Supplementary Information
Quantifying the effect of temporal resolution on
time-varying networks

B. Ribeiro, N. Perra, A. Baronchelli
August 31, 2013

In this supplementary information appendix we cover some details left out of our main paper.
e Section 1 proves that a RW on an activity driven network is stationary and ergodic.

e Section 2 provides a detailed derivation of Eq.(1) in the main text.

e Section 3 analyzes the random walk occupancy probability when At — 0.

e Section 4 analyzes the random walk occupancy probability in the special case of point-to-point
time-varying networks m = 1.

e Section 5 analyzes the random walk occupancy probability on time-varying network of cliques
in the At — 0 scenario.

e And finally, Section 6 details our simulation results on real datasets.

1 RW stationarity and uniqueness conditions

An important requirement for the RW to be stationary and ergodic is for the network to be con-
nected in time. A T-connected [5] time-varying network is a network that the aggregated network
over At — oo forms a connected graph (not necessarily fully connected). Consider some general
stationary, ergodic, and T-conenected time-varying network with a fixed set of NV nodes. From The-
orem 3.1 of Figueiredo et al. [5] a RW on such network is stationary, and the stationary distribution
is unique. To achieve this results we just need to translate the RW framework of Figueiredo et al.
into our framework, which requires only setting parameter v — oo of the Figueiredo et al. RW,
described in the paragraph after Definition 2.4).

2 Derivation of Q,,(At)

Let N > 1 denote the total number of nodes in the graph. Let 2 be the set of all possible activity
rates. There are no restrictions on the sample space €2, which can be a discrete subset or a collection
of continuous subsets. E.g., @ = {0.1,0.2,0.3}, another example is @ = {(0,0.5), (0.8,1)}, and our
likely scenario Q@ = (0,1). Let dF(a) denote the probability that a randomly chosen node has
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activity a. We write dF(a) instead of the more familiar density function p(a)da because da may
not be well defined if  is discontinuous or discrete. Let V() be the node that the RW is at time
tAt and let A(t) denote the activity of node V'(¢). If A(t) = a then the number of times V (¢) is
active during interval At, denoted Ka¢ 4 , is Poisson distributed in an activity driven network, i.e.,

(aArt)
k!

PKaie =k] = exp(—aAt).

Let Hay,, be the number of times any other node in the network connects to V'(¢) then

h
P[HAta = h] = % exp(—m(a)At),

where above we use the fact that N > 1 so that m(N(a) — a)/(N — 1) = m{a). Thus, for all
a,a’ €9Q,

dP[A((n+ 1)At) = a| A(nAt) = d'] =

= Z Z dP (n+1)At) = |A(nAt) =da, KAt,A(nAt) =k, HAt,A(nAt) = h]
k=0 h=0

X P[Ka¢ a(nat) =k Hat a(mar = h| A(nAt) = d]

- m(N; k) h adF(a) € o
;ﬂ;}( Nk T T N e @ T rhe )>

X P[Kat,or = E|P[Hat,ar = h],

where ¢ — 0 and U,,(N;k) is a the number of blue nodes in the graph after the following node
coloring process:

1. Start with a set of IV nodes all colored white;

2. pick m randomly sampled nodes chosen without replacement and color them blue;
3. repeat step 2 exactly k times;

4. U, (N k) is the total number of blue nodes in the set.

This problem is known as the coupon collector problem with batch selections. Note that Pdlya’s
urn model is a different model. In Pélya’s model when a node of a particular color is drawn, that
node is put back along with a new node of the same color, i.e., the size of the graph increases at
each round.

In the regime where the network is large enough in respect to At, N > 1, such that with high
probability an active node does not randomly choose the same neighbor twice in an interval At —
that is, a time-varying edge appears only once in an interval At — or more formally P[U(N;k) <
mKaiq] =0, Va € Q, yields

. o0 o0 dF €
Qala/(At) = llmeﬁo Zkzo Zh:O (mk+h+edF< ) Mkih+e & <a>(a) + mk+h+56(a’ — a’)) (1)

X (a/ﬁt)k exp(—a’At) x (m@hﬂ exp(—m(a)At) .
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Eq. (1) is also valid for N small if the aggregated network has weights representing the number
of times the same edge appears during the interval At. In such weighted aggregated network the
random walk chooses a neighbor with probability proportional to the neighbor’s edge weight. We
take an in-depth look at RWs on weighted aggregated networks in the special case m = 1 shown in
Section 4.

