Supporting Information

Cheent et al. 10.1073/pnas.1304366110

Fig. S1. Synergy of hepatitis C virus (HCV) core_{35–44} peptides and HLA-A2 signal peptides (HLA-A2_{sp}) in inhibiting NKG2A⁺ natural killer (NK) cells from three additional donors. Degranulation of CD3⁺ CD56⁻ NKG2A⁺ CD158b⁻ NK cells in response to .174 cells incubated with 0–100 μ M HCV core_{35–44} alone (closed symbols), or in the presence of 1 μ M HLA-A2_{sp} (open symbols). Data are shown as means \pm SEM from three independent experiments. *P* values were calculated using one-way ANOVA.

Fig. S2. Flow cytometry cytotoxicity assays using sorted NKG2A⁺ NK cells. .174 cells incubated with 0 or 100 μ M HCV core₃₅₋₄₄ alone or in the presence of 1 μ M HLA-A2_{sp} were labeled with Cell Tracker Orange and then were used as targets in cytotoxicity assays with NKG2A⁺ NK cells. The gating strategy for the 0.174 target cells is shown in *A*, and the percentage of dead cells is indicated in *B*. SSC, side scatter.

Fig. S3. Synergy of HCV core₃₅₋₄₄ and HLA-A2_{sp} peptides in inhibiting specific subpopulations of NK cells. Degranulation of CD158b⁻ NKG2A+ NKG2C+ (*A*), CD158b⁻ NKG2A⁻ NK

Fig. S4. Peptide stabilization assays. Stabilization of HLA-E on .174 cells in the absence of peptide or loaded with 100 μ M hsp60_{sp} (*A*), EBV bzlf₃₉₋₄₇ (*B*), HIV p24₁₄₋₂₂ (*C*), or HLA-G_{sp} and HLA-G_{R5K} (*D*), as determined by flow cytometry. (*E*) Stabilization of HLA-A2 by GILGFVFTL (GILG) as measured by the HLA-A2-specific antibody BB7.2. For all histograms the mean fluorescence intensity of staining is shown within the relevant histogram plot.

DNA C

DNAC