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S| Methods

Participants. The Vietnam Era Twin Study of Aging (VETSA)
project has been described previously (1). The VETSA sample
was drawn from the Vietnam Era Twin (VET) Registry (2),
a sample of male-male twin pairs born between 1939 and 1957
who had both served in the United States military between 1965
and 1975. The study sample is not a VA or patient group; the
majority of individuals were not exposed to combat. For this
analysis, 474 individual VETSA participants were included. Of
those, 406 were paired (i.e., 203 twin pairs): 110 monozygotic
(MZ) and 93 dizygotic (DZ) pairs. Zygosity for 92% of the
sample was determined by analysis of 25 satellite markers that
were obtained from blood samples. For the remainder of the
sample, zygosity was determined through a combination of ques-
tionnaire and blood-group methods (3).

Mean age of the MRI participants was 55.8 (2.6) years (range,
51-59), mean years of education was 13.9 (SD = 2.1). There were
88.3% non-Hispanic white, 5.3% African-American, 3.4% His-
panic, and 3.0% “other” participants. There were no significant
demographic differences between MZ and DZ twins (1,4). The
VETSA sample is representative of US men in their age range
based on sociodemographic and health characteristics determined
by US census and Center for Disease Control data (1,4).

All participants gave informed consent to participate in the
research, and the study was approved by the Institutional Review
Boards of the University of California, San Diego, Boston Uni-
versity, and the Massachusetts General Hospital.

Image Acquisition. Sagittal T1-weighted MPRAGE images were
acquired on Siemens 1.5 Tesla scanners (241 at University of
California, San Diego; 233 at Massachusetts General Hospital).
Scan parameters were: Inversion time (TI) = 1,000 ms, echo time
(TE) = 3.31 ms, repetition time (TR) = 2,730 ms, flip angle = 7
degrees, slice thickness = 1.33 mm, voxel size 1.3 X 1.0 x 1.3 mm.
Data were reviewed for quality, registered, and averaged to im-
prove signal-to-noise. Of the 493 scans available at the time of
these analyses, quality control measures excluded 0.6% (3 cases)
due to scanner artifact and 3% (16 cases) due to inadequate
image-processing results (e.g., poor contrast caused removal of
nonbrain to fail). The resultant 474 available cases included 203
twin pairs (406 individuals) that were used in the present study.

Image Processing. The cortical surface was reconstructed to
measure surface area and cortical thickness at each surface location
(a total of more than 160,000 locations for each hemisphere) using
a semiautomated approach provided by the FreeSurfer software
(5-7). Variations in image intensity due to radio frequency (RF)
coil sensitivity inhomogeneities were corrected, a normalized in-
tensity image was created, and the skull (nonbrain) was removed
from this image. A preliminary segmentation was then partitioned
using a connected component algorithm, with connectivity not
allowed across the established cutting planes. Interior holes in the
components representing white matter were filled, resulting in
a single filled volume for each cortical hemisphere. The re-
sulting surface was covered with a polygonal tessellation and
smoothed to reduce metric distortions. A refinement procedure
was then applied to obtain a representation of the gray/white
boundary, and the resulting surface was subsequently deformed
outwards to obtain an explicit representation of the pial surface.
Once generated, the cortical surface model was manually re-
viewed and edited for anatomical accuracy. Minimal manual
editing was performed in accordance with standard, objective
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editing rules. Each subject’s cortical surface was mapped to
spherical atlas space, using a diffeomorphic registration pro-
cedure based on folding patterns (6). The surface alignment
method used is not anchored to specific anatomical landmarks (e.
g., fundus of the central sulcus). Rather, it uses the entire pattern
of surface curvature at every vertex across the cortex to register
individual subjects to atlas space (8). Then, for each subject, the
standardized atlas surface tessellation was transformed into sub-
ject space based on the inverse of the subject to atlas mapping.
Vertex-wise estimates of areal expansion or compression from
atlas space to subject space, for each subject, were then obtained
using standard FreeSurfer functions (9). The thickness of the gray
matter can be computed at any point in the cortex as the shortest
distance between the gray/white and pial surfaces. Finally, the
vertex-wise maps were then smoothed using iterative nearest-
neighbor averaging.

The optimal size of smoothing was determined empirically by
reanalyzing the data with various levels of smoothing to investigate
the effect of smoothing on the heritability estimates. We used three
levels of smoothing from small to large corresponding to 176, 705,
and 2,819 iterations, respectively, of nearest-neighbor smoothing on
the standardized atlas tessellation. The 2,819-iteration was found to
be of the smallest order that can yield sufficiently high heritability
values to enable accurate estimation of genetic correlations, which
are critical for the stability of the subsequent cluster analysis.

