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Supplementary Figure 1. Global geographic areas used for the phylogeographic analysis. These areas are based on the United Nation
geographical sub-regions (note: some of these regions were not represented in the MTBC strain collection analyzed here). The regional code for
the different areas reads as follows: CAM - Central America; CAS - Central Asia; EAF - East Africa; EAS - East Asia; EUR - Europe; EEUR — East

Europe; MAF — Middle Africa; NAF — North Africa; NAM - North America; SAF - South Africa; SAM - South America; SAS - South Asia; SEA - South
East Asia; WAF - West Africa; WAS - West Asia.
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Supplementary Figure 2. Results of the phylogeographic analysis using RASP. We used (A) a parsimony-based method called S-DIVA traditionally
applied to species biogeography in the context of variance events and a Bayesian-based method (B). Pie-charts reflect probability of the

respective area. Areas are colour-coded as in the legends allowing for single or combined distributions. The probabilities for the root of the tree
(the MRCA of the MTBC) are indicated in the corresponding node.
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Supplementary Figure 3. Results of the phylogeographical analysis using the BSSVS procedure implemented in BEAST. Branches are colour-coded
by the most likely geographic location of the internal nodes. The same information is given using the regional codes from Supplementary Fig. 2.
The Bayesian posterior probability of the root (MRCA of the MTBC) is indicated.
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Supplementary Figure 4. MTBC phylogeny (Neighbour-joining, 1000 bootstraps, number of differences) used to test the phylogenetic association
between MTBC and human mitochondrial groups. The country of origin of the patient is shown which was used to look for the most common
mtDNA haplogroups (see Online methods for an explanation of the association tests used and references from 28-56 in the Supplementary Note
for a list of references used). The branches in the tree are colour coded according to the matched macro-haplogroup (L, M, and N) of the
corresponding MTBC strains.
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Supplementary Figure 5. BEAST result of the MTBC-70 model in which we assume a priori that the ancestor of MTBC existed sometime 70 kya.
The numbers on the axis indicate thousand years. Numbers on the nodes are the point time-estimate corresponding to the median height of the

node.
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Supplementary Figure 6. BEAST result of the MTBC-185 model in which we assume a priori that the ancestor of MTBC existed sometime 185
kya. The numbers on the axis indicate thousand years. Numbers on the nodes are the point time-estimate corresponding to the median height of

the node.
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Supplementary Figure 7. BEAST result of the MTBC-10 model in which we assume a priori that the ancestor of MTBC existed sometime 10 kya.
The numbers on the axis indicate thousand years. Numbers on the nodes are the point time-estimate corresponding to the median height of the
node.
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Supplementary Figure 8. (A) Growth rate calculated as described in Supplementary Methods for the MTBC-70 (red) and the corresponding
human mtDNA dataset (blue). (B) Dot-plot correlation between the estimated population size of the MTBC and human mtDNA skyline curves
using the median values.
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Supplementary Figure 9. (A) Growth rate calculated as described in Supplementary Methods for the MTBC Lineage 2 dataset (red) and the
corresponding East Asian human mtDNA dataset (blue). (B) Dot-plot correlation between the estimated population size of the MTBC and human
mtDNA skyline curves using the median values.
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Supplementary Figure 10. Bioinformatic analysis pipeline used to call MTBC SNPs and extract alignments after MAQ and BWA analyses.



Supplementary Table 7. Number of MTBC positions with SNPs called both by MAQ and BWA sorted by various criteria. Number of
alleles (when two or more alleles are present in the same position), number of positions in which at least one strains has no
coverage indicating probable deletion (gap) and number of positions in which there is complete allele information for all strains (no
gaps or heterozygous calls). Indicated in red are the variable nucleotide positions used for the downstream analyses.

MAQ vs. BWA
common SNP calls

2 alleles

3-4 alleles

Core 30,303 189
Gaps 3,864 26
Heterozygous 272 1

Gaps and heterozygous

105

7




Supplementary Note

Ethical statement about the MTBC strains used in this study

The majority of MTBC strains used in this study came from previously established
reference collections' . Strains from Nepal and China were collected through ongoing
molecular epidemiological studies. Written informed consent was obtained from all
patients. The studies were ethically approved by the Nepal Health Research Council and
the Ethics Committee of the Canton of Basel (EKBB), Switzerland (Nepalese study),
and by the Ethics Committee of the Shanghai Municipal Centre for Disease Control,

Shanghai, China (Chinese study).
SNP calling after MAQ and BWA mapping

In the case of MAQ, we called the individual SNPs using default settings (minimum
read depth 3, minimum consensus quality 20). In the case of BWA, we called SNPs by
parsing the mapping output with SAMTOOLS* and keeping those SNPs that were more
likely to be true SNPs (minimum mapping quality 20, maximum read depth 500). In
each case, we generated a non-redundant list of variable positions called with high
confidence in at least one strain and recovered the base call in all other strains as
depicted in Supplementary Figure 10. Once we had the two lists of putative high
confidence calls, we crossed the two lists and kept those calls that fulfilled the following
criteria: 1) they were common to both lists, 2) there were no more than two alleles at
that particular position, 3) they did not involve heterozygous calls, as these are more
likely to represent mapping errors (only positions with deletions were kept), and 4) the
position was not in a repetitive or mobile element. We used ANNOVAR® and custom
annotation tools to describe each polymorphic position. For a workflow showing the

calling approach used to get the final alignments see Supplementary Figure 10 and



