**Supplementary Information** 

### $\ensuremath{\mathsf{IFN}\beta}\xspace$ -dependent Increases in STAT1, STAT2, and IRF9 Mediate Resistance to

### Viruses and DNA Damage

HyeonJoo Cheon, Elise G. Holvey-Bates, John W. Schoggins, Samuel Forster, Paul Hertzog, Naoko Imanaka, Charles M. Rice, Mark W. Jackson, Damian J. Junk, and George R. Stark



Figure S1. The expression of U-STAT1-induced antiviral genes is sustained for 12 days after IFN stimulation, along with increased levels of the STAT1, STAT2, and IRF9 proteins

(A) The levels of IRF9 and STATs 1 and 2 proteins were analyzed by the Western method in BJ normal fibroblasts collected 0-12 days after a single treatment with IFN $\beta$  (50 IU/ml).

(B and C) The expression of the U-STAT1-target antiviral genes *IFI27*, *MX1*, and *OAS2* (B) and other ISGs *MYD88*, *IRF1*, and *IFI16* (C) was analyzed by real-time PCR in BJ normal fibroblasts collected 0-12 days after a single treatment with IFN $\beta$  (50 IU/mI). The levels of gene expression were calculated semi-quantitatively, by using the  $\Delta\Delta$ Ct method. The data are represented as means of triplicate PCR analyses ± standard deviations (SD).



#### Figure S2. ISGs were not induced by IFN $\beta$ in STAT1-null fibroblasts reconstituted with Y701F STAT1

STAT1-null fibroblasts were transfected with wild-type-STAT1 or Y701F-STAT1 in the lentiviral vector, and the cells were treated with 50 IU/ml of IFN $\beta$  for 4 h. The expression of *IF127, OAS2*, and *MX1* was analyzed by real-time PCR in untreated (C) and treated cells. The levels of gene expression were calculated semi-quantitatively, by using the  $\Delta\Delta$ Ct method. The data are represented as means of triplicate PCR analyses ± standard deviations (SD).



## Figure S3. Antiviral effects resulting from high levels of Y701F-STAT1, STAT2, and IRF9 are not influenced by IFN $\beta$ in the media

(A) hTERT-HME1 cells expressing high levels of wild-type-STAT1/STAT2/IRF9 (WT) or Y701F-STAT1/ STAT2/IRF9 (YF) were infected with 1 MOI of GFP-expressing VSV. The GFP signal was detected by using fluorescence microscopy (X 100) 8 h after infection.

(B) hTERT-HME1 cells stably transfected with wild-type-STAT1/STAT2/IRF9 (WT) or Y701F-STAT1, STAT2, and IRF9 (YF) were pre-treated with 0.1 or 1 IU/ml of IFN $\beta$  for 18 h and then infected with 1 MOI of VSV. The cells were collected 10 h after infection and titers of infectious virus were measured by plaque assays. The data are represented as means of triplicate experiments with virus infected cells ± SD. ND, not different statistically (P>0.05, by two-tailed t-test). Virus titers in IFN $\beta$ -treated WT cells were significantly different compared to untreated WT cells (P<0.01, by two-tailed t-test).

Cheon et al. Supplementary Information - 4



# Figure S4. High levels of U-STAT1, U-STAT2, and IRF9 proteins increase the binding of U-ISGF3 to ISREs of target genes

(A) ISREs in the promoters of U-ISGF3-induced genes (IFI27, OAS2, and MX1) and ISGs not induced by U-ISGF3 (MYD88, ADAR, and IRF1) were identified in 5'UTRs and -5000 bp upstream from transcription start sites (+1) using the transcription factor search program TFSEARCH by (http://www.cbrc.jp/research/db/TFSEARCH.html, Threshold=80.0). Triangles represent ISREs and their directions (▶, forward; ◀, reverse). The striped triangles are the most conserved sequences and the binding of U-ISGF3 to them is presented in Figure 4.

(B) hTERT-HME1 cells stably transfected with empty vector (Vec) or STAT1/STAT2/IRF9 (S1S2I9) were used. Cells were cross-linked with 1% formaldehyde and the cell lysates were cross-linked with DTBP. Chromatin was sheared into <1 kb lengths by sonication. Rabbit polyclonal antibody against IRF9 or comparable rabbit IgG was used for immuno-precipitations. Real-time PCR was performed to amplify the precipitated DNAs with primer pairs spanning ISREs in the promoters of the *IF127* and *OAS2* genes. The levels of gene expression were calculated semi-quantitatively, by using the  $\Delta\Delta$ Ct method. The values represent the percentages of DNA amount in ChIP-ed samples compared to 2% input DNA. The data are represented as means of triplicate PCR analyses ± standard deviations (SD). \*\* represents p<0.01 and \* represents p<0.05, by two-tailed t-test, compared to the IgG-control. ND, not different statistically (P>0.05, by two-tailed t-test).

