2730))$	(Xu et al., 2012)
JA 102 DMM26	$\Delta cer (\Delta A tu 1235 1240)$	(Xu et al., 2012)
	$\Delta upp (\Delta A tu 1255-1240)$	$(\Lambda U \in U : a., 2012)$
	$\Delta exd \Delta (\Delta A (04053))$	(10111111S011 et al., 2010)
		$(\Lambda U \in U : a., 2012)$
		This study
		This study
		This study
JX 107	AcrdSAupp	(Xu at al. 2012)
		(Au el al., 2012)
JX 109	$\Delta crd S \Delta cel \Delta exc A \Delta eby (A B (EBS-1) DD^{+})$	(Xu at al. 2012)
	$\Delta crd S \Delta cel \Delta exe (A ebu (A B A upp))$	$(XU \ el \ al., 2012)$
		This study
JX117	$\Delta VISR (\Delta Atu 0525)$	I NIS STUDY
JX119	$\Delta VISIN (\Delta ATUU524)$	I NIS STUDY
JX120		I NIS STUDY
JX118	$EPS UPP \Delta VISIN$	I NIS STUDY
JX134		I his study
JX131	$\Delta VISR \Delta Upp$	I his study
JX135	$\Delta VISR \Delta Cel \Delta Upp$	I NIS STUDY
JX125	$\Delta dg c A (\Delta A tu 1257)$	This study
	$\Delta dg CB (\Delta A tu 1691)$	This study
Y VVU1U	$\Delta dgc \cup (\Delta A t u 2 179)$	I NIS STUDY
JX127	$EPS UPP \Delta agcA$	I NIS STUDY
JX128		I NIS STUDY
JX126	$\Delta VISR \Delta dg CA$	This study
JX191	AVISRAdgcB	I his study
JX178		I his study
JX//9		I his study
JX188		I his study
JX192		I NIS STUDY
JX001	EPS UPP $\Delta visk uppE$ (Atu1236)::Mn	Inis study
JX138		Inis study
JX153	EPS UPP DAtu3495	I his study

Plasmids pGEM-T easy PCR cloning vector; Ap^R Promega

pNPTS138	CoIE1 suicide plasmid; <i>sacB;</i> Km ^R	gift of M. Alley
pSRKGm	Broad host range <i>P_{lac}</i> expression	(Khan <i>et al.</i> , 2008)
	vector; <i>lacIQ</i> ; Gm ^R	
pSRKKm	Broad host range <i>P_{lac}</i> expression	(Khan et al., 2008)
	vector; <i>lacIQ</i> ; Km ^R	
pRA301	Broad host range; promoterless <i>lacZ</i> ;	(Akakura & Winans, 2002)
	Spc ^R	
pJX106	pNPTS138 carrying visR SOE	This study
	deletion fragment; Km ^R	
pJX108	pNPTS138 carrying visN SOE	This study
	deletion fragment; Km ^R	
pJX102	pNPTS138 carrying cel SOE deletion	This study
	fragment; Km ^R	
	pNPTS138 carrying dgcA SOE	This study
pJX123	deletion fragment; Km ^R	
pJX802	pNPTS138 carrying dgcB SOE	This study
	deletion fragment; Km ^R	
pYW010	pNPTS138 carrying dgcC SOE	This study
	deletion fragment; Km ^R	
pJX133	pNPTS138 carrying Atu3495 SOE	This study
	deletion fragment; Km ^R	
pJX109	pSRKGm carrying <i>P_{lac} -visR</i> ; Gm ^R	This study
pJX124	pSRKGm carrying <i>P_{lac} -visN</i> ; Gm ^R	This study
pJX136	pSRKGm carrying <i>P_{lac} -visNR</i> ; Gm ^R	This study
pJX125	pSRKGm carrying <i>P_{lac} -dgcA</i> ; Gm ^R	This study
pJX520	pSRKGm carrying <i>P_{lac} -dgcB</i> ; Gm ^R	This study
pYW007	pSRKGm carrying <i>P_{lac} -dgcC</i> ; Km ^R	This study
pJW110	pSRKKm carrying <i>P_{lac} -pleD</i> ; Km ^ĸ	This study
pJX522	pSRKGm carrying <i>P_{lac} -dgcA*</i> ; Gm ^K	This study
pJX521	pSRKGm carrying <i>P_{lac} -dgcB*</i> ; Gm ^K	This study
pJX611	pSRKGm carrying <i>P_{lac} -dgcC*</i> ; Gm ^r	This study
pJX612	pSRKGm carrying <i>P_{lac} -pleD*</i> ; Gm [~]	This study
pJW168	pSRKGm carrying <i>P_{lac}</i> -Atu3495; Gm [~]	This study
pJX613	pRA301 carrying <i>PdgcA-lacZ</i> ; Spc	This study
pJX162	pRA301 carrying <i>PdgcB-lacZ</i> ; Spc	This study
pJX163	pRA301 carrying <i>PdgcC-lac2</i> ; Spc [\]	This study
pJX158	pRA301 carrying <i>P</i> Atu3318 <i>-lacZ</i> ; Spc ^R	This study
pJX160	pRA301 carrying <i>P-flgE</i> (Atu0574)-	This study
n.IX159	pRA301 carrying <i>P-rem</i> (Atu0573)-	This study
201100	lacZ; Spc ^R	
pJX166	pRA301 carrying P-motA (Atu0560)-	This study
	lacZ; Spc ^R	