3 Special Case 1: At — 0

Assumption 1. We assume N >> 1 large enough such that P[U,, (N, k) < mKa¢,q] = 0, Va € Q.
Recall that we defined Qs = dP[A((n + 1)At) = a| A(nAt) = a']. For all a,a’ € Q, n >0,

Rt km h adF(a) € ,
Qaa/(At)_kz_:th_:o<k:m+h+edF(a)+km+h+e (a) +km—|—h—|—65(a a))

x P[Kat.ar = K|P[Hara = h]. 2)

Definition 1: Define o(x) as an undefined function of x such that ‘M —0asz—0.

xT

The probabilities the a node with activity a is active under Assumption 1 are:
o P[Katq > 1,Har e > 1] = o(Ab),
o P[Katq =1,Hpapq = 0] = d’ At + o(At),
e P[Kara =0,Harq = 1] = m{a)At + o(At),
o P[Knse =0,Hptq =0]=1—(a' +m(a))At + o(At),
Substituting the above equalities into (2) yields

adF(a)
(@)

Qajar (AL) = (1 = (a’ +m(a))At)d(a — a') + dF (a)a’ At + m{a)At (3)

RW stationary distribution

Define p,(n) = dP[A(nAt) = a]/(N dF(a)) as the RW occupancy probability. Define dp,(n + 1) =
pa(n+ 1) — py(n) as the increase in probability from time nAt to time (n + 1)At that the walker
is in a node with activity a. The quantity dp,(n + 1) is the probability that a walker that was at
a node with activity a’ and moved to a node with activity a minus the probability that the walker
was in a node with activity a and moved to a node with activity o/, integrated over all a’ € Q\{a}.

Quantifying the effect of temporal resolution on time-varying networks
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More formally,

dpa(n +1) = Nd;( | /aem{a} dP[A((n + AL = a, A(nAt) = d (@)
— dP[A((n + 1)At) = d/, A(nAt) = a]

L / dP[A((n + 1)AY) = a| A(nAt) = o/|dP[A(nAE) = d
a’'eQ

~ NdF(a)
— dP[A((n + 1)At) = d | A(nAt) = a]dP[A(nAt) = (5)
1 , adF(a) n
N o (0 © mio) ) APLA(AD = of
—/ (dF(a’)aAt—i— a4 dF ) A(nAt) = d]
a’ e}

1 / _ a/ a a)m n _ a/
:mAt (/{l/eQdF(a)a dP[A(nAt) = ]+/MEQ dF (a)mdP[A(nAt) ]

—/ dF(a')a dP[A(nAt) = a] —/ a’ dF(a’)ym dP[A(nAt) = a]) ,
a’en a’eQ

where in (5) we use the fact that dP[A((n + 1)At) = a, A(nAt) = a] — dP[A((n + 1)At) =
a, A(nAt) = a] =0 to add {a} to the integral. Thus,
dpa(n+1
dpa(n +1) zdF(a)/ a' dP[A(nAt) = d'] + adF(a m/ A(nAt) = d'|
At a’ e

— adP[A(nAt) = d] / (@) —dPlAAL = d / o dF(dYm.  (6)

eQ
Using our definition of p,(n) = dP[A(nAt) = a]/(NdF(a)), Eq. (6) yields

NdF(a)ip:(n +1) =dF(a) /a/eQ a' NdF(a')par(n) + adF(a)m/ . NAF(a')par (n)
_ a po(n)NdF(a) / (@) = pu(n) NF (o) / v a)m
Dividing both sides by NdF(a) yields
%j—l) = /a/EQ a' dF(a')par(n) +am o dF(a")par(n)
—apq(n) /,GQ dF(a’) — pa(n) //EQ a’ dF(a")ym
— [ P ram [ aF@pwln) - pam)at @) (7)
a’eN a’eQ

Because the RW is stationary and ergodic, as walker progresses, i.e., n > 1, p,(n) reaches a
stationary distribution. More precisely,

lim dpg(n) =0.

n—oo
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Substituting the above limit in (7) and defining the stationary occupancy probability p, = lim, 00 pa(n)
we get the following flow balance equations

/ a' dF(a)pas + am/ dF(a")pas = pala — {a)m).
a’eQ a’eQ

Define (pa) = [, @ padF(a) and then we simplify the above to

_ (pa) +am
a4+ (a)ym”’

To obtain (p,) observe that

o) = [  onadF(a) = / . 0 lpa) Tam) 1

a+ (aym
= () /aesl a+ <a>mdF(a) " /aGQ a+ <a>mdF(a)
_ mpBs
<pa> 1_ ﬂ ?

where

ai
8 = / Y 4F(a).
e at fam
We note in passing that Eq. (8) is exactly the result in Perra et al. [1].

