## Supplementary Information for:

# CACTA-like transposable element in *ZmCCT* attenuated photoperiod sensitivity and accelerated the post-domestication spread of maize

Qin Yang<sup>a,1</sup>, Zhi Li<sup>a,1</sup>, Wenqiang Li<sup>b,1</sup>, Lixia Ku<sup>c,1</sup>, Chao Wang<sup>a</sup>, Jianrong Ye<sup>a</sup>, Kun Li<sup>a</sup>, Ning Yang<sup>b</sup>, Yipu Li<sup>a</sup>, Tao Zhong<sup>a</sup>, Jiansheng Li<sup>a</sup>, Yanhui Chen<sup>c,2</sup>, Jianbing Yan<sup>b,2</sup>, Xiaohong Yang<sup>a,2</sup>, Mingliang Xu<sup>a,2</sup>

<sup>a</sup>National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.

<sup>b</sup>National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.

<sup>c</sup>College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.

<sup>1</sup>These authors contributed equally to this work.

<sup>2</sup>Correspondence should be addressed to: Y.C. (chy989@sohu.com), J.Y.

(yjianbing@gmail.com), X.Y. (yxiaohong@ cau.edu.cn), or M.X. (mxu@cau.edu.cn)

This file includes: SI Materials and Methods Figs. S1-S14 Tables S1-S12

#### **SI Materials and Methods**

**Fig. S1.** Manhattan and quantile-quantile plots from the GWAS concerning photoperiod sensitivity or flowering time under long-day conditions in maize.

**Fig. S2.** Manhattan plots of associations between SNPs on chromosome 10 near *ZmCCT* and photoperiod sensitivity or flowering time under long-day conditions in maize.

**Fig. S3.** Identification of a CACTA-like transposon in the *ZmCCT* regulatory region using an overlapping PCR strategy.

Fig. S4. ZmCCT gene structures based on maize inbred line B73 genomic sequence.

**Fig. S5.** Genetic effect of the TE-related PAV on photoperiod sensitivity in temperate and tropical maize germplasm grown in multiple environments.

**Fig. S6.** Genetic effect of the TE-related PAV on flowering time in temperate and tropical maize germplasms grown in multiple environments.

Fig. S7. Genetic effect of the TE-related PAV on DTA in  $F_2$  populations grown in multiple environments.

Fig. S8. Heat map indicating effects of the CACTA-like TE on 18 measured traits.

Fig. S9. Structure of *ZmCCT* and isolation of a full-length *ZmCCT* cDNA.

**Fig. S10.** Phylogenetic analysis of the CCT gene family in maize using the maximum likelihood method.

**Fig. S11.** DNA methylation within the *ZmCCT* promoter and transient expression of transgenic constructs.

Fig. S12. Model of the photoperiod pathway in maize.

**Fig. S13.** Relative expression ratio between HZS and its NIL of genes involved in the photoperiod pathway at different developmental stages under long-day conditions.

Fig. S14. Schematic diagram of NIL development.

Table S1 List of maize inbred lines and teosinte entries used in the current study.

**Table S2** Environments used to evaluate association and linkage populations.

**Table S3** Statistic summary of photoperiod responses and flowering times in 508 maize inbredlines.

 Table S4 Pearson coefficients among flowering time traits in 508 maize inbred lines.

**Table S5** Polymorphic sites significantly associated with photoperiod sensitivity and flowering time in a maize panel of 368 lines.

Table S6 Primers used in this study.

**Table S7** Associations between ZmCCT polymorphisms and four flowering time traits in 180 maizeinbred lines.

Table S8 All haplotypes composed of 13 polymorphic sites in 461 maize inbred lines.

**Table S9** Effect of *ZmCCT* promoter haplotypes (MAF $\ge$  0.01) on photoperiod sensitivity and flowering time in a maize panel of 508 lines.

 Table S10 Light-responsive elements identified in the ZmCCT promoter.

Table S11 All haplotypes composed of 8 polymorphic sites in 26 NAM founders.

Table S12 Traits analyzed in this study.

#### **SI Materials and Methods**

Genome-wide association mapping. A GWAS study was performed using the maize panel, CAM508, which includes 256 temperate and 252 tropical/subtropical maize diverse lines (29) (Table S1). The panel was genotyped using the MaizeSNP50 BeadChip, which contains 56,110 SNPs (S1, S2). A subset of 368 lines was genotyped by RNA-seq, resulting in 1.03 million high-quality SNPs (28). We amplified an 800-bp region in the promoter of ZmCCT, encoding a CCT domain-containing protein, for each line in the CAM508 panel using the primer pair, MR1 (SI Appendix, Table S6). This analysis yielded 52 SNPs and 9 InDels. A total of 557,955 polymorphic sites with MAF ≥0.05 and a missing rate <25% were selected for the GWAS using 368 maize lines. All lines from the CAM508 panel were grown in eight environments at seven locations, which included six long-day (>13 h) and two short-day (<13 h) growing-season environments (Table S2). Flowering time was investigated and measured as days to anthesis (DTA) and days to silking (DTS), which were converted into growing degree days (GDDs). Either anthesis photoperiod response (APR) or silking photoperiod response (SPR) was calculated as the difference between GDDs under long- and short-day conditions. The BLUP (best linear unbiased prediction) values for each trait were used for other data analysis. For APR and SPR, the BLUP values were calculated according to the methods by Hung et al. (18). A mixed linear model (S3), which accounted for population structure and relative kinship (S2), was performed using TASSEL software (S4) to test for associations between flowering-time variation and genotype. The Bonferroni-adjusted significance threshold ( $P < 1/557,955 = 1.8 \times 10^{-6}$ ) was used to identify significant associations.

**Candidate-gene association mapping.** *ZmCCT*-based association mapping was performed using a subset of the maize panel, including 107 temperate and 73 tropical maize lines (Table S1). The *ZmCCT* promoter (~1.8 kb) and coding regions (no introns) were amplified and sequenced using four primer pairs (MR1–MR4). The TE-related PAV was detected using three primer pairs (TED, TELB, and TERB) (*SI Appendix*, Table S6). These sequences were assembled using ContigExpress in Vector NTI Advance 10 (Invitrogen), aligned using MUSCLE (S5), and manually corrected using BioEdit (S6). Polymorphic sites (SNPs and InDels) (MA£0.05) were extracted and levels of LD between two sites were calculated in TASSEL 2.1.0 (S4). Associations between extracted with population structure and kinship (S2) in TASSEL 2.1.0 (S4).

**Linkage analysis.** Four F<sub>2</sub> populations, including Qi319 × Mo17, Qi319 × Zheng58, Tian77 × Mo17, and Tian77 × Zheng58, were grown at 4 locations: Hainan, Hubei, Beijing, and Jilin (*SI Appendix*, Table S2). Approximately 160–250 F<sub>2</sub> plants from each population were genotyped for the TE-related PAV and scored for 19 agronomic traits, including flowering time, plant height, ear height, and etc (*SI Appendix*, Table S12). The genetic effects of TE in these populations were evaluated via single-factor analysis using one-way ANOVA in Excel 2007 ( $\alpha$  = 0.01).

**Nucleotide diversity and tests for neutrality.** *ZmCCT* segments (Fig. 3A) were amplified from 32 teosinte entries (Table S1) using four primer pairs (*SI Appendix*, Table S6). PCR products were cloned into a vector using the pEASY-T5 Zero Cloning kit (Beijing TransGen Biotech Co. Ltd, China), and at least three clones were sequenced for each entry. Nucleotide diversity ( $\pi$ ) and Tajima's D-statistic were calculated using DNaSP version 5.0 (S7).

Minimum spanning tree. A sample of 481 maize inbred lines and 93 teosinte entries from all

seven subspecies (Table S1) was used to construct a minimum spanning tree for *ZmCCT*. Arlequin version 3.5 (S8) was used to define the haplotypes and calculate the minimum spanning tree among haplotypes. Arlequin's distance matrix output was used in Hapstar-0.6 (S9) to draw the minimum spanning tree.

**Functional complementary test.** The BAC clone which contained *ZmCCT* was screened from the late-flowering inbred line 1145 (Hap6) BAC library and was subjected to restriction endonuclease digestion using Sacl. The resulting 8.1-kb DNA fragment, which contained *ZmCCT* (a 5.4-kb promoter region, 2,547 bp of coding sequences, and a 500-bp 3'-UTR) was inserted into the binary vector pCAMBIA3301. This construct was introduced into the maize hybrid Hill (B73 × A188, Hap1) via *Agrobacterium tumefaciens*-mediated transformation. Transgenic T<sub>0</sub>, T<sub>1</sub>, and T<sub>2</sub> plants were identified via PCR using two primers pairs, LBCCT and TED (*SI Appendix*, Table S6).

**RACE.** Total RNA was extracted from young leaf tissues of 1145 plants using a plant RNAprep pure kit (Tiangen Biotech Co. Ltd., China). First-strand cDNA (RACE-ready cDNA) was synthesized using the SMART RACE cDNA amplification kit (Clontech Lab, Palo Alto, CA). *ZmCCT* specific primers (*SI Appendix*, Table S6) were designed to amplify 5'- and 3'-RACE-ready cDNAs. Sequences from 5'- and 3'-RACE products were assembled to obtain full-length *ZmCCT* cDNA.

**Sub-cellular localization of** *ZmCCT***.** Full-length *ZmCCT* cDNA was amplified using the primer pair, NLCCT1 (*SI Appendix*, Table S6), and cloned downstream of the CaMV35S promoter in the pEZS-NL vector. This construct was introduced into onion epidermal cells via particle bombardment using the PDS-1000 system (Bio-Rad) at 1,100 psi helium pressure. Transformed cells were incubated in the dark for 18 h at 28 °C before imaging. The construct was transformed into maize protoplasts as described (S10). The GFP signal was detected using an LSM510 laser scanning confocal system (Zeiss).

**Phylogenetic analysis.** Protein sequences that contained a CCT-domain were obtained from maize (Maizesequence, http://www.maizesequence.org), rice (Ghd7) (ACA14488.1), sorghum (Sb06g000570) (XP\_002446018.1), and *Arabidopsis* (CO and TOC1) (NP\_197088.1 and NP\_200946.1). These proteins were used to construct a phylogenetic tree using the maximum likelihood method based on the JTT matrix-based model (S11) and MEGA 4.0 (S12).

**Expression profiling of** *ZmCCT***.** Seeds of NIL1 (TE-positive, Hap1) and NIL2 (TE-negative, Hap6) with the Y331 genetic background were planted under either short- (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions. Temperatures within the chambers were maintained at 26 °C during the light period and 22 °C during the dark period. At the V4 stage young leaves were harvested every 3 h for 48 h. Three plants were selected at random to serve as biological replicates. T<sub>2</sub> transgenic plants were planted in a greenhouse and maintained at 28 °C during the light period (16 h) and 18 °C during the dark period (8 h). Leaf tissues were collected from these plants at the V6 stage. For each sample total RNA was isolated using a plant RNAprep pure kit (Tiangen Biotech Co. Ltd.), and first-strand cDNA was synthesized using the M-MLV first strand kit (Invitrogen, Carlsbad, CA). *ZmCCT* transcripts were amplified via real-time PCR, using *GADPH* as the internal control (*SI Appendix*, Table S6). Three technical replicates were performed for each reaction under the following conditions: 5 min at 95 °C, followed by 40 cycles of 10 s at 95 °C, and 20 s at 60 °C. The relative quantification method (DDCT) (S13) was used to evaluate gene-expression levels.

For allele-specific expression analysis in transgenic plants the primer pair ASCCT2 (*SI Appendix*, Table S6) was used to amplify *ZmCCT* transcripts, resulting in a 241-bp product from the endogenous gene and a 235-bp product from the exogenous *ZmCCT* transgene. These amplicons could be distinguished through electrophoresis on a 6% non-denaturing polyacrylamide gel.

**Transient assays.** Three regions of the *ZmCCT* promoter, which contained 641, 2,304, or 4,204 bp, were amplified from the HZS line (Hap1) and cloned into pCAMBIA3301 by replacing the CaMV 35S promoter. Resulting plasmids were 641-bp HZS<sub>pro</sub>:Gus, 2.3-kp HZS<sub>pro</sub>:Gus, and 4.2-kb HZS<sub>pro</sub>:Gus. These three constructs, together with pCAMBIA3301, were transformed into the *Agrobacterium* strain, EHA105. *Nicotiana benthamiana* leaves were infiltrated with the *Agrobacterium* suspension (S14) and placed in a long-day chamber for 3 d. Infiltrated leaves were then subjected to GUS histochemical staining (S15) and examined using a light stereomicroscope.

**Bisulfite sequencing.** Genomic DNA was isolated from fresh young leaves collected from 1145 (Hap6) and HZS (Hap1) maize lines that were planted under long-day conditions. Unmethylated cytosines were converted to uracils via sodium bisulfite using the EZ DNA Methylation kit (Zymo Research, Orange, CA). After bisulfite conversion, the genomic-DNA samples were subjected to PCR and resulting products were cloned into the pEASY-T1 vector (Transgen Biotech Co. Ltd., China). M12F/R primers were used to sequence 10–15 clones. The CpG island was predicted using MethPrimer (S16), and *cis*-regulatory elements within the promoter were predicted as described (S17).

Construction of an expression network for flowering time. The inbred line HZS (Hap1) and its NIL (Hap6) were used to analyze the ZmCCT-related maize flowering pathway. The HZS was crossed to the donor parent, a late-flowering recombination inbred line in a RIL population derived from HZS and CML288 (Hap6), and the  $F_1$  hybrid was backcrossed 7 times to HZS (Fig. S14). One BC<sub>7</sub> $F_1$  plant was self-pollinated to develop the NIL (Hap6), in which the donor size was estimated to be 130kb. Seeds from HZS (Hap1) and its NIL (Hap6) were planted in growing chambers under long-day conditions (16 h light/8 h dark). Young leaves were harvested at stages V3-V7. Total RNA extraction, library construction (<800-bp insert), and 95-bp paired-end Illumina sequencing were conducted at BGI (Shenzhen). For each sample an average of 27,618,470 raw reads were generated, leading to 2.3 Gb of high-quality raw sequencing data. A total of 29,621 genes were identified, which covered ~72% of all predicted genes in maize. Genes that were differentially expressed  $\geq$ 1.67-fold between HZS and its NIL at the V3 stage were used for subsequent analyses. These genes were functionally grouped according to GO terms using agriGO (S18) and Interpro database (http://www.ebi.ac.uk /interpro). We then used this data to generate a revise model of the regulatory network that controls flowering time. Previous models from Arabidopsis (41) and maize (40) were used as starting points. Real-time PCR was performed to verify RNA-seq data concerning the most critical genes.

#### **Supplementary References**

 Ganal MW, et al. (2011) A large maize (*Zea mays* L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. *PLoS ONE* 6(12):e28334.

- S2. Li Q, et al. (2012) Genome-wide association studies identified three independent polymorphisms associated with  $\alpha$ -tocopherol content in maize kernels. PLoS ONE 7(5): e36807.
- Yu J, et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208.
- Bradbury PJ, et al. (2007) TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics* 23(19):2633-2635.
- S5. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32:1792-1797.
- S6. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor a analysis program for Windows 95/98/NT. *Nucleic Acids Symp* 41:95-98.
- Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452.
- Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567.
- S9. Teacher AG, Griffiths DJ (2011) HapStar: Automated haplotype network layout and visualization. Mol Ecol Resour 11(1):151–153.
- S10. Sheen J (2002) A transient expression assay using Arabidopsis mesophyll protoplasts.
- S11. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. *Comput Appl Biosci* 8(3):275-282.
- S12. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 24(8):1596-1599.
- S13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the  $2^{-\triangle C}$  Method. *Methods* 25(4):402-408.
- S14. Sparkes IA, et al. (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. *Nat Protoc* 1:2019-2025.
- S15. Adrian J, et al. (2010) *Cis*-regulatory elements and chromatin state coordinately control temporal and spatial expression of *FLOWERING LOCUS T* in *Arabidopsis*. *Plant Cell* 22(5):1425-1440.
- S16. Li L, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. *Bioinformatics* 18(11):1427–1431.
- S17. Higo K, et al. (1999) Plant *cis*-acting regulatory DNA elements (PLACE) database: 1999. *Nucleic Acids Res* 27(1):297-300.
- S18. Du Z, Zhou X, Ling Y, Zhang Z & Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. *Nucleic Acids Res* 38(suppl 2):W64-W70.



