Supporting Information

Synthesis of Sequence-Specific DNA-Protein Conjugates via a Reductive Amination Strategy

By Susith Wickramaratne, Shivam Mukherjee, Peter Villalta, Orlando Schärer, and Natalia Tretyakova

Table	S1 .	Sites	of	reductive	amination-mediated	cross-linking	between	DHP-deaza-d	G
contain	ing I	DNA ai	nd re	ecombinant	histone H4 protein a	s identified by	nano HPL	C-ESI ⁺ -MS/M	IS
of trypt	tic dig	gests.							

Amino acid positions	Amino acid sequence	Site of modification
1 - 6	MSG <u>R</u> GK	R4
1 - 9	MSG <u>R</u> GKGGK	R4
10 - 17	GLG <u>K</u> GGAK	K13
10 - 18	GLG <u>K</u> GGAKR	K13
21 - 24	KVL <u>R</u>	R24
21 - 24	<u><i>K</i></u> VLR	K21
46 - 56	<u>R</u> ISGLIYEETR	R46

Amino acid positions	Amino acid sequence	Site of modification
46 - 56	FKHL <u>k</u> TEAEMK	K50
134 - 145	ALELF <u>R</u>NDIAAK	R139
134 - 145	ALELFRNDIAA <u>K</u>	K145
140 - 145	NDIAA <u>K</u>	K145
140 - 147	NDIAA <u>k</u> YK	K145

Table S2. Sites of reductive amination-mediated crosslinking between DHP-deaza-dG containing DNA and myoglobin as identified by nano HPLC-ESI⁺-MS/MS of tryptic digests.

Table S3. Sites of reductive amination-mediated crosslinking between DHP-deaza-dG containing DNA and RNase I as identified by nano HPLC-ESI⁺-MS/MS sequencing of tryptic peptides.

Amino acid positions	Amino acid sequence	Site of modification
1 - 7	<u><i>K</i></u> ETAAAK	K1
40 - 61	C <u>K</u> PVNTFVHESLADVQAVCSQK	K41
40 - 61	CKPVNTFVHESLADVQAVCSQ <u>K</u>	K61

Figure S1. Influence of reaction temperature on DPC yields from reductive amination-mediated crosslinking between DHP-deaza-dG containing DNA and the AlkB protein (A) *Lane 1-3* and (B): Oxidative cleavage was most efficient at 4 °C; (A) *Lane 5-7* and (C): Cross-linking reaction gave the highest yields at 37 °C.

(A)

(B) Oxidative cleavage

(C) Reductive amination

Figure S2. Influence of reaction time on DPC yields from reductive amination-mediated crosslinking between DHP-deaza-dG containing DNA and the AlkB protein. (A) *Lane 1-4* and (B): Oxidative cleavege was high yielding at shorter reaction times (2-6 h); (A) *Lane 6-9* and (C): Cross-linking reaction gave highest yields of DPCs when incubated for longer reaction times (12-24 h); *Lane 10*: Proteinase K digested reaction mixture did not show low mobility DPC band.

Α.

Figure S3. SDS-PAGE analysis of DPCs prepared using a set of different peptides that were visualized via ³²P-end labeling of DNA. *Lane 1*: Aldehyde containing oligonucleotide in the presence of the reducing agent (negative control), *Lane 2*: Substance P produces DNA-peptide conjugate in very high yeilds, *Lane 3*: A single DPC band for Hypertensin I, which has only one arginine residue, but no lysine residues, proved that arginine is also involved in crosslinking to DNA; *Lane 4*: Multiple DPC bands observed with Tat peptide, which is highly rich in lysine and arginine residues suggesting the possibility of multiple DNA molecules binding to the same peptide/protein; *Lane 5*: No DPC bands are observed for pepstatin, which has no lysine or arginine residues suggesting that lysines and arginines are involved in cross-linking to DNA.

Figure S4. Amino acids side chains of myoglobin (A) and ribonuclease A (B) participating in reductive amination-mediated cross-linking to aldehyde-containing DNA.

(A)

(B)

Figure S5. HPLC-ESI⁺-MS/MS analysis of 7-deaza-7-(2-(N-acetylarginine)ethan-1-yl)-2'- deoxyguanosine.