Supplementary Table 7. The SNPs identified by both mapping approaches are listed in

Supplementary Table 2.
Phylogenetic analyses

Both Maximum-likelihood and Neighbour-joining methods were used to infer the
phylogenetic relationships between the taxa. Maximum-likelihood was implemented in
RAXML® using GTR as a model of nucleotide substitution and 4 gamma rate categories
correction. The Neighbour-joining method was based on Tamura-Nei distances as
implemented in MEGA 5.0". In both cases, clade support was determined using 1000
bootstrap pseudo-replicates. In both cases, the resulting phylogenies were largely
congruent. In the case of the mitochondrial dataset, the limited phylogenetic information
of the mitochondrial genomes and the presence of some known homoplasies® led to
some incongruence between the two reconstruction methods. However, coalescent
analyses are not expected to be affected by this as they integrate over all the possible
phylogenies. Given the large number of taxa analyzed, we used FastTree’ to derive the
Maximum-likelihood phylogeny of the human mtDNA dataset. Unlike RAXML,
FastTree does not implement a full Maximum-likelihood approach, but it has been
shown to be more accurate and faster than other Maximum-likelihood approaches when

applied to large datasets.

To identify homoplastic sites, we mapped the SNPs onto the MTBC phylogeny used to
reconstruct the phylogeny and applied the ancestral reconstruction option using
parsimony available in MESQUITE'’. The positions that did not fit the phylogeny were
recorded as homoplastic. To delineate different groupings among MTBC strains, we

performed a principal component analysis using STATA s.e.m. version 10'". The three



first components were introduced in SigmaPlot 12.0'* to generate a 3D scatter plot

graph.
Phylogeographic analyses

The Bayesian stochastic search variable selection (BSSVS) implemented in BEAST
was run after defining character states for each taxon, which in this case referred to
geographic locations. The variable stochastic search procedure is also suitable for the
case in which no outgroup is used as in our case'. M. canettii is most closely related to
MTBC but it is a different species influenced by different evolutionary and ecological
processes than MTBC'*'">. Moreover, it is almost exclusively associated with East
Africa, which would bias the result of the phylogeographic analyses. The configuration

used for the BEAST runs are explained below.

RASP implements two different methods. A parsimony-based method (S-DIVA)
minimizes the cost of adding new ranges in the ancestral nodes. In this analysis a
maximum of two ancestral areas per node were allowed for range reconstruction. The
second method is a full hierarchical Bayesian approach assuming no prior information
about ancestral distributions; for this analysis ten different chains during 500 thousand

generations were run.
BEAST skyline analyses

A Bayesian skyline model was used to look for changes in the effective population size
per generation in each scenario estimated in 10 different intervals. A skyline plot
measures the changes in population size using the number of coalescent events
estimates at each interval. In all cases, we ran 6-12 chains of S0E6 generations sampled
every 10E3 to assure independent convergence of the chains. Convergence was assessed

using Tracer, ensuring all relevant parameters reached an effective sample size of >100.



The final skyline for the MTBC-70 scenario was generated by specifying two prior time
points with the aim of reducing uncertainty around the dating and focusing only on the
time of maximum expansion. We defined the height of the complex as 70 kya allowing
+/- Skya in a normal distribution, and we used 65 +/- 2 kya at the point of split of
MTBC Lineage 1, after corroborating the concordance of both scenarios. To obtain the
skyline plot for Lineage 2 strains, we used the dating of the most recent common
ancestor of the Lineage 2 as derived from the MTBC-70 analysis (32 +/- 5 kya) as the
prior input and ran BEAST using the same parameters as described above. To look at

the correlation between the isolates sampling year and divergence we used Path-O-Gen.

To compare the MTBC and human mtDNA skyline plots and asses their correlation, we
interpolated the values of the curve every one thousand years for MTBC-70 and
mtDNA skyline curves from the median values and calculated the Spearman correlation
coefficient using STATA s.e.m. version 10''. We also calculated for each skyline plot
the growth rate every four thousand years for the global MTBC and mtDNA Neolithic
datasets, and every three thousand years for the East Asia analyses. The growth rate

. . 16
formula used was as in Gignoux et al. :

ln(M/No)
fo-

ro-»n=

where r refers to the growth rate between time 0 and time ¢, N, refers to the median
population size from the skyline plot at time ¢, N, refers to the median population size

from the skyline plot at time 0, and 7. to the time span between both events.



Correlation between time since most recent common ancestor and predicted

substitution rate in bacteria

For Figure 4 we searched the bibliography for bacterial genome datasets sequenced with
a similar technology, analyzed with BEAST and that are predicted to have a most recent
common ancestor at different age depth®'*’. The mean time span since most recent
common ancestor as reported in these different publications was used. Note that for
some of them the age of the group of interest reported in the main text of the
corresponding publication and the time span used in Figure 4 doesn't correlate, this is
because the substitution rate reported many times include an outgroup not just the group

of interest.
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