**Fig. S1.** Manhattan and quantile-quantile plots from the GWAS concerning photoperiod sensitivity (a–d) or flowering time (e–h) under long-day conditions in maize. A panel of 368 lines was analyzed. Dashed horizontal lines indicate the Bonferroni-adjusted significance threshold (1.8  $\times 10^{-6}$ ). Significant SNPs in *ZmCCT* are indicated by red dots. APR, anthesis photoperiod response; SPR, silking photoperiod response; DTA, days to anthesis; DTS, days to silking.



**Fig. S2.** Manhattan plots of associations between SNPs on chromosome 10 near *ZmCCT* and photoperiod sensitivity (a, b) or flowering time (c, d) under long-day conditions in maize. A panel of 368 lines was analyzed. Dashed horizontal lines indicate the Bonferroni-adjusted significance threshold  $(1.8 \times 10^{-6})$ . Significant SNPs within the promoter of *ZmCCT* are indicated by red dots. APR, anthesis photoperiod response; SPR, silking photoperiod response; DTA, days to anthesis; DTS, days to silking.



**Fig. S3.** Identification of a CACTA-like transposon in the *ZmCCT* regulatory region using an overlapping PCR strategy. (a) PCR amplification of the *ZmCCT* regulatory region from photoperiod sensitive (1145 and Qi319) and insensitive (B73 and Mo17) lines of maize. Five pairs of overlapping primers were used (5UCCT1, 5UCCT2, 5UCCT3, 5UCCT4, and TED). Lanes 1, 5, 9, 13, and 17 represent line 1145. Lanes 2, 6, 10, 14, and 18 represent line Qi319. Lanes 3, 7, 11, 15, and 19 represent line B73. Lanes 4, 8, 12, 16, and 20 represent line Mo17. (b) Schematized alignment of *ZmCCT* loci from 1145 and B73. A CACTA-like transposon was detected 2,543 bp upstream of the *ZmCCT* ORF in B73. Primers used to analyze the *ZmCCT* regulatory region are represent introns, and open boxes represent UTRs. (c) Structure of the CACTA-like transposon. The CACTA ends (blue text) and the GCT target size duplication (red text) are shown. The 13-bp terminal inverted repeat (TIR) sequences are also shown. Blue and green arrows indicate forward and reverse duplications of sub-terminal repeats (STRs), respectively. The STR sequence is 5'-TTTCCGACGG-3'.

#### Fig. S4. ZmCCT gene structures based on maize inbred line B73 genomic sequence.

#### Resequence start

661AGCATATTATCACTGGCACCACTTATCCTCGCTCGATCTCTCAGAAACAATAATAACATA721GAGAGTTATATAGTTCGAACATTAGTATCG---TTTTTTATTTGCAATAGATTCTAATG781TAACTCT-----TTAGTACTGGTTGTAAC-AAAAAAAAAACCAGTACTACATACTAAGTTTT841CAACAACAACTGATACTAAAATTATTTATTAGTTTTCTACAAAACAATATGATATTAACAA901GAGAGTACATTAATAATTATGTGCATATACAAAAAAAAAACAGTTCTTTCCAATGGATATGT961GCACATACAAAAATACAAGTACTTTCCAATAGATATGAGCAGATACAAAACATACAAAC--1021--ATCCAA----ATATACATATAGCTTCTTATTGAATATATAAAATTTAGGAGAGTACA1081TATTATATA-TTTTTA--GTACAAGGAAAGTGTGAAAACACGTCT-GATTCC---C----1141-------ACTGCCAACCCTAC-TTCCTCTTGTGCGGAG-G--TTAGGTCAAGGGATTC1261CAAACCAACTACGGGTTTAATGTGAGGGACGAAGATGCTCTTACAACCAACTAGCCCTTG1321AAGTAGGAAATAGAATGTATTTTCTTATTTCCTGCCATAGGACTAGTTCATTTTCAAAAA1441CAG--AAAAAATAGAGTTCAAAACAAATGGTGTAATAGTTATATACAAAA1501AAATAAAAAACATGGATGAATATCATTTTGCGAATGCGAAAAAAATACCCGGGCACCGTG

1561ACATTTGTGTTGTATTGATAATTAACACACTATGTGACATTTACTCAAAACTTTCATTGG1621TACTCAACACGTCCGGTGCTCACGAATGAGAAAGGCAGGTTGCGCTTATAGGAGACACCC1681CTA-GCCAATAACTTGTACCAAATCCTTCACTTTTAGTGTTGGTTATTTAAAAGAATCGG1741TGCTAAACTAATTTTGGCGGGAATT-----TCAATTGCTCTGGCAGGATTGGAAAATATC1801TTTCTATATCGGTTCTTTATAAAAAAAC-------------------------1861------GGTTCTTATAAAAAAAAC-----------CAACCAGTACTAAAGAACTTA1921AAATTTAGTATCGATTCTATAAAAGAACCGATACTAAAGATATTGGAGATGTTCTCTCTG1981AA------------TTAGTGCAGATTAAAGTCAAGCCTAATTAGTGCTGGTTCTTAGGTT2041GGAAGC---------TTAGTGCAGATTAAAGTCAAGCCTAATTAGTGCTGGTTCTTAGGTT2101GAACTAGCAGTGCTAGATAAC--TTAATATTAAGGACTAC------TAAGTGCTGGTAAAGCAACCC2161ATACTGATATCATATCCTCTGCACGGAC-----TATATTTAAAACGGTGCTAAAGCTAGT2221ACTAATATTGGAACAAATAAAATTGGACGAAACCCCATTCTCGGTAGGGAATAATGAT2281TTGTTTTCTTCTTGCACTTTAATTGCTATATACCCAGAGATGGAGTCTCGTCCATGCA2341AATACATGTGTGTAAGATAGAACATTGCCTATATACCCAGAGATGGAGTCTCGTCCATGCA

### 5'-UTR

2401TATCTATTCG GCAGCGGGGCA TTGGCTACCA GATTCTGCGA TATGGAACAT CTGCTTTTCT2461TTCTGCTGCT TCGTCTCTGG CCTTTGCTTT TCCTTCACTA CGACTTAAAT AAAAGTAACT2521AGCCCTAGCA GCTAGCTATC AAGCTTTATT TATCTGCTCC TTCCTCCATC TCCCTGCTGG2581CCTGCCTGAT CAGTATATAT AACTCTCAAT TCCATCAACA AATCTCCCTC CCAAGCTAGT2641CGATCCAT-- -CTTGTG--C ACAC--ACA GCGGATATAC CTCTCTATCG ATCAACAGCGTranslation Start2701CGGCTCGT CGGGGCCAGC AGCATGCGGT GTGTGCGGCG CGGCCGCCTG CTGCCCGCAC

## <mark>lst exon</mark>

2761 CTCTTGCACA CCGGTGACGG CAACGACGAC GACCTC---A TCAGCCGGGC CTTCTTCTCC
2821 GTCTTCCCTG TCGTCGGTCA TCACCGTCGT CATGAGTCCA CCAGCAGCCC CGCCATGCAG
2881 CAGCCATCGG GGTGCCTGCA CGAGTTCCAG TTCTTTGGCC ATCAGGACG- --ACCACCAC
2941 CACCAAGAAA CCATCGCCTG GCTCTTGGAC CACCCACCGC CACCTGCGCC CGAGCTTGGC
3001 GGCGACGACG GCCCGTCCCC AGCTGGTGAT GAGAACGACG ACCAGCCTGC GTTTCACCCG

3061 TTTGGGACAC CACAGTACCA CCACCCCGGA AAA----G GGAACGGGAA CGGGCTCACC 3121 TTTGAGCTGG ACGCCACGCT GGGCCTCGGC ACCGCGCGGC AAACCACTGA GACAGCAGAA 3181 GCAAGCGCCA CCATCGTAAG TATTGCTCCC GAATTATCTT AAGTAAGTTC AGATAATTCA 3241 CATGCATGGT TTCTAATTGG AATTTGGTCC CAAGCTGGAC -ACCCTTTTT TTATCTTCCG 3301 TT----TTCT CAACTCTCTT ATCGATCACC TGCATAAAGG ACCTTTGTAT CAAGTACCAA 4621 NNNNNNNN NNNNNNNN NNNNNNNN TACATATGAC CAAAGTACTA ATTAATTAGT 4681 TG-CTGCAGT TATTAGCTGT CCAAAATTTG CTTTGATCAT CATGCAATAA TATACACATG 4741 CAGAAACTAA AATG-AATAA CATATATAAA TCCATGCATG CACATGCA-G CATAC-----

## <mark>2st exon</mark>





**Fig. S5.** Genetic effect of the TE-related PAV on photoperiod sensitivity in temperate and tropical maize germplasms grown in multiple environments. Maize adaptation, temperate and tropical, was categorized mainly by the population structure estimated by 926 SNPs (Yang et al, 2011, Mol Breed, 28:511-526) and 36,618 SNPs (Li et al, 2012, PLoS ONE, 7: e36807), which consisted TST (Tropical or Subtropical), SS (Stiff Stalk) and NSS (NonStiff Stalk). When the membership probability of TST group was the highest for a maize inbred line, we defined the line as a tropical line, otherwise as a temperate line. Furthermore, the adaptation categorizations of some confused inbred lines were also corrected by the pedigree information and flowering time in different environments. Environments and corresponding latitudes are indicated to the left. BJ, Beijing; HN, Henan; HB, Hubei; CQ, Chongqing; YN, Yunnan; GX, Guangxi. Temp, temperate maize lines; Trop, tropical or subtropical maize lines; -/-, TE-negative genotypes; +/+, TE-positive genotypes; APR, anthesis photoperiod response; SPR, silking photoperiod response.



**Fig. S6.** Genetic effect of the TE-related PAV on flowering time in temperate and tropical maize germplasms grown in multiple environments. Environments and corresponding latitudes are indicated to the left. BJ, Beijing; HN, Henan; HB, Hubei; CQ, Chongqing; YN, Yunnan; GX, Guangxi; DHN, Hainan; Temp, temperate maize lines; Trop, tropical or subtropical maize lines; -/-, TE-negative genotypes; +/+, TE-positive genotypes; DTA, days to anthesis; DTS, days to silking.



**Fig. S7.** Genetic effect of the TE-related PAV on DTA in  $F_2$  populations grown in multiple environments. Environments and corresponding latitudes are indicated to the left. Colored bars represent homozygous TE-negative genotypes (blue), heterozygous genotypes (red), and homozygous TE-positive genotypes (green). JL, Jilin; BJ, Beijing; HB, Hubei; DHN, Hainan; DTA, days to anthesis.



**Fig. S8.** Heat map indicating effects of the CACTA-like TE on 18 measured traits. Four F<sub>2</sub> populations were analyzed in four environments. Colors indicate significance levels associated with differences among three genotypes. Unabbreviated traits are listed in Table S12. QM, Q319 × MO17; TM, Tian77 × MO17; QZ, Q319 × Zheng58; TZ, Tian77 × Zheng58; JL, Jilin; BJ, Beijing; HB, Hubei; DHN, Hainan.



**Fig. S9.** Structure of the *ZmCCT* gene and isolation of a full-length *ZmCCT* cDNA. (a) Diagram of the *ZmCCT* gene. Green boxes represent exons, grey boxes represent UTRs, orange box represents the CCT domain, and the thin line between exons represents an intron. Primers used to amplify the full-length cDNA are indicated. Leaf tissue from 1145 was subjected to (b) 3' RACE of *ZmCCT* using the GSP3-4 primer, and (c) 5' RACE of *ZmCCT* using the GSP5-13 primer.



**Fig. S10.** Phylogenetic analysis of the CCT gene family in maize using the maximum likelihood method.



**Fig. S11.** DNA methylation within the *ZmCCT* promoter and transient expression of transgenic constructs. DNA methylation within the *ZmCCT* promoter was reduced in 1145 (a) compared to HZS (b), which is consistent with the photoperiod responses of these maize lines. For both 1145 and HZS, no DNA methylation was observed within ~700bp of the start codon (0 bp). Light-blue regions represent CpG islands. The grey bar indicates a region that was not sequenced from HZS. Black arrows indicate methylated CpG sites, blue triangles indicate methylated CHG sites, the green square indicates a methylated light responsive motif (INRNTPSADB). (c) Different *ZmCCT* 

promoter fragments from HZS were use to drive transient expression of GUS in epidermal cells of the tobacco leaf under long-day (LD) or short-day (SD) conditions. Insets show higher magnifications of injection areas (boxed).



**Fig. S12.** Model of the photoperiod pathway in maize. Green arrows indicate positive regulation. Red t-bars indicate suppression. Dashed boxes indicate genes we have added to the previous model of the photoperiod pathyway (8, 40). conz1, a maize CONSTANS-like gene; ZmELF4&ZmELF9, early flowering; ZmFKF1, flavin binding, kelch repeat, F-box; GIGZ1a&b, gigantea-like1 a&b; LHY, late elongated hypocotyl; PRR37&73, pseudo-response regular protein 37 & 73; ZmSRR1, sensitivity to red light reduced 1; TOC1, timing of cab expression 1; ZCN8, *Zea mays* centroradialis 8.



**Fig. S13.** Relative expression ratio between HZS and its NIL of genes involved in the photoperiod pathway at different developmental stages (V3–V7) under long-day conditions. Expression levels were normalized to 18S RNA. Error bars represent SE (n = 3). The relative expression ratio = (relative expression of NIL – relative expression of HZS) / relative expression of HZS. For HZS, V3, V4, V5, and V6 represent the vegetative-growth stage, the early floral-transition stage, the floral-transition stage, and the reproductive stage, respectively. For the NIL, V3, V5, V6, and V7 represent the vegetative-growth stage, the early floral-transition stage, and the reproductive stage, respectively.



**Fig. S14.** Schematic diagram of NIL development. The late-flowering RIL was one line in a RIL population derived of a single cross between a tropical line CML288 (Hap6) and a temperate line HZS (Hap1). <sup>a</sup>Foreground selection using the flanking markers; <sup>b</sup>Foreground selection using the flanking markers and background selection using 230 polymorphic SSR markers.