^a All A. tumefaciens strains are C58 derivatives

Primer	Sequence
visR -P1	(Spe I) ggtaccactagtAAATGGAGAAGTGCCTTTCGCTGC
visR -P2	aagcttggtaccgaattcCTGTACCATCCGTCCGACCAT
visR -P3	gaattcggtaccaagcttTACATCCATTGATGGCGGACG
visR -P4	(Sph I) aagcttgcatgcATTTCACGGCATCTGTCAGCTTGC
visN -P1	(Spe I) ggtaccactagtAAATTCCGCCGGCATCATCAACTC
visN- P2	aagcttggtaccgaattcCTTACCCATGCCCTCCAGAGGCTT
<i>visN-</i> P3	gaattcggtaccaagcttGTATAATGGTCGGACGGATGGTAC
visN- P4	(Sph I) aagcttgcatgcGCCAGCATGTCCACCATGATTTCA
dgcA-P1	(Spe I) actagtTTATCGACATGCCGCGAAACGAAC
dgcA-P2	aagcttggtaccgaattcTGAGGATGTCACCGTACAGCG
dgcA-P3	gaattcggtaccaagcttGCTCGTCTTTGCATCCAGCAT
dgcA-P4	(Sph I) gcatgcGCCATGGCGGTATCAACTGGATTT
<i>dgcB</i> -P1	(Spe I) agagctactagtTATTGGCCCATTCTGATGGCCTGA
dgcB-P2	aagcttggtaccgaattcCATCAAGAAACTCCAGTGAGTCTG
<i>dgcB</i> -Р3	gaattcggtaccaagcttTGAAAATTAGAGGGCAGCAGCCGT
<i>dgcB</i> -P4	(Pst I) tatatcctgcagAGCTTCGAGATGGAT
dgcC-P1	(Spe I) actagtTGCCTTACTACACGACGATG
dgcC-P2	aagcttggtaccgaattcTAAGAAGCGGAAAAGCCTGC
dgcC-P3	gaattcggtaccaagcttCAGCATAATATGCCCATACG
dgcC-P4	(Sph I) gcatgcAAGCTCTACGTCACCAATGC
Atu3495-P1	(Spe I) actagtACGACATCCAGAGATCCTTGCGAA
Atu3495-P2	aagcttggtaccgaattcTGAAACGGGCCTGTTTCGCGA
Atu3495-P3	gaattcggtaccaagcttCACCGCCACAAGTTTTCGCAA
Atu3495-P4	(Sph I) gcatgcCAAACCGCAGGGCAAACCGATATT
Com-visR-P1	(Nde I) aagcttcatatgGTCGGACGGATGGTACAG
Com-visR-P2	(Spe I) ggtaccactagtCGGGCGTTTGACCGGCTTAA
Com-visN-P1	(Nde I) catatgGGTAAGCCCTTGCCGCGC
Com-visN-P2	(Spe I) actagtGTACCATCCGTCCGACCATTATAC
Com-dgcA-P1	(Nde I) catatgCTGGATGCAAAGACGAGC
Com-dgcA-P2	(Sac I) gagctcCGCTGTACGGTGACATCCTCA
Com-dgcB-P1	(Nde I) ggcagc <mark>catatg</mark> AACACGGCATCCACG
Com- <i>dgcB</i> -P2	(Spe I) tctagaactagtACGGCTGCTGCCCTCTAATTT
Com-dgcC-P1	(Nde I) ggcagccatatgCTGGGTGAACTCGACCTTGCA
Com- <i>dgcC-</i> P2	(Spe I) tctagaactagtCCACTGCAGATGCAGCGAAAGA
Com- <i>pleD</i> -P1	(Nde I) ggcagc <mark>catATG</mark> ACGGCGAGAGTTCTG
Com- <i>pleD</i> -P2	(Spe I) tctagaactagtAACAGTCGTGGTTAATTG
Com3495-P1	(Nde I) cataTGCGAAAACTTGTGGCGGTGATCATC

