Protein-Like Tertiary Folding Behavior from Heterogeneous Backbones

Zachary E. Reinert, George A. Lengyel, and W. Seth Horne*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260.

SUPPORTING INFORMATION

Figure S1. Packing interactions involving (A) Lys_{31} in wild-type protein 1 and (B) β^3 - Lys_{31} in helix-modified variant 2.

Figure S2. Polar contacts involving (A) Asp_{40} in wild-type protein **1** and (B) β^3 - Asp_{40} in loop-modified variant **3**.

Figure S3. Chemical structures (A) and temperature-dependent CD data (B) for wild-type GB1 (1) and sheet-modified variants 4, S1, and S2. The folds of proteins S1 and S2, based on sequence-guided modification of the sheet with β^3 -residues and β^2 -residues, were drastically destabilized relative to wild-type GB1.

Figure S4. Raw molar ellipticity data from temperature-dependent CD measurements on proteins **1-6** and **8**. Values in Figure 2B, based on the data shown here, are normalized to percent unfolded for ease of comparison.

Figure S5. Stereo views of electron density (σ_a weighted $2F_o-F_c$ maps) from the refined structures of protein **2** (A), protein **3** (B), and protein **5** (C).

Figure S6. Analytical HPLC chromatograms of purified proteins 1-6, 8, S1, and S2.

Figure S7. Plots of per-residue B-factors for each crystallographically independent chain in the crystal structures of **2** (A), **3** (B-E), and **5** (F). Positions of backbone alteration are marked with vertical lines.

	Protein 2	Protein 3	Protein 5
	(GB1-helix)	(GB1-loops)	(GB1-turns)
PDB ID	4KGR	4KGS	4KGT
Data Collection			
	a = 52.2, b = 81.2	a = 80.7, b = 35.7,	
Unit cell dimensions	<i>c</i> = 52.1	c = 46.5	a = b = 83.8, c = 97.5
(Å, °)	$\alpha = 90, \beta = 90,$	$\alpha = 90, \beta = 120.4,$	$\alpha = \beta = \gamma = 90$
	$\gamma = 90$	$\gamma = 90$	
Space group	P2 ₁	C2	I4 ₁ 22
Resolution (Å)	32.03-2.00	28.27-1.95	23.28-2.00
	(2.07–2.00)	(2.02–1.95)	(2.07 - 2.00)
Total observations	97,753	51,377	166,708
Unique observations	27,508	8,453	12,054
Redundancy	3.55 (2.68)	6.08 (3.64)	13.83 (13.81)
Completeness (%)	93.7 (82.7)	99.6 (96.3)	100 (100)
Ι/σ	23.6 (5.1)	16.2 (4.1)	16.7 (4.5)
R_{merge} (%)	4.4 (20.3)	7.8 (22.5)	7.6 (39.6)
Refinement			
Resolution (Å)	32.03-2.00	28.27-1.95	23.28–2.00
<i>R</i> (%)	16.2	17.6	19.8
R_{free} (%)	19.2	21.7	21.0
Avg. B factor (Å ²)	23.6	24.9	39.4
RMSD			
Bonds (Å)	0.011	0.008	0.007
Angles (°)	1.54	1.12	1.05

Table S1. X-ray diffraction data collection and refinement statistics for proteins 2, 3, and 5.

#	[M+H] ⁺ n	$[M+H]^+ m/z$ (avg.)		
	Calculated	Observed		
1	6179.6	6178.6		
2	6235.8	6232.8		
3	6207.7	6204.4		
4	6207.7	6207.5		
5	5831.2	5828.5		
6	5943.5	5944.1		
8	5995.6	5997.8		
S1	5789.3	5791.5		
S2	6271.9	6274.6		

Table S2. MALDI-TOF MS data forsynthetic proteins.

Experimental Methods

Protein Synthesis and Purification. Proteins were synthesized by automated methods on a PTI Tribute synthesizer using NovaPEG Rink Amide resin (70 µmol scale). Coupling reactions were performed by combining 3.0 mL of 0.4 M N-methylmorpholine in DMF with 7 equivalents relative to resin of the Fmoc-amino acid and HCTU. All unnatural amino acids were purchased in suitably protected form, except for Fmoc- β^2 -Val-OH and Fmoc- β^2 -Tyr(*t*Bu)-OH, which were synthesized using published routes.^{1,2} Following a two minute preactivation, the activated amino acid was added to the resin and vortexed for 45 min. Deprotection reactions were carried out twice with 3.0 mL of a 20% v/v solution of 4-methylpiperidine in DMF for 4 min. The resin was washed three times with 3 mL of DMF for 40 sec between each cycle. After the final deprotection step, the resin was washed with 3 mL of dichloromethane followed by 3 mL of methanol. Resin was dried and subjected to cleavage by treatment with a solution of 94% TFA, 1% triisopropylsilane, 2.5% water, and 2.5% ethanedithiol. Crude protein was precipitated by addition of cold diethyl ether. The solid was pelleted by centrifugation and dissolved in 6 M guanidinium chloride, 25 mM sodium phosphate, pH 6. This solution was subjected to purification by preparative C18 reverse-phase HPLC using gradients between 0.1% TFA in water and 0.1% TFA in acetonitrile. The identity of each protein was confirmed by MS analysis on a Voyager DE Pro MALDI-TOF instrument (Table S2). Each protein was subjected to a second purification by anion-exchange chromatography on a monoQ 5/50GL column (GE Healthcare) using 0.02 M Tris buffer at pH 8 and eluting with increasing concentrations of KCl. In the case of protein 8, peak doubling was observed in the crude HPLC, which was attributed to partial N \rightarrow O acyl transfer from backbone N to side-chain O at N-Me-Thr₁₅ under the strongly acidic conditions of resin cleavage.³ Material containing mass corresponding to desired product was dissolved in 0.02 M phosphate buffer at pH 8 for 24 h (leading to rapid O→N acvl migration to the native amide),⁴ subjected to a second round of HPLC purification and then ion exchange as detailed above. Final protein samples were > 95% pure by analytical reverse-phase HPLC (Figure S6).