**Table S1** List of maize inbred lines and teosinte entries used in the current study (see a separatefile)

| Table S2 Environments used to eva | luate association | and linkage | populations |
|-----------------------------------|-------------------|-------------|-------------|
|-----------------------------------|-------------------|-------------|-------------|

| Table S2 Environments | s used to evaluate associat | ion and linkage populatio | ns                   |
|-----------------------|-----------------------------|---------------------------|----------------------|
| Population            | Environment                 | Longitude and latitude    | Mean day lengths (h) |
| Association panel     | Sanya, Hainan, 2011         | E109.3, N18.1             | 10.3                 |
|                       | Sanya, Hainan, 2012         | E109.3, N18.1             | 10.3                 |
|                       | Chongqing, 2011             | E106.3, N29.3             | 13.5                 |
|                       | Honghe, Yunnan, 2011        | E102.4 , N23.5            | 13.4                 |
|                       | Nanning, Guangxi, 2011      | E108.2, N22.4             | 13.2                 |
|                       | Hebi, Hennan, 2011          | E114.1, N35.5             | 14.2                 |
|                       | Wuhan, Hubei, 2011          | E114.2, N30.3             | 13.4                 |
|                       | Beijing,2012                | E116.2, N39.5             | 13.7                 |
| Linkage populations   | Sanya, Hainan, 2011         | E109.3, N18.1             | 10.9                 |
|                       | Wuhan,Hubei, 2012           | E114.2, N30.3             | 13.4                 |
|                       | Beijing, 2012               | E116.2, N39.5             | 14.7                 |
|                       | Gongzhuling, Jilin, 2012    | E124.5, N43.3             | 14.8                 |

| Trait <sup>a</sup> |            | Mean ± SE  |            |              |              | - Popostsbility <sup>b</sup> + SE (%) |           |
|--------------------|------------|------------|------------|--------------|--------------|---------------------------------------|-----------|
| ITalt              | All lines  | Temperate  | Tropical   | All lines    | Temperate    | Tropical                              |           |
| APR (°C)           | 334.9±2.2  | 304.9±1.7  | 365.6±3.0  | 186.9-481.7  | 186.9-393.9  | 244.7-481.7                           | 75.1±0.02 |
| SPR (°C)           | 355.4±2.2  | 326.2±1.9  | 385.5±3.0  | 254.4-520.5  | 254.4-420.1  | 275.6-520.5                           | 72.8±0.02 |
| DTA_LD (d)         | 72.6±0.2   | 69.8±0.2   | 75.5±0.2   | 62.0-84.5    | 62.0-79.0    | 66.9-84.5                             | 88.9±0.01 |
| GDD_DTA_LD (°C)    | 1021.6±3.2 | 975.0±2.7  | 1069.2±4.0 | 846.4-1212.5 | 846.4-1130.6 | 926.6-1212.5                          | 89.1±0.01 |
| DTS_LD (d)         | 74.5±0.2   | 71.9±0.2   | 77.1±0.2   | 63.8-88.2    | 63.8-80.4    | 69.0-88.2                             | 86.5±0.01 |
| GDD_DTS_LD (°C)    | 1053.1±3.0 | 1011.4±2.8 | 1096.1±3.9 | 876.3-1268.2 | 876.3-1152.4 | 962.0-1268.2                          | 86.8±0.01 |
| DTA_SD (d)         | 56.4±0.2   | 54.6±0.2   | 58.2±0.2   | 45.6-67.0    | 45.6-67.0    | 51.2-64.8                             | 95.4±0.01 |
| GDD_DTA_SD (°C)    | 686.4±1.4  | 670.2±1.6  | 702.9±1.7  | 599.1-789.4  | 599.1-789.4  | 636.0-767.8                           | 95.0±0.01 |
| DTS_SD (d)         | 57.5±0.2   | 56.2±0.2   | 58.9±0.2   | 45.7-66.9    | 45.7-66.9    | 52.6-65.7                             | 93.2±0.01 |
| GDD_DTS_SD (°C)    | 697.6±1.3  | 685.3±1.6  | 710.2±1.7  | 602.8-787.6  | 602.8-787.6  | 650.3-778.9                           | 92.6±0.01 |

Table S3 Statistic summary of photoperiod responses and flowering times in 508 maize inbred lines

<sup>a</sup> APR, anthesis photoperiod response; SPR, silking photoperiod response; DTA\_LD, days to anthesis under long-day condition in days; GDD\_DTA\_LD, days to anthesis under long-day conditions in GDDs; DTS\_LD, days to silking under long-day conditions in days; GDD\_DTS\_LD, days to anthesis under long-day conditions in GDDs; DTA\_SD, days to anthesis under short-day conditions in GDDs; DTS\_SD, days to silking under short-day conditions in GDDs; DTS\_SD, days to anthesis under short-day conditions in GDDs; DTS\_SD, days to silking under short-day conditions in GDDs; DTS\_SD, days to silking under short-day conditions in GDDs.

<sup>b</sup> The repeatability for each trait was estimated using the methods by Knapp et al (Crop Science, 1985, 25:192–194).

 Table S4 Pearson coefficients among flowering time traits in 508 maize inbred lines.

| Table 34 I Cal     | table 54 realson coefficients among nowering time traits in 500 maize instea intes. |          |            |            |            |            |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------|----------|------------|------------|------------|------------|--|--|--|--|--|--|
| Trait <sup>a</sup> | APR (°C)                                                                            | SPR (°C) | DTA_LD (d) | DTS_LD (d) | DTA_SD (d) | DTS_SD (d) |  |  |  |  |  |  |
| APR (°C)           | 1.00                                                                                |          |            |            |            |            |  |  |  |  |  |  |
| SPR (°C)           | 0.89                                                                                | 1.00     |            |            |            |            |  |  |  |  |  |  |
| DTA_LD (d)         | 0.93                                                                                | 0.87     | 1.00       |            |            |            |  |  |  |  |  |  |
| DTS_LD (d)         | 0.85                                                                                | 0.93     | 0.94       | 1.00       |            |            |  |  |  |  |  |  |
| DTA_SD (d)         | 0.56                                                                                | 0.60     | 0.82       | 0.80       | 1.00       |            |  |  |  |  |  |  |
| DTS_SD (d)         | 0.50                                                                                | 0.51     | 0.74       | 0.78       | 0.90       | 1.00       |  |  |  |  |  |  |

<sup>a</sup>APR, anthesis photoperiod response; SPR, silking photoperiod response; DTA\_LD, days to anthesis under long-day condition in days; DTS\_LD, days to silking under long-day condition in days; DTA\_SD, days to anthesis under short-day condition in days; DTS\_SD, days to silking under short-day condition in days.

| SNP           | Chromosome | Position <sup>a</sup> | Allele <sup>b</sup> | $MAF^{c}$ | P-value <sup>d</sup>  | Lead trait <sup>e</sup> | Other trait <sup>f</sup> | Candidate gene <sup>g</sup> | Annotation <sup>h</sup>                                             |  |  |  |  |  |
|---------------|------------|-----------------------|---------------------|-----------|-----------------------|-------------------------|--------------------------|-----------------------------|---------------------------------------------------------------------|--|--|--|--|--|
| M2c7358967    | 1          | 7358967               | <u>C</u> /G         | 0.15      | 1.5 ×10 <sup>-5</sup> | SPR                     |                          | GRMZM2G095968               | RlpA-like double-psi beta-barrel domain (IPR009009)                 |  |  |  |  |  |
| M2c223285513  | 2          | 223285513             | C/ <u>G</u>         | 0.11      | 1.6 ×10 <sup>-5</sup> | APR                     |                          | GRMZM2G172297               | Myc-type, basic helix-loop-helix (bHLH) domain<br>(IPR011598)       |  |  |  |  |  |
| M2c10697661   | 4          | 10697661              | <u>T</u> /G         | 0.31      | 9.2 ×10 <sup>-6</sup> | DTS                     |                          | GRMZM2G426294               | Protein of unknown function DUF538 (IPR007493)                      |  |  |  |  |  |
| M2c1046572    | 5          | 1046572               | <u>T</u> /G         | 0.06      | 3.7 ×10 <sup>-6</sup> | APR                     |                          | GRMZM2G313481               | NAC domain (IPR003441)                                              |  |  |  |  |  |
| M2c13396311   | 5          | 13396311              | <u>A</u> /T         | 0.05      | 8.7 ×10 <sup>-6</sup> | SPR                     |                          | GRMZM2G170338               | Unknown                                                             |  |  |  |  |  |
| M2c164140644  | 6          | 164140644             | т/ <u>G</u>         | 0.21      | 7.5 ×10 <sup>-6</sup> | SPR                     |                          |                             |                                                                     |  |  |  |  |  |
| M2c164140645  | 6          | 164140645             | т/ <u>G</u>         | 0.21      | 7.5 ×10 <sup>-6</sup> | SPR                     |                          | GRIVIZIVIZGU79832           |                                                                     |  |  |  |  |  |
| M2c164552177  | 6          | 164552177             | т/ <u>G</u>         | 0.07      | 9.5 ×10 <sup>-7</sup> | SPR                     | DTS                      | GRMZM2G318183               | Unknown                                                             |  |  |  |  |  |
| M2c153729937  | 7          | 153729937             | A/ <u>G</u>         | 0.35      | 9.4 ×10 <sup>-6</sup> | DTS                     |                          | GRMZM2G027344               | Small GTPase superfamily, Rab type (IPR003579)                      |  |  |  |  |  |
| M2c124842646  | 8          | 124842646             | т/ <u>G</u>         | 0.11      | 1.2 ×10 <sup>-6</sup> | APR GR                  |                          | GRMZM2G093404               | Zinc finger                                                         |  |  |  |  |  |
| M2c131255321  | 8          | 131255321             | <u>A</u> /G         | 0.48      | 5.7 ×10 <sup>-6</sup> | APR                     |                          | GRMZM2G054588               | Unknown                                                             |  |  |  |  |  |
| M2c132201362  | 8          | 132201362             | <u>T</u> /C         | 0.15      | 8.6 ×10 <sup>-6</sup> | APR                     |                          | GRMZM2G474726               | Integral membrane protein TerC (IPR005496)                          |  |  |  |  |  |
| M2c132047401  | 8          | 132047401             | <u>T</u> /G         | 0.38      | 1.7 ×10 <sup>-5</sup> | APR                     |                          | GRMZM2G700665               | DNA-binding domain with a 2-layer beta(3)-alpha fold<br>(IPR016177) |  |  |  |  |  |
| PZE-108118075 | 8          | 166913953             | <u>A</u> /G         | 0.06      | 7.8 ×10 <sup>-6</sup> | APR                     |                          | GRMZM2G095709               | Unknown                                                             |  |  |  |  |  |
| M2c7614751    | 9          | 7614751               | <u>T</u> /C         | 0.07      | 1.2 ×10 <sup>-6</sup> | DTA                     | APR                      | GRMZM2G079949               | Alpha/beta-Hydrolases superfamily                                   |  |  |  |  |  |
| M2c138799623  | 9          | 138799623             | <u>T</u> /C         | 0.16      | 1.7 ×10 <sup>-6</sup> | SPR                     | DTC                      | CD147142C020092             | Ankurin rat contain dom                                             |  |  |  |  |  |
| M2c138799811  | 9          | 138799811             | A/ <u>G</u>         | 0.17      | 4.3 ×10 <sup>-6</sup> | SPR                     | 212                      | GRIVIZIVIZGUZU98Z           | Ankyrin_rpt-contain_dom                                             |  |  |  |  |  |
| M2c154088454  | 9          | 154088454             | <u>A</u> /T         | 0.35      | 1.4 ×10 <sup>-5</sup> | DTA                     |                          | GRMZM2G143244               | Per1-like (IPR007217)                                               |  |  |  |  |  |
| M2c154093370  | 9          | 154093370             | <u>T</u> /C         | 0.22      | 9.1×10 <sup>-6</sup>  | DTA                     |                          | GRMZM2G143213               | Protein kinase like-domain (IPR011009)                              |  |  |  |  |  |
| M2c94053899   | 10         | 94053899              | <u>C</u> /G         | 0.21      | 1.4 ×10 <sup>-5</sup> | SPR                     |                          | GRMZM2G006871               | Unknown                                                             |  |  |  |  |  |
| M10c94252249  | 10         | 94252249              | <u>G</u> /A         | 0.21      | 1.9 ×10 <sup>-9</sup> | APR                     | SPR, DTA, DTS            |                             | ZerCCT a gang analysing a CCT domain protein                        |  |  |  |  |  |
| M10c94252257  | 10         | 94252257              | <u>A</u> /G         | 0.20      | 1.9 ×10 <sup>-9</sup> | APR                     | SPR, DTA, DTS            | GRIVIZIVIZG381691           | Zincer, a gene encoding a cer-domain protein                        |  |  |  |  |  |

Table S5 Polymorphic sites significantly associated with photoperiod sensitivity and flowering time in a maize panel of 368 lines

| SNP          | Chromosome | Position <sup>a</sup> | Allele <sup>b</sup> | MAF <sup>c</sup> | P-value <sup>d</sup>   | Lead trait <sup>e</sup> | Other trait <sup>f</sup> | Candidate gene <sup>g</sup> | Annotation <sup>h</sup> |
|--------------|------------|-----------------------|---------------------|------------------|------------------------|-------------------------|--------------------------|-----------------------------|-------------------------|
| M10c94252266 | 10         | 94252266              | <u>A</u> /C         | 0.20             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252284 | 10         | 94252284              | <u>A</u> /G         | 0.20             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252303 | 10         | 94252303              | <u>0/9</u> /1       | 0.09             | 1.2 ×10 <sup>-8</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252308 | 10         | 94252308              | <u>G</u> /A         | 0.21             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252320 | 10         | 94252320              | <u>0</u> /4         | 0.20             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252322 | 10         | 94252322              | <u>G</u> /A         | 0.21             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252325 | 10         | 94252325              | <u>A</u> /C         | 0.20             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252330 | 10         | 94252330              | <u>G</u> /A         | 0.21             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252347 | 10         | 94252347              | <u>A</u> /C         | 0.20             | 1.2 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252362 | 10         | 94252362              | <u>С</u> /Т         | 0.21             | 1.9 ×10 <sup>-9</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252435 | 10         | 94252435              | <u>A/C</u> /G       | 0.07             | 4.6 ×10 <sup>-10</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252441 | 10         | 94252441              | <u>C</u> /T         | 0.19             | 4.1×10 <sup>-11</sup>  | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252473 | 10         | 94252473              | <u>T</u> /C         | 0.19             | 6.7 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252480 | 10         | 94252480              | <u>С</u> /Т         | 0.20             | 6.7 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252529 | 10         | 94252529              | <u>0</u> /3         | 0.20             | 6.7 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252541 | 10         | 94252541              | <u>G</u> /A         | 0.10             | 2.9 ×10 <sup>-7</sup>  | APR                     | SPR, DTA                 |                             |                         |
| M10c94252554 | 10         | 94252554              | <u>2</u> /0         | 0.20             | 6.8 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252590 | 10         | 94252590              | <u>T</u> /C         | 0.27             | 4.7 ×10 <sup>-13</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252594 | 10         | 94252594              | <u>C</u> /T         | 0.10             | 2.9×10 <sup>-7</sup>   | APR                     | SPR, DTA                 |                             |                         |
| M10c94252597 | 10         | 94252597              | <u>A</u> /T         | 0.19             | 3.7 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252609 | 10         | 94252609              | <u>0</u> /3         | 0.23             | 5.5 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252614 | 10         | 94252614              | <u>A</u> /G         | 0.09             | 2.9×10 <sup>-7</sup>   | APR                     | SPR, DTA                 |                             |                         |
| M10c94252665 | 10         | 94252665              | <u>A</u> /G         | 0.19             | 6.9 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |
| M10c94252679 | 10         | 94252679              | <u>T</u> /C         | 0.19             | 6.9 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                         |