(C) hTERT-HME1 cells were treated with 3 IU/ml of IFNβ for 4 or 72 h. ChIP assays were carried out as described above using rabbit polyclonal antibodies against IRF9 or PY-STAT1. Real-time PCR was performed as described above using primer pairs spanning ISRE of the *IFI27* gene.



#### Figure S5. Knocking p53 down increases the expression of STAT1 protein

Human primary mammary epithelial cells were transfected with an shRNA against p53 (sh p53) or an unrelated shRNA (sh NON), and the expression of STAT1 was examined in individual clones, 1-4, by the Western method.



### Figure S6. Knocking STAT1 and IRF9 down makes H196, a resistant SCLC line, more sensitive to DNA damage induced by doxorubicin

The resistant small cell lung carcinoma cell line H196 was transfected with shRNAs against STAT1, STAT2, and IRF9, or a non-targeted shRNA (sh NON). The cells were treated with 1  $\mu$ M doxorubicin and their viability was assessed after 72 h by using an Alamar blue assay. Cell numbers were determined by generating standard curves with known numbers of untreated sh NON cells. The values are percentages of the numbers of surviving doxorubicin-treated cells compared to untreated cells (100%). The data are represented as means of triplicate of Alamar blue assays ± SD. \*\* represents p<0.01 and \* represents p<0.05, by two-tailed t-test, compared to doxorubicin-treated sh NON cells.

#### Table S1. Genes induced by ISGF3, but not by U-ISGF3

The 48 genes (51 probes) were selected as the genes induced only by IFN $\beta$ , not by IFN $\gamma$  or Y701F-STAT1 overexpression. The BJ fibroblasts were treated by IFN $\beta$  (3 IU/ml for 6 h), and microarray data were analyzed as described in "Materials and methods".

| PROBE_ID     | SYMBOL   | PROBE_ID     | SYMBOL      |
|--------------|----------|--------------|-------------|
| ILMN_1734652 | ARHGAP27 | ILMN_1697817 | PANX1       |
| ILMN_1787595 | B3GALT3  | ILMN_1663927 | PARP10      |
| ILMN_1726840 | B3GALT3  | ILMN_1788059 | PCGF5       |
| ILMN_1669140 | BLZF1    | ILMN_1736548 | PHACTR4     |
| ILMN_1732278 | C1orf80  | ILMN_1815134 | PI4K2B      |
| ILMN_1791980 | CUTA     | ILMN_1755173 | PLEKHA4     |
| ILMN_1728478 | CXCL16   | ILMN_1810608 | PNPT1       |
| ILMN_1697864 | CXorf38  | ILMN_1718222 | PPM1K       |
| ILMN_1743373 | DLL1     | ILMN_1656953 | PRKD2       |
| ILMN_1720083 | EHD4     | ILMN_1728009 | PRP2        |
| ILMN_1706502 | EIF2AK2  | ILMN_1672398 | RAB20       |
| ILMN_1740466 | FAM46A   | ILMN_1727045 | RASGRP3     |
| ILMN_1750400 | FLJ11286 | ILMN_1813430 | RNF36       |
| ILMN_1653466 | HES4     | ILMN_1811498 | RP3-473B4.1 |
| ILMN_1762861 | HLA-F    | ILMN_1668358 | SAMD9       |
| ILMN_1803457 | IFI16    | ILMN_1705803 | SOX9        |
| ILMN_1686989 | INSIG1   | ILMN_1784364 | STARD5      |
| ILMN_1696434 | LAMA1    | ILMN_1689977 | TDRD7       |
| ILMN_1682336 | MASTL    | ILMN_1797236 | TGM2        |
| ILMN_1769550 | MGC19764 | ILMN_1785732 | TNFAIP6     |
| ILMN_1657435 | MT1M     | ILMN_1737599 | TRIM5       |
| ILMN_1738523 | MYD88    | ILMN_1704972 | TRIM5       |
| ILMN_1687768 | NCOA7    | ILMN_1797359 | TRIM5       |
| ILMN_1724898 | NFE2L3   | ILMN_1794612 | UBE1L       |
| ILMN_1678745 | NUDCD1   | ILMN_1654812 | UNC93B1     |
| ILMN_1728224 | OGFR     | ILMN_1798061 | ZFYVE26     |