Circular Dichroism Spectroscopy. CD measurements were performed on an Olis DSM17 Circular Dichroism Spectrometer in 2 mm quartz cells. Samples consisted of 40 μ M protein in 20 mM sodium phosphate buffer, pH 7.0. Scans were carried out at 25 °C over the range of 200-260 nm with 1 nm increments and a 2 nm bandwidth. Scan data were smoothed by the Savitzky-Golay method. Melts were monitored at 220 nm over the range of 4 °C to 98 °C with 2 °C increments, a dead band of 0.5 °C, and a 2 min equilibration time at each temperature. All measurements were baseline corrected for blank buffer. Temperature-dependent CD data were fit to a two-state unfolding model to obtain melting temperature (T_m). The change in free energy of folding for each mutant relative to wild-type ($\Delta\Delta G_{fold}$) was estimated from the change in T_m (ΔT_m),⁵ using the enthalpy of folding determined for GB1 by differential scanning calorimetry.⁶

Protein Crystallization, X-ray Diffraction Data Collection, and Structure Determination. Crystals of proteins **2**, **3**, and **5** were grown by hanging drop vapour diffusion from 17 mg/mL stock solutions of protein in water and well buffers as follows: 0.15 M sodium acetate pH 4.6, 20% w/v PEG 4000 for protein **2**; 0.1 M sodium acetate pH 4.6, 16% w/v PEG 3350 for protein **3**; and 0.1 M sodium acetate pH 4.6, 8% w/v PEG 4000 for protein **5**. A single crystal of each protein was flash frozen in liquid nitrogen after cryoprotection in well buffer supplemented with 30% v/v glycerol. Diffraction data were collected using CuKa radiation on a Rigaku/MSC diffractometer operated at 100 K. Raw diffraction data were indexed, integrated, and scaled with d*TREK. Structures of **2**, **3**, and **5** were solved by molecular replacement using a published structure of wild-type GB1 (PDB: 2QMT)⁷ to generate the search model. Structure solution and refinement were carried out using the CCP4⁸ and Phenix⁹ software suites. In the case of protein **2** (GB1-helix), the diffraction pattern indexed as tetragonal, but subsequent analysis and structure determination revealed the actual lattice to be P2₁ with near perfect pseudomerohedral twinning (twin operator: L, -K, H). Refinement for **2** was performed using the twin refinement algorithm implemented in Phenix. Coordinates and structure factors for **2**, **3**, and **5** have been deposited in the Protein Data Bank under accession codes 4KGR, 4KGS, and 4KGT.

References

- 1. Lengyel, G. A.; Frank, R. C.; Horne, W. S., J. Am. Chem. Soc. 2011, 133, 4246-4249.
- 2. Lengyel, G. A.; Horne, W. S., J. Am. Chem. Soc. 2012, 134, 15906-15913.
- 3. Oliyai, R.; Stella, V. J., Pharm. Res. 1992, 9, 617-22.
- 4. Mutter, M.; Chandravarkar, A.; Boyat, C.; Lopez, J.; Dos Santos, S.; Mandal, B.; Mimna, R.;
- Murat, K.; Patiny, L.; Saucède, L.; Tuchscherer, G., Angew. Chem. Int. Ed. 2004, 43, 4172-4178.
- 5. Becktel, W. J.; Schellman, J. A., Biopolymers 1987, 26, 1859-1877.
- 6. Alexander, P.; Fahnestock, S.; Lee, T.; Orban, J.; Bryan, P., *Biochemistry* **1992**, *31*, 3597-3603.
- 7. Frericks Schmidt, H. L.; Sperling, L. J.; Gao, Y. G.; Wylie, B. J.; Boettcher, J. M.; Wilson, S.
- R.; Rienstra, C. M., J. Phys. Chem. B 2007, 111, 14362-14369.
- 8. Acta Crystallogr., Sect D: Biol. Crystallogr. 1994, 50, 760-3.
- 9. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.;
- Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., *Acta Crystallogr., Sect D: Biol. Crystallogr.* **2010**, *66*, 213-221.