| SNP          | Chromosome | Position <sup>a</sup> | Allele <sup>b</sup> | MAF <sup>c</sup> | P-value <sup>d</sup>   | Lead trait <sup>e</sup> | Other trait <sup>f</sup> | Candidate gene <sup>g</sup> | Annotation <sup>h</sup>                |
|--------------|------------|-----------------------|---------------------|------------------|------------------------|-------------------------|--------------------------|-----------------------------|----------------------------------------|
| M10c94252687 | 10         | 94252687              | <u>G</u> /A         | 0.20             | 6.9 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252712 | 10         | 94252712              | <u>0</u> /4         | 0.19             | 7.0 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252713 | 10         | 94252713              | <u>G</u> /C         | 0.08             | 9.8 ×10 <sup>-7</sup>  | APR                     | SPR, DTA                 |                             |                                        |
| M10c94252722 | 10         | 94252722              | <u>T</u> /C         | 0.27             | 7.4 ×10 <sup>-13</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252734 | 10         | 94252734              | <u>G</u> /A         | 0.20             | 7.0 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252767 | 10         | 94252767              | <u>C</u> /T/-       | 0.10             | 8.1×10 <sup>-9</sup>   | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252774 | 10         | 94252774              | <u>4</u> /0/12      | 0.11             | 2.9 ×10 <sup>-10</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252788 | 10         | 94252788              | <u>G</u> /T         | 0.09             | 9.8 ×10 <sup>-7</sup>  | APR                     | SPR, DTA                 |                             |                                        |
| M10c94252804 | 10         | 94252804              | <u>A</u> /T         | 0.24             | 2.2 ×10 <sup>-6</sup>  | APR                     | SPR, DTA                 |                             |                                        |
| M10c94252827 | 10         | 94252827              | <u>T</u> /A         | 0.20             | 7.5 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252832 | 10         | 94252832              | <u>G</u> /T         | 0.09             | 9.8 ×10 <sup>-7</sup>  | APR                     | SPR, DTA                 |                             |                                        |
| M10c94252888 | 10         | 94252888              | <u>A</u> /G         | 0.19             | 7.6 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252889 | 10         | 94252889              | <u>T</u> /C         | 0.20             | 2.8 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252957 | 10         | 94252957              | <u>C</u> /A         | 0.19             | 4.2 ×10 <sup>-11</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M10c94252990 | 10         | 94252990              | <u>T</u> /C         | 0.08             | 9.8 ×10 <sup>-7</sup>  | APR                     | SPR, DTA                 |                             |                                        |
| M10c94253000 | 10         | 94253000              | <u>4</u> /0         | 0.09             | 6.4 ×10 <sup>-6</sup>  | APR                     |                          |                             |                                        |
| M10c94253003 | 10         | 94253003              | <u>T</u> /G         | 0.08             | 1.9 ×10 <sup>-6</sup>  | APR                     |                          |                             |                                        |
| M10c94253071 | 10         | 94253071              | <u>G</u> /A         | 0.09             | 2.8 ×10 <sup>-6</sup>  | APR                     | SPR, DTA                 |                             |                                        |
| M10c94253073 | 10         | 94253073              | <u>A</u> /G         | 0.08             | 9.8×10 <sup>-7</sup>   | APR                     | SPR, DTA                 |                             |                                        |
| M10c94253076 | 10         | 94253076              | <u>с</u> /т         | 0.20             | 1.4 ×10 <sup>-10</sup> | APR                     | SPR, DTA, DTS            |                             |                                        |
| M2c139854704 | 10         | 139854704             | т/ <u>с</u>         | 0.08             | 1.4 ×10 <sup>-5</sup>  | DTA                     |                          | GRMZM2G303768               | Protein kinase-like domain (IPR011009) |
| M2c145196768 | 10         | 145196768             | <u>T</u> /G         | 0.09             | 1.7 ×10 <sup>-6</sup>  | SPR                     |                          |                             | Tetratricoportido TDD 1 (IDD001440)    |
| M2c145196818 | 10         | 145196818             | т/ <u>с</u>         | 0.09             | 1.7 ×10 <sup>-6</sup>  | SPR                     |                          | GRIVIZIVIZGU80030           |                                        |

<sup>a</sup>Position in base pairs for the polymorphic sites according to version 5b.60 of the B73 reference sequence (MaizeSequence, http://www.maizesequence.org). <sup>b</sup>Major allele (first), minor allele. Favorable alleles are underlined. <sup>c</sup>Minor allele frequency (MAF). <sup>d</sup>*P*-value of associations between the polymorphic site and the lead trait. <sup>e</sup>The associated trait whose significance level is the highest among the measured traits. <sup>f</sup>All of the associated traits except for the lead trait. APR, anthesis photoperiod response; SPR, silking photoperiod response; DTA, days to anthesis under long-day conditions in days; DTS, days to silking under long-day conditions in days. <sup>g</sup>The plausible candidate gene (based on function) or the annotated gene that is closest to the significant polymorphic site. <sup>h</sup>Each candidate gene is annotated according to InterProScan (http://www.ebi.ac.uk/interpro).

|                                    | in this stat | <u>^1</u> |                               |
|------------------------------------|--------------|-----------|-------------------------------|
| Туре                               | Name         |           | Primer sequence (5'-3')       |
| Transgonic plant tost              | LRCCT        | Forward   | TGTGGAATTGTGAGCGGATA          |
|                                    | LBCCI        | Reverse   | TAGCTAGCTCCACCACAGCA          |
|                                    | CTTQ         | Forward   | AACGACGACGACCTCATCAG          |
|                                    | CIIO         | Reverse   | ACTGGAACTCGTGCAGGCAC          |
| aDT DCD primore                    | Δερατο       | Forward   | GACCACCACCAAGAAAC             |
| gRT-PCR primers                    | ASCUIZ       | Reverse   | CTGCTGTCTCAGTGGTTTGC          |
|                                    |              | Forward   | ATCAACGGCTTCGGAAGGAT          |
|                                    | GADPHI       | Reverse   | CCGTGGACGGTGTCGTACTT          |
| <b>BACE</b> primore                | GSP5-13      | Reverse   | TCCGTGAATGTGCTCCCAGAGAAT      |
| RACE primers                       | GSP3-4       | Forward   | ATTCACGGACGCTGCAAGCAAGGAG     |
| Primers for                        |              | Forward   | CCGCTCGAGTATCGATCAACAGCGGCCAT |
| full-length cDNA                   | NLCCTI       | Reverse   | CGGAATTCCTTCGGTTACCTTGGCAAAGC |
|                                    | EUCCT1       | Forward   | CATCCGGACCATATATAGAC          |
|                                    | 500011       | Reverse   | CTGGTCGTCGTTCTCATCAC          |
|                                    | FUCCTO       | Forward   | TCTCTGGCCTGGTGTAGTGA          |
|                                    | 500012       | Reverse   | AAGTAAGGGATGAGCCATGC          |
|                                    | ГИССТЭ       | Forward   | GGGTGTTTGAAGCTCCATTG          |
| Primers for                        | 500015       | Reverse   | AGCACCTTGGGCATTCCTAT          |
| genotyping                         | FUCCT4       | Forward   | TTCAATGGAGCTTCAAACAC          |
| upstream region of                 | 500014       | Reverse   | GGTTGTGCGTTCTTGACATC          |
| ZmCCT                              | TED          | Forward   | GCACAAGAGAGATGGAGCATT         |
|                                    | TED          | Reverse   | ATTCTCAATCCAAGGTGCAG          |
|                                    | TEDD         | Forward   | CCTAAGAACCGTCGGAAACA          |
|                                    | TERB         | Reverse   | CGAGCGTTTTCGACATAACA          |
|                                    | TELD         | Forward   | AAACGCTGACACTTCCGACT          |
|                                    | IELB         | Reverse   | GTCGACACGTGTAGGAAGCA          |
|                                    |              | Forward   | CACTTATCCTCGCTCGATCTCT        |
| ipstream region of<br><i>ZmCCT</i> |              | Reverse   | GGACGTGTTGAGTACCAATGAA        |
|                                    |              | Forward   | GTCTCAGTTCCTGCTTCTTCC         |
|                                    | IVIKZ        | Reverse   | ACATGGCCGCTGTTGATC            |
|                                    | MDD          | Forward   | TGGCTACCAGATTCTGCGATAT        |
| Primers for                        | IVIR3        | Reverse   | TGTGCGTAAAGTGCAACTCATG        |
| genotyping the                     |              | Forward   | GCATGTAGGCCCATTCAGC           |
| unstream of <i>ZmCCT</i>           | IVIK4        | Reverse   | GAGCTTGTTATCGAGATGAGGA        |
| in teosinte                        |              | Forward   | CGGATTCTGTTTCTGTGTAAAC        |
|                                    | IKI          | Reverse   | GATCTTGAAAAATGAACTAG          |
|                                    | TDO          | Forward   | CTAGTTCATTTTTCAAGATC          |
|                                    | TRZ          | Reverse   | ATATCGCAGAATCTGGTAGCCA        |
|                                    | TOO          | Forward   | ATGTAGGCCCATTCAGCATATC        |
|                                    | 143          | Reverse   | TATTGCAGTTGGCAATTGAGAC        |
| Primers for                        | 1 1 4 1      | Forward   | TTTTGATGGTTAAAGAATTGGAATT     |
| bisulfite-sequencing               | ΤΙΛΙ-Τ       | Reverse   | TTCCTCCATCTCCCTACTAACCTA      |

 Table S6 Primers used in this study

| Туре                 | Name Primer sequence (5'-3') |         |                                         |  |  |  |
|----------------------|------------------------------|---------|-----------------------------------------|--|--|--|
| PCR of 1145          | 114.2                        | Forward | TAGGTTAGTAGGGAGATGGAGGAA                |  |  |  |
| promoter             | TIM-5                        | Reverse | ΑCCTATATACCCAAAAATAAAATCTC              |  |  |  |
|                      | 114 2                        | Forward | TTATTTTTGGGTATATAGGTAATGTTTTAT          |  |  |  |
|                      | 11/1-3                       | Reverse | TCAAACCTAATTAATACTAATTCTTAAATT          |  |  |  |
|                      | 114 4                        | Forward | AATTTGTATTAAGTTTTTATAGTGTTTTT           |  |  |  |
|                      | 1111-4                       | Reverse | CTTATACTAAATCCTTCACTTTTAATATTA          |  |  |  |
|                      | 1 N A E                      | Forward | TTATAATATTAAATTTATTTGTATTTTTAG          |  |  |  |
|                      |                              | Reverse | ACATATAATCATATCCTCCCTAAATC              |  |  |  |
|                      | 1146                         | Forward | TGGTTTTTGAATTATTGTTTTTGAG               |  |  |  |
|                      | 11/1-0                       | Reverse | AAATACATACATAACTCATCCCTTACTTAT          |  |  |  |
|                      | 114 7                        | Forward | AAGGGATGAGTTATGTATGTATTTA               |  |  |  |
|                      | TIA1-1                       | Reverse | AACAATACTCCATCTCTTATACCC                |  |  |  |
|                      | 114 9                        | Forward | TAAGAGAGATGGAGTATTGTTTATTGGA            |  |  |  |
|                      | 1141-0                       | Reverse | ΑΤΑΑCTTTATTAAAAAACAACAACAAAATT          |  |  |  |
|                      | 1 M_Q                        | Forward | TGTGTATTTATTAGGAATTAATGGT               |  |  |  |
|                      | 110-9                        | Reverse | ТСАААТАТААААСТАТСТАТСТАТСТАТСТ          |  |  |  |
|                      | НМ₋1                         | Forward | TTTTGATGGTTAAAGAATTGGAATT               |  |  |  |
|                      |                              | Reverse | TTCCTCCATCTCCCTACTAACCTA                |  |  |  |
|                      | HM-2                         | Forward | TAGGTTAGTAGGGAGATGGAGGAA                |  |  |  |
|                      | 11111 2                      | Reverse | ACCTATATACCCAAAAATAAAATCTC              |  |  |  |
|                      | HM-3                         | Forward | TTATTTTTGGGTATATAGGTAATGTTTTAT          |  |  |  |
|                      | 1111 5                       | Reverse | ΤCAAACCTAATTAATACTAATTCTTAAATT          |  |  |  |
|                      | HM-4                         | Forward | AGTATTGTTAGTTTAATTTAAGAATTAGTA          |  |  |  |
|                      |                              | Reverse | ΑCTAAAAATATTAAAAATATTCTCTTC             |  |  |  |
|                      | HM-5                         | Forward | GAAGAGAATATTTTTAATATTTTTAGTAT           |  |  |  |
|                      | 1111 5                       | Reverse | ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ |  |  |  |
| Drimore for          | HM-6                         | Forward | ATTGGTTAGGGGTGTTTTTTATAAG               |  |  |  |
| bisulfite-sequencing |                              | Reverse | ΑΑΑΑΑCΑΤΑΑΑΤΑΑΑΤΑΤΟΑΤΤΤΤΑC              |  |  |  |
| PCR of HZS promoter  | HM-7                         | Forward | TTGAAAAATGAATTAGTTTTATGGTAGG            |  |  |  |
|                      |                              | Reverse | ΑΑΤCAAAAAATTCCAAACCAACTAC               |  |  |  |
|                      | HM-8                         | Forward | GTTTGGAATTTTTGATTTAATTTT                |  |  |  |
|                      |                              | Reverse | AATTCTTTCCAATAAATATATACACATACA          |  |  |  |
|                      | HM-9                         | Forward | TGTATATATTTATTGGAAAGAATTTGTATA          |  |  |  |
|                      |                              | Reverse | ΑCΑΑΤΑΑΑΤΤCTΑΑΤΑΤΑΑCTCTTTAATAC          |  |  |  |
|                      | HM-10                        | Forward | AGTGGTGTTAGTGATAATATGTTGG               |  |  |  |
|                      |                              | Reverse | AATACATACATAACTCATCCCTTACTTATA          |  |  |  |
|                      | HM-11                        | Forward | AAGGGATGAGTTATGTATGTATTTA               |  |  |  |
|                      |                              | Reverse | AACAATACTCCATCTCTTATACCC                |  |  |  |
|                      | HM-12                        | Forward | TAAGAGAGATGGAGTATTGTTTATTGGA            |  |  |  |
|                      |                              | Reverse | ΑΤΑΑCTTTATTAAAAAACAACAACAAAATT          |  |  |  |
| Primers used for     | HP-1                         | Forward | CACTGTGGAAGCTTAGTGCAG                   |  |  |  |
| promoter constructs  | エ                            | Reverse | GGCCGCTGTTGATCGATAG                     |  |  |  |
|                      | HP-2                         | Forward | TGATTCCTGATGGATGCACAT                   |  |  |  |

| Туре                | Name    |         | Primer sequence (5'-3') |
|---------------------|---------|---------|-------------------------|
|                     |         | Reverse | GGCCGCTGTTGATCGATAG     |
|                     |         | Forward | GGCATCAAATGAGGCTGGTT    |
|                     | HP-3    | Reverse | GGCCGCTGTTGATCGATAG     |
|                     |         | Forward | TCCGTCTTCCCTGTCGT       |
|                     | ZmCCT   | Reverse | CCAGGCGATGGTTTCTT       |
|                     |         | Forward | GTAAAAATGGTAGGCGAT      |
|                     | ZmCCA1  | Reverse | CTCTTGGGTGTTGGGGTT      |
|                     |         | Forward | CTTGCACTGGATGGTGACAGATA |
|                     | ZmCONZ1 | Reverse | AGTTGACGAACAGCACAAATAC  |
|                     |         | Forward | GCAGATCGGAGCACGGCAACA   |
| Real-time PCR       | ZmZCN8  | Reverse | GATGACGGCGACCTCGGCATC   |
| primers for         |         | Forward | CGTTTGGAGTTTGGGTATGG    |
| in the <i>ZmCCT</i> | ZmTOC1  | Reverse | GCCGCCCTCGTAGTTGA       |
| pathway             |         | Forward | CGGCAGCGATAGCATGGAGTT   |
|                     | ZmELF4  | Reverse | CGGGCGATATTAGTGTTGAGC   |
|                     |         | Forward | CCATCTCTGAGCTACACTCCGC  |
|                     | ZmELF9  | Reverse | CTGGTCCACATCATTGCCTTTC  |
|                     |         | Forward | GATCACTGACATATTGCTAGCC  |
|                     | GI      | Reverse | CCAGATCCTCGGCTGC        |
|                     |         | Forward | CCTGCGGCTTAATTGACTC     |
|                     | 18S     | Reverse | GTTAGCAGGCTGAGGTCTCG    |