Twin Analysis. Based on our previous findings of minimal common
environmental influences on surface area (10, 11) and cortical
thickness (12, 13), we used a twin model that estimated con-
tributions of additive genetic effects (A) and individual-specific
environmental effects (E) to the variance in cortical thickness at
each vertex. The variance—covariance patterns were examined by
fitting models with Mx, a maximume-likelihood-based structural
equation modeling program (14). We sought to map shared
genetic effects on cortical-thickness measure between each pair
of cortical locations. To accomplish this aim, univariate AE
models are easily extended to the bivariate case (15). In addition
to genetic and environmental sources of variance, genetic and
environmental sources of covariance can also be examined in the
bivariate model. In the present study, we used bivariate models
to compute genetic correlations of cortical-thickness measures
between each pair of vertices on the cortex. A phenotypic cor-
relation measures shared variance; a genetic correlation meas-
ures shared genetic variance. More specifically, a phenotypic
correlation is defined as the total covariance (genetic plus en-
vironmental) of two variables divided by the square root of the
product of the total variance of variable 1 and the total variance
of variable 2. After decomposing the sources of variance in the
bivariate model, we computed genetic correlations. These are
defined as the genetic covariance divided by the square root of
the product of the genetic variance of variable 1 and the genetic
variance of variable 2.

Before the model fitting, the cortical thickness data were ad-
justed for age and site effects and then normalized to adjust for
global effects (i.e., the average cortical thickness was subtracted
from the vertex-wise data at each cortical location). The thickness
measure at each location was then standardized to z-scores across
all subjects.

Fuzzy Cluster Analysis. Clustering methods partition the dataset

into clusters based on the chosen proximity relations. We calcu-
lated pair-wise genetic correlations of thickness measures between
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every two vertices on the entire cortex to generate interregional
genetic correlation matrices for the left and right hemispheres
simultaneously. To reduce computation time and make the cluster
analysis feasible, we subsampled the standardized cortical-surface
tessellation from the original 163,842-2,562 vertices per hemi-
sphere. We then transformed the genetic correlation matrix into
the distance matrix by subtracting each genetic correlation in the
genetic correlation matrix from 1. The value of this distance
measure ranges between 0 and 2, indicating that two objects are
closely related or very different, respectively. In fuzzy clustering,
objects can belong to more than one cluster and with different
degrees of membership to the different clusters: between 0 (ab-
solutely doesn’t belong) and 1 (absolutely belongs). Thus, the
memberships of objects at the overlapping boundaries can ex-
press the ambiguity of the cluster assignment.

The clustering procedure was performed by the cluster package
implemented in R (www.r-project.org/). Fuzzy clustering aims to
minimize the objective function
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where n is the number of observations, k is the number of clus-
ters (from 2 to 12, e.g.), r is the membership exponent, u is the
cluster membership, and d(i, j) is the dissimilarity between ob-
servations 7 and j (16). The cluster memberships u are nonneg-
ative and sum to one for a given data point. To investigate the
stability of the clustering in relation to initialization, we ran-
domly initialized the algorithm for 100 runs and picked the clus-
ter solution that maximized the likelihood function.

Silhouette Coefficient. Two cluster properties are usually evalu-
ated: cohesion, which determines how closely related the objects
in a cluster are, and separation, which determines how distinct or
well-separated a cluster is from other clusters. Quantitative in-
dices called silhouette coefficients combining both cohesion and
separation are commonly used to approximately determine the
correct number of clusters (16, 17). The silhouette coefficients
can be computed by

si = (bi —a;) /max(a;, bi),

where s; is the silhouette coefficient for the ith object; a; is the
average distance between the ith object and all other objects in
the same cluster; calculate the average distance between the ith
object to all of the objects in a given cluster and b; is the mini-
mum value with respect to all clusters. An overall measure of the
goodness of a cluster can be obtained by computing the average
silhouette coefficient of all objects. The natural number of clus-
ters in a dataset can be determined by looking at the number of
clusters at which there is a peak in the plot of the silhouette
coefficients when it is plotted against the number of clusters.

Spectral Cluster Analysis. To validate the stability of the fuzzy
clustering results, we used an entirely different clustering algo-
rithm called spectral clustering (18, 19). Instead of directly using
distance matrices like in fuzzy clustering, spectral clustering
methods transform distance matrices into affinity matrices (ref.
18); for reviews, see ref. 20). Each element of an affinity matrix
A, as defined by Ng et al., can be computed by

Aj=exp(—||s; —Sj||2/20'2).

The affinity matrix 4; measures the affinity between data points
s; and s;. In our study, the distance between s; and s; is equal to 1
minus genetic correlations. o is a scaling parameter. The affinity
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matrix is then normalized L = D~1/24D~'/2 where D is a diago-
nal matrix with D;; = 3, A4;. The dataset is now represented in
an eigenspace using the top eigenvectors of the D matrix (in this
study, we used the top 30 eigenvectors) (18). Projecting the data
into the eigenspace of the affinity matrix allows us to capture the
primary distribution of the original data points. We would like to
ensure that the selected eigenvectors are sufficiently relevant to
inform the variation of data distribution. We have validated the
relevance of the top 30 eigenvectors using an eigenvector selec-
tion algorithm to confirm that the selected eigenvectors were
informative to separate data into groups (19). Including only
top and relevant eigenvectors makes clustering results less sus-
ceptible to noise in the data (19).