4 Special Case 2: m =1

Consider a Poisson process where edges arrive to node V(t) with rate a’ + (a) and let Ra; be
the total number of edges attached to node V (¢) during time window (tAt, (¢ + 1)At]. Note that
the network is assumed stationary and thus Ra; does not depend on t. Moreover, Ra; is Poisson
distributed with rate (a’ + (a)),

(@' + (@) A" (o' +(@nar

P[RAt = 7"] = l

Note that Ra; does not depend on t as the network process is stationary.

Next we randomly assign edges one of two of the following types: an edge is of type passive
with probability a’'/(a’ + (a)) and of type active with probability (a)/(a’ + {a)). From the infinite
divisibility property of the Poisson distribution, the the number of passive and active edges are
Poisson distributed with parameters a’ At and (a)At, respectively.

Edge types & weighted aggregated networks. The above model does not describe a network
but rather just edge arrivals and type assignments at a node. Fortunately, such description
suffices in activity driven networks. This happens because at the next RW step, the network
reconstructs itself, allowing us to treat the coupled RW and network dynamics as a simple renewal
process. Interestingly, the above model already considers multiple appearances of the same edge as
long as the aggregated network is represented as a weighted aggregated network.

Quantifying the effect of temporal resolution on time-varying networks
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Static network representations of time-varying networks can weighted or unweighted. In weighted
aggregated networks, edges in G;(At), where G1(At) is the result of the union of all the edges
generated in the interval [tAt, (t41)At) (see Figure 1 of our main paper), have integer weights that
represent the number of times the edge appears during interval [tAt, (¢ + 1)At). In unweighted
aggregated networks, edges are unweighted. An edge is present in G;(At) if it appears one or
more times during interval [tAt, (¢t + 1)At); otherwise the edge is not present. Throughout this
work we consider unweighted aggregated networks. However, one of our main results, namely Sec-
tion 4 result on the random walk occupancy probability on activity driven networks with m = 1
concurrent edge creations, can be readily applied to weighted network representations as well.

From the point of view of the walker, a weighted network with integer edge weights has an
equivalent multigraph. A multigraph is a graph that allows multiple edges between nodes. The
multigraph is constructed as follows: for each edge (u,v) with weight w € N in the weighted graph
add w edges (u,v) in the multigraph. A RW on a multigraph, just like a RW on a weighted
graph, selects a destination endpoint with probability proportional to the number of edges to that
destination (its weight in the weighted graph). In the regime where the probability that a node
connects to the same edge twice is close to zero — e.g., N > 1 is large enough in respect to At
— then the weighted graph is a simple 0-1 graph with high probability (and thus equivalent to an
unweighted network). In what follows we assume that the network is a multigraph graph, which
encompasses the in special scenario of 0-1 graphs.

Derivations. Recall that the walker randomly chooses one destination out of the Ra; edges in the
multigraph. Because the type of the first edge — passive or active — is selected randomly, the random
walk choice of edge is statistically equivalent to committing to always choose the first edge before
knowing its type. We wish to remind the reader that V() has activity rate a’. The probability
that the first edge has a passive destination is a’/(a’ 4 (a)) and the probability that it has an active
destination is {a)/(a’ + (a)). The probability that V(¢) has no edge after a time window of size
At is (urar = e~ (@' +(a)at, Then, the probability that the walker moves from V() to an active
destination with activity a is (1 — (u.a¢)(a)/(a’ + {(a)) x adF(a)/{a) = (1 — (u.a¢)adF(a)/(a’ +
(a)). The probability that the walker moves from V(t) to a passive destination with activity a is
(1 —=Cu,a)d /(d + (a)) x dF(a) = (1 — (. ar)a’dF(a)/(a’ + (a)). The probability that the walker
stays in V(t) is (47 ,A¢, which is the probability that there are no edges out of V' (¢). Thus, summing
all these factors we obtain the probability that the walker moves from a node with activity a’ to a
node with activity a:

_ (adF(a) = d'dF(a) ey d )
Qa\a’(At) - (a, T <CL> a + <Cl>> (]- Ca ,At) + 5( )Ca JAL (9)
a-+a ,
= a + <a> dF(a)(l - Ca’,At) + 5(& - a)Ca’,At. (10)

The occupation probabilities {p, }vacq, are the unique solution to the fixed point set of Chapman-
Kolmogorov equations

1 /
Pa= TF(a) /Q Qujor (At)purdF (@), Va € Q. (1)

Quantifying the effect of temporal resolution on time-varying networks
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5 RW occupancy probability on time-varying networks of
cliques. The At — 0 case.