| Location | Cito <sup>a</sup> | Allolo <sup>b</sup> | Fraguanay | <i>P</i> value        |                      |                      |                      |  |  |  |
|----------|-------------------|---------------------|-----------|-----------------------|----------------------|----------------------|----------------------|--|--|--|
| LOCATION | Site              | Allele              | Frequency | APR                   | SPR                  | DTA                  | DTS                  |  |  |  |
|          | -2543             | <u>+</u> /-         | 142/37    | 1.1× 10 <sup>-6</sup> | 7.5×10 <sup>-6</sup> | 4.1×10 <sup>-6</sup> | 1.8×10 <sup>-5</sup> |  |  |  |
|          | -1875             | <u>C</u> /A         | 153/27    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.1×10 <sup>-4</sup> | 4.0×10 <sup>-3</sup> |  |  |  |
|          | -1807             | C/ <u>T</u>         | 26/154    | 6.1×10 <sup>-5</sup>  | 0.01                 | 6.0×10 <sup>-5</sup> | 1.5×10 <sup>-3</sup> |  |  |  |
|          | -1806             | G/ <u>A</u>         | 26/154    | 6.1×10 <sup>-5</sup>  | 0.01                 | 6.0×10 <sup>-5</sup> | 1.5×10 <sup>-3</sup> |  |  |  |
|          | -1745             | A/ <u>T</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.1×10 <sup>-4</sup> | 3.8×10 <sup>-3</sup> |  |  |  |
|          | -1648             | A/ <u>G</u>         | 18/162    | 6.1×10 <sup>-5</sup>  | 0.01                 | 6.1×10 <sup>-5</sup> | 1.5×10 <sup>-3</sup> |  |  |  |
|          | -1636             | C/ <u>T</u>         | 38/142    | 3.7×10 <sup>-6</sup>  | 2.8×10 <sup>-5</sup> | 2.2×10 <sup>-5</sup> | 8.7×10 <sup>-5</sup> |  |  |  |
|          | -1626             | 4/ <u>0</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.1×10 <sup>-4</sup> | 3.8×10 <sup>-3</sup> |  |  |  |
|          | -1598             | A/ <u>G</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.1×10 <sup>-4</sup> | 3.7×10 <sup>-3</sup> |  |  |  |
|          | -1590             | C/ <u>T</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.1×10 <sup>-4</sup> | 3.7×10 <sup>-3</sup> |  |  |  |
|          | -1575             | G/ <u>A</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.0×10 <sup>-4</sup> | 3.7×10 <sup>-3</sup> |  |  |  |
|          | -1505             | т/ <u>А</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.0×10 <sup>-4</sup> | 3.6×10 <sup>-3</sup> |  |  |  |
| Promoter | -1498             | C/ <u>T</u>         | 38/142    | 3.7×10 <sup>-6</sup>  | 2.7×10 <sup>-5</sup> | 2.0×10 <sup>-5</sup> | 7.9×10 <sup>-5</sup> |  |  |  |
| Promoter | -1460             | 0/ <u>2</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.0×10 <sup>-4</sup> | 3.6×10 <sup>-3</sup> |  |  |  |
|          | -1435             | 3/ <u>0</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.0×10 <sup>-4</sup> | 3.5×10 <sup>-3</sup> |  |  |  |
|          | -1386             | т/ <u>с</u>         | 26/154    | 6.1×10 <sup>-5</sup>  | 0.01                 | 5.7×10 <sup>-5</sup> | 1.3×10 <sup>-3</sup> |  |  |  |
|          | -1379             | C/ <u>T</u>         | 27/153    | 2.1×10 <sup>-4</sup>  | 0.02                 | 2.0×10 <sup>-4</sup> | 3.5×10 <sup>-3</sup> |  |  |  |
|          | -1347             | т/ <u>с</u>         | 26/154    | 6.1×10 <sup>-5</sup>  | 0.01                 | 5.7×10⁻⁵             | 1.3×10 <sup>-3</sup> |  |  |  |
|          | -1228             | C/ <u>A</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.8×10 <sup>-3</sup> |  |  |  |
|          | -1225             | A/ <u>G</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.8×10 <sup>-3</sup> |  |  |  |
|          | -1211             | A/ <u>G</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.8×10 <sup>-3</sup> |  |  |  |
|          | -1187             | G/ <u>A</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.7×10 <sup>-3</sup> |  |  |  |
|          | -1160             | G/ <u>A</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.7×10 <sup>-3</sup> |  |  |  |
|          | -1152             | A/ <u>G</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.7×10 <sup>-3</sup> |  |  |  |
|          | -1127             | C/ <u>T</u>         | 28/152    | 2.8×10 <sup>-4</sup>  | 0.02                 | 2.3×10 <sup>-4</sup> | 2.8×10 <sup>-3</sup> |  |  |  |
|          | -1003             | т/ <u>с</u>         | 21/149    | 2.1×10 <sup>-4</sup>  | 0.02                 | 1.9×10 <sup>-4</sup> | 3.4×10 <sup>-3</sup> |  |  |  |
| 5'UTR    | -19               | 4/ <u>0</u>         | 31/147    | 7.0×10 <sup>-6</sup>  | 1.5×10 <sup>-4</sup> | 9.7×10 <sup>-5</sup> | 5.9×10 <sup>-4</sup> |  |  |  |
| Intron   | 601               | 0/ <u>4</u>         | 13/165    | 5.7×10 <sup>-5</sup>  | 3.4×10 <sup>-3</sup> | 3.8×10 <sup>-3</sup> | 0.03                 |  |  |  |
| 3'UTR    | 2491              | A/ <u>G</u>         | 10/134    | 9.5×10 <sup>-5</sup>  | 1.6×10 <sup>-6</sup> | 1.4×10 <sup>-3</sup> | 3.1×10 <sup>-5</sup> |  |  |  |

**Table S7** Associations between ZmCCT polymorphisms and four flowering time traits in 180 maize inbred lines

<sup>a</sup>Relative position of polymorphic sites in *ZmCCT* (Fig. S4). The start codon is denoted as +1 bp. <sup>b</sup>The favorable allele for the corresponding trait is underlined.

|         | Site |       |       |       |       |       |       |       |       |       |       | l la sela terra a |       |          |
|---------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------|-------|----------|
| Line    | TE   | -1983 | -1884 | -1875 | -1722 | -1692 | -1636 | -1565 | -1518 | -1341 | -1267 | -1206             | -1145 | Нарютуре |
| 150     | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 238     | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 268     | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 501     | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 647     | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 812     | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 1462    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 3411    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 5213    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 5237    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 5311    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 7327    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 8902    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 9782    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 81162   | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 526018  | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 04K5686 | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 04K5702 | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| 05W002  | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 07KS4   | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 303WX   | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 3H-2    | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 4F1     | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 835B    | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| 975-12  | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| A619    | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| B110    | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| B111    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| B113    | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| B114    | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| B73     | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| B77     | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| BEM     | +/+  | А     | С     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| BS16    | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| BY4839  | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| BY4944  | +/+  | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0                 | G     | Hap1     |
| BY4960  | +/+  | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | с     | 0                 | G     | Hap1     |
| BY804   | +/+  | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0                 | G     | Hap1     |
| BY807   | +/+  | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0                 | G     | Hap1     |
| BY809   | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | с     | 0                 | G     | Hap1     |
| BY813   | +/+  | А     | С     | с     | А     | 4     | т     | С     | 0     | А     | с     | 0                 | G     | Hap1     |
| BY815   | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| BY843   | +/+  | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |
| BY855   | +/+  | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0                 | G     | Hap1     |

## Table S8 All haplotypes composed of 13 polymorphic sites in 461 maize inbred lines

| Line      |            |       |       |       |       |       | Site  |       |       |       |       |       |       | Hanlatuna |
|-----------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| Line      | TE         | -1983 | -1884 | -1875 | -1722 | -1692 | -1636 | -1565 | -1518 | -1341 | -1267 | -1206 | -1145 | нарютуре  |
| BZN       | +/+        | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| C8605     | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CA47      | +/+        | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CF3       | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CHANG3    | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CHANG7-2  | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CHENG698  | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CHUAN48-2 | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CI7       | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBL1    | +/+        | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBL103  | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL111  | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL112  | ,<br>+/+   | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL113  | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL114  | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL116  | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBI 119 | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBI 120 | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBI 121 | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBI 122 | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL122  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL125  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBI 133 | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL133  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL137  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL138  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL130  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL135  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL141  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBI 143 | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
|           | .,.<br>./. | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL144  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL145  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
|           | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
|           |            | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL140  | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
|           | / -        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
|           | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBLISS  | +/+        | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
|           | +/+        | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CINIBL1/  | +/+        | A     | С     | С     | A     | 4     | т     | С     | 0     | A     | С     | 0     | G     | Hap1      |
| CIMBL3    | +/+        | A     | С     | С     | A     | 4     | т     | С     | 0     | A     | С     | 0     | G     | Hap1      |
| CIMBL30   | +/+        | A     | C     | C     | A     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Hap1      |
| CIMBL38   | +/+        | A     | C     | C     | A     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Hap1      |
| CIMBL42   | +/+        | A     | C     | C     | A     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Hap1      |
|           | +/+        | A     | C     | C     | A     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Hap1      |
| CIIVIBL5  | +/+        |       |       |       |       |       |       |       |       |       |       |       |       | · = -     |

| The         The         1388         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1389         1                                                       | 1 in a   |          |       |       |       |       |       | Site  |       |       |       |       |       |       | Undetwork |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| CMALS1         ·/·         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C<                                                                                                                                                                                     | Line     | TE       | -1983 | -1884 | -1875 | -1722 | -1692 | -1636 | -1565 | -1518 | -1341 | -1267 | -1206 | -1145 | Нарютуре  |
| CMMLC2F, ACCAACCAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL51  | +/+      | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CMALSSV.C.C.C.AAC.AC.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <t< td=""><td>CIMBL52</td><td>+/+</td><td>А</td><td>с</td><td>С</td><td>А</td><td>4</td><td>т</td><td>с</td><td>0</td><td>А</td><td>С</td><td>0</td><td>G</td><td>Hap1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CIMBL52  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CMMGLSHKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK <td>CIMBL55</td> <td>+/+</td> <td>А</td> <td>С</td> <td>С</td> <td>А</td> <td>4</td> <td>т</td> <td>С</td> <td>0</td> <td>А</td> <td>С</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIMBL55  | +/+      | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CNMLSAF,ACCCAACCAACBAAACAAAAACAAAAAACAAACAACAAAAAACAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL57  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CNMELS0A/ACCCACCACCAACAAAAAAAAAAAAAAAAACAAACAAACAACAACAACAAACAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL58  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CMBLG4,4ACCCCAATCC0ACC0AC0AC0A00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 <th< td=""><td>CIMBL59</td><td>+/+</td><td>А</td><td>с</td><td>С</td><td>А</td><td>4</td><td>т</td><td>с</td><td>0</td><td>А</td><td>С</td><td>0</td><td>G</td><td>Hap1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIMBL59  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBL614',ACCCAACCAACAAACAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL6   | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ICHBLEGi, ACCCACCACBACBACBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL61  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBL/2i, ACCCAACCAACBAACBAAAAAACCAACBAAAACCAACBAAAACCAACBAAACCAACBAAAACCAACBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL66  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CMML724,46,4CCCACCAACCAACAAAACCAACAAAACCAACAAAACCAACAAAACCAACAAACCAACAAACCAACAAAACAAAACAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CIMBL71  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| MAL         C         C         A         S         T         C         0         A         C         0         A           CMMBL7         4/A         A         C         C         A         A         T         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         D         D         D <thd< td=""><td>CIMBL72</td><td>+/+</td><td>А</td><td>с</td><td>с</td><td>А</td><td>4</td><td>т</td><td>с</td><td>0</td><td>А</td><td>с</td><td>0</td><td>G</td><td>Hap1</td></thd<>                 | CIMBL72  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| MAA         C         C         A         A         T         C         0         A         C         0         A           CMBLB3         4/A         A         C         C         A         A         C         C         A         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         A         C         0         A         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         A         A         A         C         C         C         A         C         C         C                                                                                                                                                                                                      | CIMBL73  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CMBLB         A+         C         C         A         C         C         A         C         B         A         C         A         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         C         C         C         C         C <td>CIMBL77</td> <td>,<br/>+/+</td> <td>А</td> <td>с</td> <td>С</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>  | CIMBL77  | ,<br>+/+ | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CMBL83         i+i+         A         C         C         A         I         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         0         A         C         A         A         C         C         A         A         C         C         A         A         C         C         A         A         C         C         A         A         C         C         A         A         C         C         A         A         C         C         A         C         A         A         C         C         C         A         C         A         A         C         C         A         C         A         C         A         C         A         A         C         A         C         A         A                                                                                                                                                                                     | CIMBL8   | ,<br>+/+ | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| MALLS         A         C         C         A         A         T         C         D         A         C         D         A           CIMBLS         A++         A         C         C         A         44         T         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         C         D         A         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         <                                                                                                                                                                                         | CIMBL83  | ,<br>+/+ | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CMMLEG         ·/·         A         C         C         C         A         C         C         A         C         B         A         B         A         C         B         A         A         C         A         A         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         A         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C<                                                                                                                                                                                     | CIMBL85  | ,<br>+/+ | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBLE7         I/I         C         C         A         A         T         C         O         A         C         G         B           CIMBLE8         I/I         A         C         C         A         A         T         C         O         A         C         G         Hap1           CIMBL9         I/I         A         C         C         A         A         T         C         O         A         C         G         Hap1           CIMBL9         I/I         A         C         C         C         A         A         T         C         O         A         C         G         Hap1           CIMBL97         I/I         A         C         C         C         A         A         T         C         O         A         C         G         Hap1           CIMBL97         I/I         A         C         C         A         A         T         C         O         A         C         G         Hap1           CIMB14         I/I         A         C         C         A         A         T         C         O         A         C <t< td=""><td>CIMBI 86</td><td>,<br/>+/+</td><td>А</td><td>с</td><td>с</td><td>А</td><td>4</td><td>т</td><td>с</td><td>0</td><td>А</td><td>с</td><td>0</td><td>G</td><td>Hap1</td></t<>                         | CIMBI 86 | ,<br>+/+ | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMALES         ···         ···         C         C         C         A         T         C         D         A         C         G         B           CIMALES         ···         A         C         C         A         A         T         C         D         A         C         G         B         B           CIMBLS         ···         A         C         C         A         A         T         C         D         A         C         G         Hap1           CIMBLS         ···         A         C         C         C         A         A         T         C         D         A         C         G         Hap1           CIMI13         ···         A         C         C         C         A         A         T         C         D         A         C         G         Hap1           CMI14         ···         A         C         C         A         A         T         C         D         A         G         Hap1           CMI15         ···         A         C         C         A         A         T         C         D         A         G </td <td>CIMBL87</td> <td>+/+</td> <td>А</td> <td>с</td> <td>С</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>С</td> <td>0</td> <td>G</td> <td>Hap1</td>                       | CIMBL87  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBLO       ·/·       A       C       A       A       A       C       0       A       C       0       A       A       C       A       A       A       A       C       0       A       C       0       A       C       0       A       A       C       A       A       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       C       A       A       A       C       A       A<                                                                                                                                                                                                                                                                                                         | CIMBL88  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CIMBLO         I/+         A         C         A         A         A         C         0         A         C         0         A         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P<         P<         P<         P< </td <td>CIMBI 9</td> <td>,<br/>+/+</td> <td>А</td> <td>с</td> <td>С</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td> | CIMBI 9  | ,<br>+/+ | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBLO         I/I         C         C         A         A         C         C         A         A         C         C         A         A         C         C         A         A         C         C         A         A         C         B         B           CML113         I/I         A         C         C         A         A         T         C         0         A         C         0         Hapt           CML134         I/I         A         C         C         A         A         T         C         0         A         C         0         Hapt           CML134         I/I         A         C         C         C         A         A         T         C         0         A         C         0         Hapt           CML134         I/I         A         C         C         A         A         T         C         0         A         C         0         Hapt           CML133         I/I         A         C         C         A         A         T         C         0         A         C         0         A         C         D         Hapt                                                                                                                                                                                                          | CIMBI 90 | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CML13       +++       A       C       C       A       4       T       C       0       A       C       0       A         CML14       +++       A       C       C       A       4       T       C       0       A       C       0       A         CML15       ++       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML15       ++       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML151       ++       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML151       ++       A       C       C       A       A       T       C       0       A       C       0       Hap1         CML152       ++       A       C       C       A       A       T       C       0       A       C       0       Hap1         CML162       ++       A       C       C       A       A       T       C       0<                                                                                                                                                                                                                                                                                                                             | CIMBI 97 | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| CMLLIA         +/+         A         C         C         A         T         C         0         A         C         6         Hap1           CML11         +/+         A         C         C         A         4         T         C         0         A         C         0         Hap1           CML11         +/+         A         C         C         A         4         T         C         0         A         C         0         Hap1           CML11         +/+         A         C         C         A         4         T         C         0         A         C         0         Hap1           CML12         +/+         A         C         C         A         4         T         C         0         A         C         0         Hap1           CML12         +/+         A         C         C         A         A         T         C         0         A         C         0         Hap1           CML12         +/+         A         C         C         A         A         T         C         0         A         C         0         Hap1                                                                                                                                                                                                                     | CMI 113  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML14       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i       i <td>CMI 114</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                             | CMI 114  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CMLLLS       i, i       C       C       A       T       C       0       A       C       0       Hap1         CML121       i/i       A       C       C       A       A       T       C       0       A       C       0       G       Hap1         CML121       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML134       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML162       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML163       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML164       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML23       i/i       A       C       C       A       A       T </td <td>CMI 115</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                 | CMI 115  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML121       +/+       A       C       C       A       T       C       0       A       C       0       G       Hap1         CML124       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML134       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML162       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML163       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML164       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML23       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML24       +/+       A       C       C       A <td>CMI 116</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                        | CMI 116  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML114       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML134       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML162       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML163       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML164       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML23       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML204       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML304       +/+       A       C       C <td>CMI 121</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                       | CMI 121  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML161       +/+       A       C       C       A       A       T       C       0       A       C       0       G       Hap1         CML162       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML163       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML164       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML191       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML290       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML304       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML304       +/+       A       C       C </td <td>CMI 134</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                 | CMI 134  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML163       +/+       A       C       C       A       A       T       C       0       A       C       0       G       Hap1         CML166       +/+       A       C       C       A       A       T       C       0       A       C       0       G       Hap1         CML161       +/+       A       C       C       A       A       T       C       0       A       C       0       G       Hap1         CML191       +/+       A       C       C       A       A       T       C       0       A       C       0       G       Hap1         CML203       +/+       A       C       C       A       A       T       C       0       A       C       0       Hap1         CML204       +/+       A       C       C       A       A       T       C       0       A       C       0       Hap1         CML304       +/+       A       C       C       A       A       T       C       0       A       C       0       Hap1         CML304       +/+       A       C       C </td <td>CMI 162</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                 | CMI 162  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML166       +/+       A       C       C       A       A       T       C       0       A       C       0       Hap1         CML191       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML191       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML223       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML200       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML304       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML307       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1       D       D       Hap1         CML323       +/+                                                                                                                                                                                                                                                                                                                           | CMI 163  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML100       i/i       i       C       C       A       I       C       0       A       C       0       G       Hap1         CML223       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML203       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML200       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML304       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML307       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML323       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML324       i/i       A       C       C       A </td <td>CMI 166</td> <td>·/·</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                 | CMI 166  | ·/·      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML11       i,i       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML200       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML201       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML304       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML307       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML323       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML324       +/+       A       C <td>CMI 191</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                       | CMI 191  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML29       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML304       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML307       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML307       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML327       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML324       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML325       i/i       A       C <td>CMI 223</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                       | CMI 223  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML230       i/i       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML307       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML307       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML321       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML323       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML324       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML325       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML326       i/i       A       C       C       A </td <td>CMI 290</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                 | CMI 290  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML304       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML32       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML32       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML323       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML324       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML325       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML360       +/+       A       C       C <td>CMI 204</td> <td>./.</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                        | CMI 204  | ./.      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML30       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML323       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML323       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML325       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML326       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML326       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML361       +/+       A       C       C <td>CMI 307</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                       | CMI 307  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML32       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML325       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML326       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML326       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML361       +/+       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML452       +/+       A       C <td>CML22</td> <td>./.</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                         | CML22    | ./.      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML323       i/i       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML324       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML325       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML326       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML326       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML360       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML361       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML422       i/i       A       C       C </td <td>CML222</td> <td></td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                     | CML222   |          | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML324       i/i       G       G       A       A       T       C       0       A       C       0       G       Hap1         CML326       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML326       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML326       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML360       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML361       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML452       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML422       i/i       A       C </td <td>CIVIL323</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                | CIVIL323 | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML2D       i/i       i       G       C       A       4       T       C       0       A       C       0       G       Hap1         CML360       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML360       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML361       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML415       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML415       i/i       A       C       C       A       4       T       C       0       A       C       0       Hap1         CML422       i/i       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML422       i/i       A       C <td>CMI 225</td> <td>+/+</td> <td>А</td> <td>с</td> <td>с</td> <td>А</td> <td>4</td> <td>т</td> <td>с</td> <td>0</td> <td>А</td> <td>с</td> <td>0</td> <td>G</td> <td>Hap1</td>                                                                                                                                       | CMI 225  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML260       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML361       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML361       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML415       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML422       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML420       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML430       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1                                                                                                                                                                                                                                                                                                                                               | CMI 225  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML300       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML415       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML415       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML422       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML430       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CMI 260  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML415       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1         CML422       +/+       A       C       C       A       4       T       C       0       A       C       G       Hap1         CML430       +/+       A       C       C       A       4       T       C       0       A       C       0       G       Hap1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CIVIL300 | +/+      | A     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CML420     +/+     A     C     C     A     4     T     C     0     A     C     0     G     Hap1       CML420     +/+     A     C     C     A     4     T     C     0     A     C     0     G     Hap1       CML430     +/+     A     C     C     A     4     T     C     0     A     C     0     G     Hap1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| CML430 +/+ A C C A 4 T C 0 A C 0 G Hap1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIVIL413 | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CIVIL422 | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |

|          |            |        |       |       |        |       | Site     |       |       |        |       |        |       |           |
|----------|------------|--------|-------|-------|--------|-------|----------|-------|-------|--------|-------|--------|-------|-----------|
| Line     | TE         | -1983  | -1884 | -1875 | -1722  | -1692 | -1636    | -1565 | -1518 | -1341  | -1267 | -1206  | -1145 | Haplotype |
| CML431   | +/+        | А      | С     | С     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| CML480   | +/+        | А      | С     | С     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| CML493   | +/+        | А      | С     | С     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| CML497   | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| CML50    | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| CML51    | +/+        | А      | С     | С     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| DAN3130  | +/+        | А      | С     | С     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| DAN340   | +/+        | А      | с     | с     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| DAN360   | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| DE.EX    | ,<br>+/+   | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| DH29     | ,<br>+/+   | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| DONG237  | ,<br>+/+   | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| EN25     | ,<br>+/+   | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| FS40     | ,<br>+/+   | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| ECD0602  | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| GEMS1    | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| GEMS10   | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | С     | 0      | G     | Hap1      |
| GEMS18   | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| GEMS2    | +/+<br>+/+ | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| GEMS20   | / -        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| GENIS20  | +/+        | А      | с     | с     | А      | 4     | т        | с     | 0     | А      | с     | 0      | G     | Hap1      |
| GEIVIS25 | +/+        | А      | С     | С     | А      | 4     | т        | С     | 0     | А      | С     | 0      | G     | Hap1      |
| GEIVIS27 | +/+        | А      | С     | C     | А      | 4     | т        | С     | 0     | А      | C     | 0      | G     | Hap1      |
| GENIS28  | +/+        | A      | С     | c     | A      | 4     | т        | С     | 0     | A      | c     | 0      | G     | Hap1      |
| GENIS29  | +/+        | A      | С     | c     | A      | 4     | т        | С     | 0     | A      | c     | 0      | G     | Hap1      |
| GEIVIS3  | +/+        | Δ      | C     | C     | Δ      | 4     | т        | C     | 0     | Δ      | C     | 0      | G     | Han1      |
| GEMIS30  | +/+        | Δ      | C     | C C   | Δ      | 4     | т        | C     | 0     | Δ      | C C   | 0      | G     | Han1      |
| GEMS31   | +/+        | Δ      | C     | C C   | Δ      | 4     | т        | C     | 0     | Δ      | C C   | 0      | G     | Han1      |
| GEMIS37  | +/+        | Δ      | C C   | C C   | Δ      |       | т        | C     | 0     | Δ      | C C   | 0      | G     | Han1      |
| GEMS41   | +/+        | Δ      | C C   | C C   | Δ      |       | т        | C     | 0     | Δ      | C C   | 0      | G     | Han1      |
| GEMS44   | +/+        | Δ      | C     | C C   | Δ      | 4     | т        | C     | 0     | Δ      | C C   | 0      | G     | Han1      |
| GEMS45   | +/+        | Δ      | C     | C C   | Δ      |       | т        | C     | 0     | Δ      | C C   | ů<br>O | G     | Han1      |
| GEMS46   | +/+        | Δ      | C     | C C   | Δ      |       | т        | C     | 0     | Δ      | C C   | ů<br>O | G     | Han1      |
| GEMS48   | +/+        | Δ      | C C   | C C   | Δ      |       | т<br>т   | C     | 0     | Δ      | C C   | 0      | G     | Han1      |
| GEMS50   | +/+        | ^      | C C   | C C   | ^      |       | т        | c     | 0     | ^      | C C   | 0      | G     | Hap1      |
| GEMS51   | +/+        | ^      | C C   | C C   | ^      |       | т        | c     | 0     | ^      | C C   | 0      | G     | Hap1      |
| GEMS52   | +/+        | ^      | C C   | C C   | ^      |       | т        | c     | 0     | ^      | C C   | 0      | G     | Hap1      |
| GEMS53   | +/+        | ^      | C C   | C C   | ^      | 4     | -<br>-   | c     | 0     | ^      | C C   | 0      | G     | Hap1      |
| GEMS54   | +/+        | A<br>  |       |       | A<br>_ | 4     | '<br>-   | C     | 0     | A<br>_ | C C   | 0      | G     | Hapi      |
| GEMS56   | +/+        | A<br>^ |       |       | A<br>  |       | -<br>-   |       | 0     | A<br>  | 0     | 0      | 6     | Hap1      |
| GEMS57   | +/+        | A      |       |       | A      | 4     | -<br>-   |       | 0     | A      |       |        | 6     | napi      |
| GEMS58   | +/+        | A      | C     | C     | A      | 4     | -        | C     | 0     | A      | C     |        | G     | нар1      |
| GEMS59   | +/+        | A      | C     | C     | A      | 4     | <u>_</u> | C     | 0     | A      | C     | 0      | G     | Hap1      |
| GEMS60   | +/+        | A      | C     | C     | A      | 4     |          | C     | 0     | A      | C     | U      | G     | Hap1      |
| GEMS61   | +/+        | A      | С     | С     | A      | 4     | ſ        | С     | 0     | A      | С     | 0      | G     | Hap1      |
| GEMS62   | +/+        | A      | С     | С     | A      | 4     | T        | С     | 0     | A      | С     | 0      | G     | Hap1      |
| GEMS63   | +/+        | A      | С     | С     | A      | 4     | Т        | С     | 0     | A      | С     | 0      | G     | Hap1      |

|          |            |       |       |       |       |       | Site  |       |       |       |       |       |       |          |
|----------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| Line     | TE         | -1983 | -1884 | -1875 | -1722 | -1692 | -1636 | -1565 | -1518 | -1341 | -1267 | -1206 | -1145 | Нарютуре |
| GEMS64   | +/+        | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1     |
| GEMS65   | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1     |
| GEMS66   | +/+        | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1     |
| GY1007   | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| GY1032   | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1     |
| GY220    | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| GY237    | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1     |
| GY246    | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1     |
| GY386    | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1     |
| GY462    | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1     |
| GY798    | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| GY923    | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| НВ       | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| HSBN     | ,<br>+/+   | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| HTH-17   | ,<br>+/+   | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| HU803    | +/+        | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| HUANGC   | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| нус      | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| H7S      | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| IRE291   | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| IRE314   | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 14112    | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 1412     | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 1153     | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 1163     | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 1103     | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 11846    | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 11040    | - / -      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| JI055    | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | о     | G     | Hap1     |
| K10      | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| K12      | . /.       | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| K14      | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 12190    | - / -      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
| 114.0128 | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | о     | G     | Hap1     |
|          | +/+<br>./. | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | о     | G     | Hap1     |
|          | +/+        | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1     |
|          | +/+        | А     | С     | С     | А     | 4     | Т     | С     | 0     | А     | С     | 0     | G     | Hap1     |
| LIAU5263 | +/+        | A     | c     | c     | A     | 4     | Т     | c     | 0     | A     | c     | 0     | G     | Hap1     |
| LK11     | +/+        | Δ     | C     | C     | Δ     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Han1     |
| LV28     | +/+        | Α     | C     | C     | A     | 4     | т     | C     | 0     | A     | c     | 0     | G     | Hap1     |
| LXN      | +/+        | Α     | C     | C     | A     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Han1     |
| LY042    | +/+        | Δ     | C     | C     | Α     | 4     | т     | C     | 0     | Α     | C     | 0     | G     | Han1     |
| M153     | +/+        | Δ     | C     | C     | Δ     | Δ     | т     | C     | 0     | Δ     | C     | 0     | G     | Han1     |
| M165     | +/+        | A     | C     | C     | A     | 4     | т     | C     | 0     | A     | C     | 0     | G     | Han1     |
| M97      | +/+        | Δ     | C     | C     | Δ     | Δ     | т     | C     | 0     | Δ     | C     | 0     | G     | Han1     |
| MN       | +/+        | Δ     | C     | C     | Δ     | 4     | I T   | C     | 0     | Δ     | C     | 0     | G     | Han1     |
| M0113    | +/+        |       | -     | U U   |       |       |       |       | U U   |       |       |       |       |          |