Next, we used Gaussian mixture models to cluster the data into
different groups using the new data representation in the
eigenspace. Gaussian mixture models are widely used in statistics
for clustering data as a model-based clustering algorithm (17).
The number of clusters was approximated by evaluating the
number of Gaussian components using Bayesian Information
Criterion (BIC) (19). In the context of high-dimensional data,
fitting Gaussian mixture models is challenging due to the large
number parameters relative to the small sample size. Thus,
regularization was used to improve estimation of the covariance
matrices in Gaussian mixture models. Moreover, because the
penalty term in the BIC will dominate the likelihood function
because of the large number of parameters, we instead used a 10-
fold cross-validation procedure. We used nine-tenths of the data
as a training set to fit the Gaussian mixture models and then
evaluated the fit of the model via the penalized likelihood on the
one-tenth of the data held out as a testing set. This procedure
was repeated until all data points have served as part of the
testing set. The results indicated ~11-15 clusters existing in the
dataset depending on the methods of regularization.

Determining the Number of Clusters. Here, we sought to determine
the most appropriate number of clusters to explain patterns in the
genetic correlation data based on the silhouette coefficient, which
evaluates how appropriate a cluster solution is based on maxi-
mizing within-cluster cohesion and between-cluster separation
(17). The silhouette plot, based on the clustering in the un-
adjusted thickness data before controlling for global effects,
demonstrated a plateau starting around the 11-12 cluster solu-
tion (Fig. S3). The adjustment for global cortical thickness ef-
fects allows us to examine region-specific genetic effects. For
data adjusted for average cortical thickness, the coefficient began
to reach a plateau around the 12-14 cluster solutions (Fig. S4).
However, it continued to increase beyond even the 20-cluster
solution. We suspect that the continuous increase in the sil-
houette coefficient after the 20-cluster solution may be due to
lower heritability estimates for each cortical location after ad-
justing for global effects. Some locations may have low herita-
bility estimates, and therefore less reliable genetic correlation
estimates.

To validate the number of clusters, we also used spectral
clustering, which uses a fundamentally different clustering al-
gorithm. Spectral clustering relies on the eigen-structure of the
similarity matrix rather than on the original similarity matrix to
partition points into clusters (18). An important advantage of the
spectral algorithm is its robustness to atypical cluster features
and noise in the data (18). Spectral clustering was performed for
a simultaneous cluster-number estimation and data clustering
based on Gaussian mixture models. Results yielded 11-15 clus-
ters, confirming that the true number of clusters is unlikely to be
more than 20. The genetic cluster maps derived from these ap-
proaches revealed very similar features (Fig. S2), providing fur-
ther evidence of the converging results.
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Genetic Similarity Matrix and Dendrogram. To visualize the genetic
proximity between clusters, we plotted the pair-wise genetic
correlation matrix. The rows and columns of the matrix were
sorted by the cluster labels. Thus, all data points belonging to the
same clusters are grouped together, and the matrix has roughly
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Fig. S1. A grid placement of genetic correlation maps from 24 different seeds. We also performed seed-point analyses to map genetic correlations of cortical-
thickness measures between selected seed regions and all other cortical locations after adjusting for mean thickness averaged across the entire cortex. Genetic
correlation maps are a simple way to visualize the genetic patterning because the color codes directly reflect the strength of genetic correlations between the
seed regions and all other cortical points. For the selection of seed points, we used a grid of regularly spaced seeds distributed across the entire lateral aspect of
one cortical hemisphere. The location of each small genetic correlation map on the gray brain map represents the location of the seed for that correlation map.
Color scale indicates the strength of genetic correlations between the surface area at the seed region and at all other locations on the cortical surface; these

correlations range from positive to negative.
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Fig. S2. Thickness clustering derived from different clustering approaches. (Top) Fuzzy clustering in the adjusted data. (Middle) Fuzzy clustering in the un-
adjusted data. (Bottom) Spectral clustering in the adjusted data.
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Fig. S3. Silhouette Plot of the genetic clustering based on unadjusted data. The plot shows the silhouette coefficients against the number of clusters. When
the number of clusters reached 11-12, the silhouette coefficients started to reach a plateau.
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Fig. S4. Silhouette Plot of the genetic clustering based on adjusted data. The plot shows the silhouette coefficients against the number of clusters. When the
number of clusters reached 12-14, the silhouette coefficients started to reach a plateau.
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Fig. S5. The order of emergence of the 12 clusters. The two columns on the Left show the cluster maps sequentially from 2 to12 clusters for surface area. The
two columns on the Right show the cluster maps sequentially from 2 to12 clusters for cortical thickness.
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