Com3495-P2	(Xba I) gg <mark>tctaga</mark> TCAGACCGAACTCCAAGCCACCAGT
dgcA*-P1	GTCCGGATGGGCGGCGcGGcATTTGCGCTGGTGGCC
dgcA*-P2	GGCCACCAGCGCAAATgCCgCGCCGCCCATCCGGAC
dgcB*-P1	GCCCGAAGCGGCGGCGcGGcATTCGCCATCATTCTC
dgcB*-P2	GAGAATGATGGCGAATgCCgCGCCGCCGCTTCGGGC
dgcC*-P1	GCGCGTTACGGCGGCGcGGcATTCATCATTTCCTG
dgcC*-P2	CAGGAAAATGATGAATgCCgCGCCGCCGTAACGCGC
pleD*-P1	TGCCGTTATGGCGGAGcGGcATTCGTCGTCGTCATG
pleD*-P2	CATGACGACGACGAATgCCgCTCCGCCATAACGGCA
p- <i>motA</i> -p1	(Kpn I) gagctcggtaccTCCAGCGACTTTGCAAGCTCG
p- <i>motA</i> -p2	(Sph I) ctgcaggcatgcCATTGATCGACCACGCCCGAA
p- <i>rem</i> -p1	(Kpn I) gagctcggtaccAAATGTTCGATCCGCGCCGCA
р- <i>гет</i> -р2	(Sph I) ctgcaggcatgcCATTCGTCCGCCTCCGAATCA
p- <i>flgE</i> -p1	(Kpn I) gagctcggtaccCGTCGATGATGTCGTGCGCAA
p- <i>flgE</i> -p2	(Sph I) ctgcag <mark>gcatgc</mark> CATTCAAAAACCCTCGTGGTC
р- <i>dgcA</i> -р1	(Kpn I) gagctcggtaccTGTCCGTCCTTTGTCAACTCTG
р- <i>dgcA</i> -p2	(Sph I) ctgcaggcatgcCATTGCAAAATCCTATCTGCGCC
р- <i>dgcB</i> -р1	(Kpn I) gagctcggtaccTATAAGGCTGAAGCCCTGACA
р- <i>dgcB</i> -p2	(Sph I) ctgcaggcatgcCATCAAGAAACTCCAGTGAGT
р- <i>dgcC</i> -р1	(Kpn I) gagctcggtaccGTCACCAATGCCGTCAAGCAC
р- <i>dgcC</i> -p2	(Sph I) ctgcag <mark>gcatgc</mark> CATAATATGCCCATACGG
p-3318-p1	(Kpn I) gagctcggtaccCGCCAAATATATATGTCGCTTGG
p-3318-p2	(Sph I) ctgcaggcatgcCATTGACGCCTCCCTAAAGCG
MarTDL2	GACACGGGCCTCGANGNNNCNTNGG
MarRSeq	CGGGTATCGCTCTTGAAGGGA
MarLSeq	GGGAATCATTTGAAGGTTGGT
MarTDR1	CAACCGTGGCGGGGNTNCNNGNCNCG

Upper case sequence anneals to target sequences; lower case are engineered into oligonucleotides but do not anneal with target sequences in genome

Italicized sequences are complementary among paired oligonucleotides

Engineered restriction endonuclease cleavage sits are indicated in parentheses and highlighted in yellow

Supplemental References

- Akakura, R. & S.C. Winans, (2002) Constitutive mutations of the OccR regulatory protein affect DNA bending in response to metabolites released from plant tumors. *J Biol Chem* **277**: 5866-5874.
- Chiang, S.L. & E.J. Rubin, (2002) Construction of a mariner-based transposon for epitope-tagging and genomic targeting. *Gene* **296**: 179-185.
- Kalogeraki, V.S. & S.C. Winans, (1997) Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. *Gene* **188**: 69-75.
- Khan, S.R., J. Gaines, R.M. Roop, 2nd & S.K. Farrand, (2008) Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. *Appl Environ Microbiol* **74**: 5053-5062.
- Lampe, D.J., B.J. Akerley, E.J. Rubin, J.J. Mekalanos & H.M. Robertson, (1999) Hyperactive transposase mutants of the *Himar1* mariner transposon. *Proc. Natl. Acad. Sci. USA* **96**: 11428-11433.
- Tomlinson, A.D., B. Ramey-Hartung, T.W. Day, P.M. Merritt & C. Fuqua, (2010) *Agrobacterium tumefaciens* ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility. *Microbiology* **156**: 2670-2681.
- Watson, B., T.C. Currier, M.P. Gordon, M.D. Chilton & E.W. Nester, (1975) Plasmid required for virulence of *Agrobacterium tumefaciens*. *J. Bacteriol.* **123**: 255-264.
- Xu, J., J. Kim, T. Danhorn, P.M. Merritt & C. Fuqua, (2012) Phosphorus limitation increases attachment in *Agrobacterium tumefaciens* and reveals a conditional functional redundancy in adhesin biosynthesis. *Res Microbiol* **163**: 674-684.

Xu et al. – Supplemental Figure 1

^{* **:** :.} : : :

.

Xu et al. – Supplemental Figure 2

EPS⁻UPP⁺

Xu et al. – Supplemental Figure 5