| Line     |            |       |       |       |       |       | Site   |       |       |       |        |       |       | Hanlatuna |
|----------|------------|-------|-------|-------|-------|-------|--------|-------|-------|-------|--------|-------|-------|-----------|
| Line     | TE         | -1983 | -1884 | -1875 | -1722 | -1692 | -1636  | -1565 | -1518 | -1341 | -1267  | -1206 | -1145 | нарютуре  |
| M017     | +/+        | А     | С     | С     | А     | 4     | т      | С     | 0     | А     | С      | 0     | G     | Hap1      |
| NAN21-3  | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | С      | 0     | G     | Hap1      |
| P178     | +/+        | А     | С     | С     | А     | 4     | т      | С     | 0     | А     | С      | 0     | G     | Hap1      |
| Q1261    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| R08      | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | С      | 0     | G     | Hap1      |
| R15      | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| R15X1141 | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| RY684    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | С      | 0     | G     | Hap1      |
| RY697    | +/+        | А     | с     | С     | А     | 4     | т      | с     | 0     | А     | С      | 0     | G     | Hap1      |
| RY713    | +/+        | А     | с     | С     | А     | 4     | т      | с     | 0     | А     | С      | 0     | G     | Hap1      |
| RY729    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| RY732    | ,<br>+/+   | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| RY737    | ,<br>+/+   | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| S22      | ,<br>+/+   | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| 537      | ,<br>+/+   | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SC55     | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SHEN5003 | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| \$1273   | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| 51444    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SI446    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SY1032   | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SY1032   | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SV1039   | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SV1052   | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SV1077   | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| SV1129   | +/+<br>+/+ | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| \$72072  | +/+<br>+/+ | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| \$13073  | +/+<br>./. | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| 51990    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| J1999    | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
| TT1C     | +/+        | А     | с     | с     | А     | 4     | т      | с     | 0     | А     | с      | 0     | G     | Hap1      |
|          | +/+        | А     | С     | С     | А     | 4     | т      | С     | 0     | А     | С      | 0     | G     | Hap1      |
| 172      | +/+        | А     | С     | С     | А     | 4     | т      | С     | 0     | А     | С      | 0     | G     | Hap1      |
| 111      | +/+        | A     | С     | c     | A     | 4     | т      | с     | 0     | A     | c      | 0     | G     | Hap1      |
| TY10     | +/+        | A     | С     | c     | A     | 4     | т      | с     | 0     | A     | c      | 0     | G     | Hap1      |
| 1911     | +/+        | Δ     | C     | C     | Δ     | 4     | т      | C     | 0     | A     | C      | 0     | G     | Han1      |
| TY2      | +/+        | Δ     | C     | C C   | Δ     |       | т<br>Т | C     | 0     | Δ     | C C    | 0     | G     | Han1      |
| 143      | +/+        | Δ     | C     | C     | Δ     | 4     | т      | C     | 0     | Δ     | C      | 0     | G     | Han1      |
| TY4      | +/+        | Δ     | C     | C     | Δ     |       | т      | C     | 0     | Δ     | C<br>C | 0     | G     | Han1      |
| TY5      | +/+        | Δ     | C     | C     | Δ     | 4     | т      | C     | 0     | Δ     | C      | 0     | G     | Han1      |
| TY6      | +/+        | A     | C     | C     | A     |       | Ţ      | C     | 0     | A     | C      |       | G     | Han1      |
| TY7      | +/+        | A     | C     | C     | A     |       | Ţ      | C     | 0     | A     | C      |       | G     | Han1      |
| TY8      | +/+        | 4     | C     | C     | Δ     | 4     | T      | C     | 0     | A     | C      | 0     | G     | Han1      |
| TY9      | +/+        | A     | C     | C     | A .   |       | ,<br>T | C     | 0     | A     | C      |       | G     | Han1      |
| U8112    | +/+        | A .   | C     | C     | A     |       | Ţ      | C     | 0     | A     | C      |       | G     | Han1      |
| W138     | +/+        | ~     |       | C     | A     |       | -<br>- | C     | 0     | A     | C      |       | G     | Han1      |
| WMR      | +/+        | A     | C     | L.    | ~     |       |        | C     | 0     | ~     | C.     |       | 0     | 1 aht     |

| Line     |          |       |       |       |       |       | Site  |       |       |       |       |       |       | Hanlatuna |
|----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| Line     | TE       | -1983 | -1884 | -1875 | -1722 | -1692 | -1636 | -1565 | -1518 | -1341 | -1267 | -1206 | -1145 | нарютуре  |
| WU109    | +/+      | А     | С     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| XI502    | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| XUN971   | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| XZ698    | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YAN414   | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YE107    | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YE478    | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YE515    | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YE52106  | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YE8001   | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| YU374    | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| YU87-1   | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZAC546   | +/+      | А     | с     | С     | А     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap1      |
| ZB648    | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZH68     | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHENG22  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHENG29  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHENG32  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHENG35  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHENG58  | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHENG653 | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZHI41    | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZI330    | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZONG3    | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZONG31   | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap1      |
| ZZ01     | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap1      |
| CIMBL10  | +/+      | А     | с     | С     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL15  | +/+      | А     | с     | С     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL19  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL29  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBI 4  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL46  | +/+      | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL62  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBI 63 | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL76  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL78  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBL89  | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CIMBI 96 | ,<br>+/+ | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CMI 170  | +/+      | А     | с     | С     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CML171   | +/+      | А     | с     | с     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| CMI 172  | +/+      | А     | с     | С     | т     | 4     | т     | С     | 0     | А     | С     | 0     | G     | Hap2      |
| CMI 225  | +/+      | А     | с     | С     | т     | 4     | т     | с     | 0     | А     | С     | 0     | G     | Hap2      |
| CMI 411  | +/+      | А     | с     | С     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
| SW92F114 | +/+      | А     | с     | С     | т     | 4     | т     | с     | 0     | А     | с     | 0     | G     | Hap2      |
|          | +/+      | А     | с     | С     | А     | 4     | т     | с     | 0     | А     | С     | 0     | с     | Hap8      |
| CIMBL80  | +/+      | А     | с     | с     | А     | 4     | т     | с     | 0     | А     | с     | 0     | с     | Hap8      |

|          |          |        |       |        |       |       | Site  |        |       |        |        |       |       |          |
|----------|----------|--------|-------|--------|-------|-------|-------|--------|-------|--------|--------|-------|-------|----------|
| Line     | TE       | -1983  | -1884 | -1875  | -1722 | -1692 | -1636 | -1565  | -1518 | -1341  | -1267  | -1206 | -1145 | Нарютуре |
| CIMBL95  | +/+      | А      | С     | С      | А     | 4     | т     | С      | 0     | А      | С      | 0     | С     | Hap8     |
| CML122   | +/+      | А      | с     | С      | А     | 4     | т     | С      | 0     | А      | т      | 1     | G     | Hap9     |
| CML139   | +/+      | А      | С     | С      | А     | 4     | т     | С      | 0     | А      | т      | 1     | G     | Hap9     |
| CIMBL60  | +/+      | А      | с     | С      | А     | 4     | т     | С      | 0     | А      | т      | 1     | G     | Hap9     |
| CML118   | +/+      | А      | С     | С      | т     | 4     | т     | С      | 0     | А      | С      | 0     | С     | Hap10    |
| CIMBL99  | +/+      | А      | с     | С      | т     | 4     | т     | С      | 0     | А      | С      | 0     | С     | Hap10    |
| 7884-4HT | +/+      | А      | А     | А      | т     | 12    | С     | т      | 3     | G      | т      | 9     | А     | Hap11    |
| DONG46   | +/+      | А      | А     | А      | т     | 12    | с     | т      | 3     | G      | т      | 9     | А     | Hap11    |
| CIMBL40  | -/-      | А      | С     | С      | А     | 4     | с     | С      | 0     | А      | С      | 0     | С     | Hap12    |
| CIMBL74  | -/-      | А      | с     | с      | А     | 4     | с     | С      | 0     | А      | С      | 0     | С     | Hap12    |
| CIMBL115 | -/-      | А      | с     | С      | А     | 4     | с     | С      | 0     | А      | С      | 0     | G     | Нар3     |
| CIMBL127 | -/-      | А      | с     | С      | А     | 4     | с     | С      | 0     | А      | С      | 0     | G     | Hap3     |
| CIMBL136 | -/-      | А      | с     | С      | А     | 4     | С     | С      | 0     | А      | С      | 0     | G     | Hap3     |
| CIMBL149 | ·<br>-/- | А      | с     | с      | А     | 4     | с     | с      | 0     | А      | с      | 0     | G     | Hap3     |
| CIMBL157 | -/-      | А      | с     | с      | А     | 4     | с     | С      | 0     | А      | С      | 0     | G     | Hap3     |
| CIMBL33  | -/-      | А      | с     | с      | А     | 4     | С     | с      | 0     | А      | С      | 0     | G     | Hap3     |
| CIMBL34  | -/-      | А      | с     | с      | А     | 4     | С     | с      | 0     | А      | С      | 0     | G     | Hap3     |
| CIMBI 39 | -/-      | А      | с     | с      | А     | 4     | с     | с      | 0     | А      | с      | 0     | G     | Hap3     |
| CIMBL35  | -/-      | А      | с     | с      | А     | 4     | С     | С      | 0     | А      | с      | 0     | G     | Hap3     |
|          | -/-      | А      | с     | с      | А     | 4     | С     | с      | 0     | А      | с      | 0     | G     | Hap3     |
| CINIDLOZ | -/-      | А      | с     | с      | А     | 4     | с     | с      | 0     | А      | с      | 0     | G     | Hap3     |
| CIVIL226 | -/-      | A      | С     | c      | A     | 4     | С     | c      | 0     | A      | c      | 0     | G     | Hap3     |
| CIVIL27  | -/-      | Δ      | C     | C      | Δ     | 4     | C     | C      | 0     | Δ      | C      | 0     | G     | Han3     |
| CML287   | -/-      | Δ      | C     | C C    | Δ     | Λ     | C     | C      | 0     | Δ      | C C    | 0     | G     | Han3     |
| CML300   | -/-      | ^      | C C   | C C    | ^     | 1     | C     | c      | 0     | ^      | C C    | 0     | G     | Hap2     |
| CML305   | -/-      | ^      | C C   | C C    | ^     | 1     | C     | c      | 0     | ^      | C C    | 0     | G     | Hap2     |
| CML31    | -/-      | ^      | C C   | C C    | ^     | 4     | C     | c      | 0     | ^      | C C    | 0     | G     | Hap3     |
| CML364   | -/-      | A<br>_ |       | C<br>C | A<br> | 4     |       | C<br>C | 0     | A<br>_ | C C    | 0     | G     | Hap2     |
| CML426   | -/-      | A<br>_ |       | C<br>C | A<br> | 4     |       | C<br>C | 0     | A<br>_ | C C    | 0     | G     | Hap2     |
| CML470   | -/-      | A      |       | C      | A     | 4     |       | C      | 0     | A      | C<br>C | 0     | G     | нарз     |
| GEMS32   | -/-      | A      | C     | C      | A     | 4     | C     | C      | 0     | A      | C<br>C | 0     | G     | нарз     |
| CML228   | -/-      | A      | C     | C      | A     | 4     | C     | C      | 3     | A      | C      | 0     | G     | нар4     |
| CIMBL45  | -/-      | A      | C     | C      | A     | 4     | C     | C      | 3     | A      | C      | 0     | G     | Нар4     |
| CIMBL49  | -/-      | A      | С     | С      | А     | 4     | С     | С      | 3     | A      | С      | 0     | G     | Hap4     |
| CIMBL79  | -/-      | A      | С     | С      | А     | 4     | С     | С      | 3     | A      | С      | 0     | G     | Hap4     |
| CIMBL93  | -/-      | A      | С     | С      | A     | 4     | С     | С      | 3     | A      | С      | 0     | G     | Hap4     |
| CIMBL94  | -/-      | A      | С     | С      | A     | 4     | С     | С      | 3     | A      | С      | 0     | G     | Hap4     |
| CIMBL156 | -/-      | A      | С     | С      | A     | 4     | С     | С      | 3     | A      | С      | 0     | G     | Hap4     |
| GEMS4    | -/-      | A      | С     | С      | A     | 4     | С     | С      | 3     | A      | С      | 0     | G     | Hap4     |
| GEMS5    | -/-      | А      | С     | С      | А     | 4     | С     | С      | 3     | А      | С      | 0     | G     | Hap4     |
| GEMS11   | -/-      | А      | С     | С      | А     | 4     | С     | С      | 3     | А      | С      | 0     | G     | Hap4     |
| GEMS19   | -/-      | А      | С     | С      | А     | 4     | С     | С      | 3     | А      | С      | 0     | G     | Hap4     |
| GEMS23   | -/-      | А      | С     | С      | А     | 4     | С     | С      | 3     | А      | С      | 0     | G     | Hap4     |
| CIMBL106 | -/-      | А      | А     | А      | т     | 12    | С     | Т      | 3     | G      | т      | 9     | А     | Hap5     |
| CIMBL107 | -/-      | А      | А     | А      | т     | 12    | С     | Т      | 3     | G      | т      | 9     | А     | Hap5     |
| CIMBL108 | -/-      | А      | А     | А      | т     | 12    | С     | т      | 3     | G      | т      | 9     | А     | Hap5     |
| CIMBL109 | -/-      | А      | А     | А      | т     | 12    | С     | т      | 3     | G      | т      | 9     | А     | Hap5     |

| TE         -1983         -1884         -1875         -1722         -1692         -1636         -1565         -1518         -1341         -1267         -1206         -1145           CIMBL11         -/-         A         A         A         T         12         C         T         3         G         T         9         A         Hapter           CIMBL110         -/-         A         A         A         T         12         C         T         3         G         T         9         A         Hapter           CIMBL110         -/-         A         A         A         T         12         C         T         3         G         T         9         A         Hapter           CIMBL118         -/-         A         A         A         T         12         C         T         3         G         T         9         A         Hapter           CIMBL12         -/-         A         A         A         T         12         C         T         3         G         T         9         A         Hapter           CIMBL128         -/-         A         A         T         12 | 15<br>15<br>15<br>15<br>15 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| CIMBL11       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL110       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL110       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL118       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL12       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL12       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL129       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL13       -/-       A                                                                                                                                    | 05<br>15<br>15<br>15       |
| CIMBL110       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL118       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL118       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL12       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL12       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL129       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL130       -/-       A       A                                                                                                                                   | 05<br>15<br>15             |
| CIMBL118       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05<br>15<br>15             |
| CIMBL12       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL128       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL128       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL129       -/-       A       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap         CIMBL150       -/-       A       A       T       12       C                                                                                                                                   | 15<br>15                   |
| CIMBL128       -/-       A       A       T       12       C       T       3       G       T       9       A       Haps         CIMBL129       -/-       A       A       T       12       C       T       3       G       T       9       A       Haps         CIMBL130       -/-       A       A       T       12       C       T       3       G       T       9       A       Haps         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Haps         CIMBL130       -/-       A       A       T       12       C       T       3       G       T       9       A       Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                         |
| CIMBL129       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap!         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap!         CIMBL13       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap!         CIMBL150       -/-       A       A       T       12       C       T       3       G       T       9       A       Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| CIMBL13 -/- A A A T 12 C T 3 G T 9 A Hap<br>CIMBL150 -/- A A A T 12 C T 3 G T 9 A Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                          |
| CIMBL150 -/- A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                          |
| CIMBL18 -/- A A A T 12 C T 3 G T 9 A Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                          |
| CIMBL20 / A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                          |
| CIMBLES / A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                          |
| CIMPLES / A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                          |
| CIMPLOT / A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                          |
| CIMBLES $-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                          |
| CIMBL44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                          |
| CIMBL48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| CIMBL70 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                          |
| CIMBL81 -/- A A A I I2 C I 3 G I 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5                         |
| CIMBL91 -/- A A A I 12 C I 3 G I 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5                         |
| CIMBL92 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                          |
| CML189 -/- A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                          |
| CML192 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>i</i> 5                 |
| CML20 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>i</i> 5                 |
| CML286 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>i</i> 5                 |
| CML408 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                          |
| CML423 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                         |
| CML451 <mark>-/-</mark> A A A T 12 C T <mark>3 G T</mark> 9 A Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                         |
| CML473 -/- A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                         |
| CML479 -/- A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                         |
| GEMS12 -/- A A A T 12 C T 3 G T 9 A Hap!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                         |
| GEMS13 -/- A A A T 12 C T 3 G T 9 A Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                         |
| GEMS14 <mark>-/-</mark> A A <mark>A T 12 C T 3 G T</mark> 9 A Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                         |
| GEMS15 <mark>-/-</mark> A A <mark>A T 12 C T 3 G T</mark> 9 A Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                         |
| GEMS47 <mark>-/-</mark> A A A T 12 C T 3 G T 9 A Haps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                         |
| <sub>177</sub> G С А Т О С С З С Т 1 G Нарб                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                          |
| 1323 <mark>-/- G C A T O C C 3 C T 1 G</mark> Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                          |
| 7381 <mark>-/- G C A T O C C 3 C T 1 G</mark> Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                          |
| 05WN230 -/- G C A T O C C 3 C T 1 G Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                          |
| 18-599 _/_ G C A T O C C 3 <mark>C T 1 G</mark> Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                          |
| B151 -/- G C A T O C C 3 C T 1 G Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                          |
| CIMBL105 -/- G C A T O C C 3 C T 1 G Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                          |
| CIMBI117 -/- G C A T O C C 3 C T 1 G Hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                          |
| CIMBL20 -/- G C A T O C C 3 C T 1 G Hapf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                          |