As At — 0 network nodes are either isolated or belong to a clique. For instance, in the co-citation
network assume we measure the time that authors submit their work to the journal at time ¢.
Authors cannot submit work simultaneously to the same journal — although authors may to submit
multiple articles at short bursts so that they end up in the same journal volume. At time ¢ an
author is either isolated — when the author did not submit a paper at time ¢ — or connected in a
clique formed by the co-authors of the paper submitted at time ¢t. We can then use Theorem 3.4
of Figueiredo et al. [5] which shows that a RW on any (stationary, ergodic, and T-connected) time-
varying network whose snapshots are cliques has uniform occupancy probability, that is, p, = 1/N.

6 Simulation on Real Datasets

We simulate a RW on top of the datasets as follows. First we build as a series of static graphs
Gi(At), t=0,1,...,|T/At] from the dataset, where T is the time of the last event in the dataset.
Given the initial condition that the RW starts at a random node 7y = (1/N,...,1/N) we obtain
the RW occupancy probability at time 7" by right multiplying 7 by HgéAtJ P, where P, is the
RW transition probability matrix of Gt(At).

To obtain the matching theoretical predictions we first obtain dF(a) from the data. Let F(a)
be the fraction of nodes with activity greater or equal than a. By definition lim._qdF(a) =
F(a) — F(a + €). Choosing ¢ = 1072 yields good results with low computational burden. Figure S1
plots the empirical F(a) against a of the PRL author activity for different aggregation windows,
At € {one day, ten days, two months, 6 months}. And Figure S2 plots the empirical F(a) against a
of the Yahoo! Music song activity for different aggregation windows, At € {one second, one minute,
one hour, six hours, and one day}. The theoretical results of Figures 5 and 6 in our main paper
were obtained with dF(a) computed from the dataset snapshots with At = 1 second for Yahoo! and
At =1 day for PRL.

Note that in snapshots created by projecting a bipartite network (if A is the original bipartite
matrix, then the projected network adjacency matrix can be either AAT or AT A). In such projected
networks as we increase At by a factor of @ > 1, At’ = At the increase in activity may be greater
or less than «. This is because while there is an « increase in the average number of links from the
one side of the network to the other, the growth in the number of connections between agents in the
projected network does not necessarily increase with «. In order to take this non-trivial projection
effect into account, we rescale our At as to best fit the observed data.

To evaluate the impact of the empirical dF(a) for different choices of At in the results of Figure 4
of our main paper, we recompute Eq. (11) using the empirical dF(a) obtained from At = 60 (one
minute) instead of the empirical dF(a) obtained from At = 1 (second) as in the original figure.
Figure S3 shows our results. We note that the main difference between the results obtained in
Figure S3 and the ones in Figure 4 of our main paper are concentrated on low activity nodes, which
are better modeled by the empirical dF(a) from At = 1. Comparing again the figures for high
activity nodes shows that our analytical results are robust to the choice of At when extracting the
empirical dF(a). Our final observation is then that in our datasets choosing the lowest resultion of
At to obtain the empirical dF(a) works best.

Quantifying the effect of temporal resolution on time-varying networks
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Figure S1: (PRL dataset) F(a) for At of one day, ten days, two months, six months.
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Figure S2: (Yahoo! dataset) F'(a) for At of one second, one minute, one hour, six hours, and one
day.
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Figure S3: occupancy probability p, of a RW at the end of the simulation as a function of node
activity. This figure differs from Figure 4 of our main paper in that dF(a) in the main paper is
obtained from At of one second and in the above figure dF(a) is obtained from At of 60 seconds.
The points are the values of p, on the time-varying graph of Yahoo! song ratings for different
integrating windows At of one second, one hour, six hours, and one day. The solid lines are the
numerical solution of Eq. (11). The errors bars are not visible in this case.
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