|          |          |       |        |       |        |       | Site   |          |        |       |        |       |       |          |
|----------|----------|-------|--------|-------|--------|-------|--------|----------|--------|-------|--------|-------|-------|----------|
| Line     | TE       | -1983 | -1884  | -1875 | -1722  | -1692 | -1636  | -1565    | -1518  | -1341 | -1267  | -1206 | -1145 | нарютуре |
| CIMBL7   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML298   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML327   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML412   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML428   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML465   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML474   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| CML486   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| D047     | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| D863F    | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| DAN598   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| DAN599   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| DH3732   | -/-      | G     | С      | А     | т      | 0     | С      | С        | 3      | С     | т      | 1     | G     | Hap6     |
| JIAO51   | -/-      | G     | с      | А     | т      | 0     | С      | с        | 3      | с     | т      | 1     | G     | Hap6     |
| JY01     | _/_      | G     | с      | А     | т      | 0     | с      | с        | 3      | С     | т      | 1     | G     | Hap6     |
| LG001    | ,<br>_/- | G     | с      | А     | т      | 0     | с      | с        | 3      | С     | т      | 1     | G     | Hap6     |
| 11405262 | ,<br>_/_ | G     | с      | А     | т      | 0     | с      | с        | 3      | С     | т      | 1     | G     | Hap6     |
| 01319    | -/-      | G     | с      | А     | т      | 0     | с      | с        | 3      | с     | т      | 1     | G     | Hap6     |
| SHEN135  | ,        | G     | С      | А     | т      | 0     | с      | с        | 3      | с     | т      | 1     | G     | Hap6     |
| SHEN127  | ,        | G     | с      | А     | т      | 0     | с      | с        | 3      | с     | т      | 1     | G     | Hap6     |
|          | -,-      | G     | с      | А     | т      | 0     | с      | с        | 3      | С     | т      | 1     | G     | Hap6     |
|          | -/-      | G     | с      | А     | т      | 0     | с      | с        | 3      | с     | т      | 1     | G     | Hap6     |
| 202      | -/-      | G     | с      | А     | т      | 0     | с      | с        | 3      | с     | т      | 1     | G     | Hap6     |
| 2203     | -/-      | G     | C      | А     | т      | 0     | С      | С        | 3      | G     | т      | 1     | G     | Hap7     |
| 9642     | -/-      | G     | C      | Δ     | т      | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| 384-2    | -/-      | G     | C      | Δ     | т      | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| CIMBL101 | -/-      | G     | C      | Δ     | т      | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| CIMBL124 | -/-      | G     | C C    | Δ     | т      | 0     | C<br>C | C C      | 3      | G     | т      | 1     | G     | Han7     |
| CIMBL126 | -/-      | G     | C C    | Δ     | т      | 0     | C<br>C | C C      | 3      | G     | т      | 1     | G     | Han7     |
| CIMBL23  | -/-      | G     | C      | Δ     | т      | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| CIMBL56  | -/-      | G     | C      | Δ     | т      | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| CIMBL65  | -/-      | G     | C      | Δ     | т      | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| CML28    | -/-      | G     | C      | Δ     | т<br>т | 0     | C      | C        | 3      | G     | т      | 1     | G     | Han7     |
| CML338   | -/-      | G     | c      | ^     | -<br>- | 0     | c      | C        | 2      | G     | '<br>- | 1     | G     | Hap7     |
| CML432   | -/-      | G     | C<br>C | ^     | -<br>- | 0     | C      | C        | 2      | G     | -<br>- | 1     | G     | Hap7     |
| CML433   | -/-      | G     | C      | A<br> | -<br>- | 0     | C      | C        | с<br>С | G     | - '    | 1     | G     | Hap7     |
| CML471   | -/-      | G     | C      | A<br> | -<br>- | 0     | C      | C        | с<br>С | G     | - '    | 1     | G     | Hap7     |
| LY       | -/-      | G     | C      | A     | т<br>Т | 0     | C      | C        | 3      | G     | т<br>Т | 1     | G     | нар7     |
| YUN46    | -/-      | G     | C      | A     | _      | 0     | C      | C        | 3      | G     |        | 1     | G     | нар/     |
| ZHONG69  | -/-      | G     | C      | A     | -      | 0     | С      | <u>с</u> | 3      | G     | -      | 1     | G     | Нар/     |
| CML169   | -/-      | A     | A      | A     |        | 12    | C      |          | 3      | G     |        | 1     | G     | нар13    |
| CIMBL43  | -/-      | A     | A      | A     | T      | 12    | С      | T        | 3      | G     | Т      | 1     | G     | Hap13    |
| CIMBL151 | -/-      | A     | A      | A     | т      | 12    | С      | т        | 3      | G     | т      | 1     | G     | Hap13    |
| CIMBL14  | -/-      | A     | A      | A     | т      | 12    | С      | т        | 3      | G     | т      | 9     | С     | Hap14    |
| CIMBL31  | -/-      | A     | A      | A     | т      | 12    | С      | т        | 3      | G     | т      | 9     | С     | Hap14    |
| CIMBL53  | -/-      | А     | А      | A     | т      | 12    | С      | т        | 3      | G     | т      | 9     | С     | Hap14    |
| CIMBL84  | -/-      | А     | А      | А     | Т      | 12    | С      | Т        | 3      | G     | Т      | 9     | С     | Hap14    |

| Line    |     |       |       |       |       |       | Site  |       |       |       |       |       |       | Upplotupo |
|---------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| Line    | TE  | -1983 | -1884 | -1875 | -1722 | -1692 | -1636 | -1565 | -1518 | -1341 | -1267 | -1206 | -1145 | паріотуре |
| B11     | -/- | А     | А     | А     | т     | 12    | С     | С     | 3     | С     | т     | 1     | G     | Hap15     |
| CIMBL22 | -/- | А     | А     | А     | т     | 12    | с     | С     | 3     | с     | т     | 1     | G     | Hap15     |
| CML454  | -/- | А     | А     | А     | т     | 12    | с     | С     | 3     | с     | т     | 1     | G     | Hap15     |

|           |     | -19 | -18 | -18 | -17 | -15 | -13 | -12 | _              | Ŀ                 |                   |                           |                            | Trait (Me                | eans±SE) <sup>d</sup>    |                            |                            |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|----------------|-------------------|-------------------|---------------------------|----------------------------|--------------------------|--------------------------|----------------------------|----------------------------|
| Haplotype | TE  | 83  | 84  | 75  | 22  | 18  | 41  | 06  | N <sup>a</sup> | Temp <sup>D</sup> | Trop <sup>c</sup> | APR<br>(°C)               | SPR<br>(°C)                | DTA<br>(d)               | DTS<br>(d)               | GDD_DTA_LD<br>(°C)         | GDD_DTS_LD<br>(°C)         |
| Hap1      | +/+ | А   | С   | С   | А   | 0   | А   | 0   | 300            | 193               | 107               | 325.7±0.2                 | 345.8±0.2                  | 71.7±0.01                | 73.6±0.01                | 1008.0±0.3                 | 1039.7±0.4                 |
| Hap2      | +/+ | А   | С   | С   | Т   | 0   | А   | 0   | 18             | 0                 | 18                | 311.4±2.0                 | 328.9±2.3                  | 71.5±0.2                 | 72.9±0.2                 | 1003.7±3.0                 | 1027.6±3.2                 |
| Нар3      | -/- | А   | С   | С   | А   | 0   | А   | 0   | 20             | 0                 | 20                | 361.4±1.8                 | 387.0±2.0                  | 74.5±0.2                 | 76.3±0.2                 | 1050.9±2.7                 | 1082.9±2.8                 |
| Hap4      | -/- | А   | С   | С   | А   | 3   | А   | 0   | 12             | 4                 | 8                 | 330.6±3.0                 | 362.3±3.4                  | 72.4±0.3                 | 74.8±0.3                 | 1016.8±4.6                 | 1057.8±4.8                 |
| Hap5      | -/- | А   | А   | А   | т   | 3   | G   | 9   | 41             | 5                 | 36                | 356.9±1.0 <sup>fghi</sup> | 370.3±1.1                  | 74.2±0.1 <sup>fh</sup>   | 75.8±0.1                 | 1048.0±1.5 <sup>h</sup>    | 1074.5±1.6                 |
| Hap6      | -/- | G   | С   | А   | т   | 3   | С   | 1   | 32             | 18                | 14                | 360.1±1.3 <sup>fghi</sup> | 381.7±1.5 <sup>fghi</sup>  | 74.5±0.1 <sup>fghi</sup> | 76.3±0.1 <sup>fghi</sup> | 1053.5±1.9 <sup>fghi</sup> | 1080.9±2.1 <sup>fghi</sup> |
| Hap7      | -/- | G   | С   | A   | т   | 3   | G   | 1   | 16             | 2                 | 14                | 372.9±2.2 <sup>fghi</sup> | 388.8±2.5 <sup>fghij</sup> | 75.0±0.2 <sup>fghi</sup> | 76.6±0.2 <sup>fghi</sup> | 1059.2±3.4 <sup>fghi</sup> | 1086.3±3.5 <sup>fghi</sup> |

**Table S9** Effect of *ZmCCT* promoter haplotypes (MAF  $\ge$  0.01) on photoperiod sensitivity and flowering time in a maize panel of 508 lines. Only one site is shown when the sites are in complete LD

<sup>a</sup>The number of maize lines. <sup>b</sup>The number of temperate germplasms. <sup>c</sup>The number of tropical germplasm. <sup>d</sup>Means and SE, least square means of photoperiod responses in GDDs and flowering time in days and GDDs under long-day conditions for each haplotype after correcting for the population structure and kinship. <sup>f,g, h, i, j</sup> Refer to the corresponding haplotype was significantly different from Hap1, Hap2, Hap3, Hap4 and Hap5, respectively (P < 0.05),  $P < 1.6 \times 10^{-9}$  for all the six traits between haplotypes with TE and without TE. APR, anthesis photoperiod response; SPR, silking photoperiod response; DTA, days to anthesis; DTS, days to silking; GDD\_DTA\_LD, GDD of days to anthesis under long-day conditions; GDD\_DTS\_LD, GDD of days to silking under long-day conditions.

| Cis-element name | Sequence motif | Number of copies in the<br><i>ZmCCT</i> promoter (1145) | Number of copies in the<br><i>ZmCCT</i> promoter (HZS) |
|------------------|----------------|---------------------------------------------------------|--------------------------------------------------------|
| EVENINGAT        | ΑΑΑΑΤΑΤΟΤ      | 1                                                       | 1                                                      |
| GT1CONSENSUS     | GRWAAW         | 16                                                      | 17                                                     |
| IBOX             | GATAAG         | 2                                                       | 1                                                      |
| IBOXCORE         | GATAA          | 5                                                       | 5                                                      |
| INRNTPSADB       | YTCANTYY       | 4                                                       | 4                                                      |
| SORLIP1AT        | GCCAC          | 2                                                       | 1                                                      |
| SORLIP2AT        | GGGCC          | 1                                                       | 1                                                      |

 Table S10 Light-responsive elements identified in the ZmCCT promoter

| Lines  | TE  | -1983 | -1884 | -1875 | -1722 | -1518 | -1341 | -1206 | Haplotypes |
|--------|-----|-------|-------|-------|-------|-------|-------|-------|------------|
| CML52  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| CML247 | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Tzi8   | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Ki3    | +/+ | ?     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Mo18W  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| CML69  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| CML103 | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| CML322 | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| M162W  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| NC350  | +/+ | ?     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Tx303  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| MS71   | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| HP301  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| NC358  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| M37W   | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Oh7B   | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| B97    | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Mo17   | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| Oh43   | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| II14H  | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| B73    | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| P39    | +/+ | А     | С     | С     | А     | 0     | А     | 0     | Hap1       |
| CML333 | +/+ | А     | С     | С     | Т     | 0     | А     | 0     | Hap2       |
| Ki11   | -/- | А     | С     | С     | А     | 3     | А     | 0     | Hap4       |
| CML228 | -/- | А     | С     | С     | А     | 3     | А     | 0     | Hap4       |
| CML277 | -/- | А     | А     | А     | Т     | 3     | G     | 9     | Hap5       |
| Ky21   | -/- | А     | А     | А     | Т     | 3     | G     | 9     | Hap5       |

 Table S11 All haplotypes composed of 8 polymorphic sites in 26 NAM founders

| Trait                       | Description                                                                                | Units |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------|-------|--|--|--|
| Dave to anthosis (DTA)      | Number of days after planting for anthers exsertion on                                     |       |  |  |  |
| Days to anthesis (DTA)      | the tassel                                                                                 |       |  |  |  |
| Dave to cilking $(DTS)$     | Number of days after planting that silks are visible on                                    |       |  |  |  |
| Days to sliking (DTS)       | ears                                                                                       |       |  |  |  |
| Growing degree days to      | Accumulation of thermal time from sowing to anthesis                                       |       |  |  |  |
| anthesis (GDD_DTA)          | after a (10°C and 30°C) adjustment                                                         |       |  |  |  |
| Growing degree days to      | Accumulation of thermal time from sowing to silking                                        |       |  |  |  |
| silk (GDD_DTS)              | after a (10°C and 30°C) adjustment                                                         |       |  |  |  |
| Anthesis photoperiod        | The difference in growing degree days to anthesis between long- and short-day environments |       |  |  |  |
| response <sup>a</sup> (APR) |                                                                                            |       |  |  |  |
| Silking photoperiod         | The difference in growing degree days to silking between                                   |       |  |  |  |
| response <sup>a</sup> (SPR) | long- and short-day environments                                                           |       |  |  |  |
| Plant height (PH)           | Height from the ground to the tip of the main tassel                                       |       |  |  |  |
|                             | branch                                                                                     |       |  |  |  |
| Ear height (EH)             | Height from the ground to the ear                                                          | cm    |  |  |  |
| Node number (NN)            | Node number above the ground                                                               |       |  |  |  |
| Leaf angle (LA)             | Angle between the first leaf above the top ear and the                                     |       |  |  |  |
|                             | stem                                                                                       |       |  |  |  |
| Leaf numbers above the      | Number of leaves above the top ear                                                         |       |  |  |  |
| ear (LAE)                   |                                                                                            |       |  |  |  |
| Tassel blanch number        | Number of tassel branches                                                                  |       |  |  |  |
| (TBN)                       |                                                                                            |       |  |  |  |
| Tassel length (TL)          | Length of the main stem of the tassel                                                      | cm    |  |  |  |
| Leaf width (LW)             | Leaf width of the top ear                                                                  | cm    |  |  |  |
| Leaf length (LL)            | Leaf length of the top ear                                                                 | cm    |  |  |  |
| Ear length (EL)             | Length of the ear                                                                          | cm    |  |  |  |
| Ear diameter (ED)           | Diameter of the ear                                                                        | mm    |  |  |  |
| Kernel row number (KRN)     | Number of rows of kernels around an ear                                                    |       |  |  |  |
| Ear weight (EW)             | Weight of the ear                                                                          | g     |  |  |  |
| Cob diameter (CD)           | Diameter of the cob                                                                        | mm    |  |  |  |
| Kernel weight (KW)          | One hundred kernel weight                                                                  | g     |  |  |  |
| Row kernel number (KNR)     | Number of kernels per row                                                                  |       |  |  |  |
| Cob weight (CW)             | Weight of the cob                                                                          | g     |  |  |  |

 Table S12 Traits analyzed in this study

<sup>a</sup>The average of daily min and max was used as daily average temperature, and the following adjustments were implemented: 1) temperatures below 10 degrees C are set at 10 degrees C, and 2) temperatures above 30 degrees C are set at 30 degrees C. GDDs = $\sum[(\text{Tmax +Tmin})/2 - 10]$  (Veldboom et al. 1994, Theor Appl Genet, 88:7-16).