
Electronic Supplementary Information (ESI) for Lab on a Chip. This Journal is © The Royal Society of Chemistry. 2011 

1 

 

 

A Multifunctional Pipette 

Alar Ainla,* Gavin D. M. Jeffries, Ralf Brune, Owe Orwar and Aldo Jesorka 
 

 
Electronic Supplementary Information (ESI) 

 

Table of contents 
 

 

Table of contents ...................................................................................................................................... 1 

Supplementary methods .......................................................................................................................... 2 

Fabrication ............................................................................................................................................ 2 

Supplementary figures .............................................................................................................................. 3 

Fig S2 (Tube optimization) .................................................................................................................... 3 

Fig S3 (Pneumatic control system) ........................................................................................................ 4 

Fig S4 (Tip stability) ............................................................................................................................... 5 

Fig S5 (Single cell solution delivery) ...................................................................................................... 5 

Supplementary analysis (Solution exchange times) ................................................................................. 6 

Inertia .................................................................................................................................................... 6 

Supply channel ...................................................................................................................................... 6 

Dead volume of the switch ................................................................................................................... 8 

Fluid dispersion in the outlet channel .................................................................................................. 8 

Outlet to cell ......................................................................................................................................... 9 

Scaling ................................................................................................................................................... 9 

Captions of supplementary movies ........................................................................................................ 10 

SMovie 1 (Positionable solution exchange) ........................................................................................ 10 

SMovie 2 (Individual cell-targeted delivery) ....................................................................................... 10 

 

 

 

Electronic Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2012



Electronic Supplementary Information (ESI) for Lab on a Chip. This Journal is © The Royal Society of Chemistry. 2011 

2 

 

Supplementary methods 

Fabrication 
Microchannel mold. All microchannel molds were prepared in the ISO100 cleanroom facility MC2 at Chalmers University of 
Technology. In order to yield ~20 µm thick SU-8 structures, SU-8-10 was dispensed onto 4” wafer and spun for 30 s at 1600 rpm 
(acceleration: 5 s till 500 rpm and 4 s till 1600 rpm), followed by baking for 2.5 min at 65 °C and 6 min at 95 °C. Thereafter the 
resist was exposed (200 mJ/cm2) through a chromium mask in a Karl Süss MA6 contact mask aligner (G-line, 5-6 mW/cm2), post 
baked for 1 min at 65 °C and 3 min at 95 °C and developed for 4 min in SU-8 developer (1-methoxy-2-propyl acetate). Finally the 
molds were cleaned by spraying with isopropanol and water, blow dried, ashed in a Plasma Therm Batchtop PE/RIE (oxygen 
plasma, 1 min, 50 W, 250 mTorr) and hard baked at 200 °C for 30 min. Before use all masters were anti-adhesion-treated for 
5min with dichlorodimethylsilane by exposing the surfaces to the vapors under a Petri dish cover. The Fabrication of 
polydimethylsiloxane (PDMS) pipettes is illustrated in figure S1. 

 

Fig S1. Pipette fabrication by means of replica molding. PDMS casting and curing was performed under a laminar flow hood (A) in a standard 
laboratory. PDMS pre-polymer (Dow Corning Sylgard 184) was prepared by mixing parts A and B in a ratio 10:1 (wt:wt) and degassed for 15 
min in a vacuum desiccator. Subsequently the PDMS mixture was cast into the mold (B). This mold is a combination of a machined 
polycarbonate upper part, defining the macroscopic shape of the pipettes, and a lower plate supporting a 4” wafer master. The thin PDMS layer 
was spin-coated onto an unstructured 4” wafer (C). Both parts were cured in an air circulation oven at a temperature of 95°C for 1 h. Thereafter, 
the slab containing four pipette structures was removed from the mold. Both the slab and the thin PDMS layer, still attached to the wafer, were 
plasma treated (Plasma Therm Batchtop PE/RIE at 250 mTorr, 85 W, 10 sccm O2 for 10 s) (D) and bonded to each other, followed by a baking 
step (95°C for 1h) to strengthen the bonding. The composite slab was then removed from the wafer and the individual pipettes were cut out (E). 
Subsequently the wells were punched out (F). Honing of the tip shape was performing using a microtome blade while observing the cutting 
region using a standard inspection microscope (G). Finally, the shaped PDMS part was plasma bonded onto a rectangular glass support (H), 
resulting in a functional “ready to use” tip (I). The whole process has a high yield and can be easily scaled through the use of larger wafers. Less 
scalable steps are the manual tip cutting (G), which currently requires individual alignment of the cutting blade and bonding to the glass support 
(H). It also requires prior alignment of glass and PDMS pieces. However, tools to facilitate or automate these steps are conceivable. 
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Supplementary figures 

Fig S2 (Tube optimization) 
 

 

Fig S2. Pressure propagation in supply tubes connecting the valve controller to the manifold, depending on their inner diameter (ID). In 
order to optimize the fluid switching speed, we compared different tubing materials and internal diameters. All the tubes tested were 1.0 m long. 
Narrow tubes have higher fluidic resistance hindering gas flow (tube limited), whereas wide tubing has a high volume with lower flow resistance, 
but needs to be filled (supply limited). For our pump supply, the optimal tube size was found to be 1 mm I.D, exhibiting both exponential rise and 
fall times of 6 ms. Rise and fall times without tube were measured to be 2 ms, indicating for a 1m section, the tube contributes with 4 ms. 
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Fig S3 (Pneumatic control system) 

 

Fig S3. Pneumatic control schematic and assembly. The components were purchased from SMC Sweden (pumps, electronic valves), 
Pneumadyne Inc. (solenoid valves) and ELFA AB (all other parts). The control unit was divided into two subunits: pressure controller (A) and 
valve controller (B). The control electronics are based on a PIC18F4550 microcontroller, interfaced to a PC via USB 2.0. Both pneumatic 
controller subunits (C) were equipped with 4mm push-fit connectors, which allow for quick reconfiguration, depending on the experiment and the 
type of pipette tip used. 
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Fig S4 (Tip stability) 

 

Fig S4. Minimizing tip displacement under operation. Due to material elasticity, the PDMS can deform and cause the pipette tip to change 
position by several µm when the pressure in the wells is changed. The tip displacement is mostly axial, with respect to the sample. This effect can 
be comparatively large when the pressure change takes place in the first well, i.e. closest to the tip. In our initial setup we observed elastic 
displacement of up to 40 µm/bar. Tip displacement can be also caused by deformation of a structurally weak tip holder. To reduce tip motion we 
added a deformation isolation well and upgraded the holder design to improve its structural strength. After these changes the motion was reduced 
to ~7 µm/bar. In typical experiments, the pressure steps are < 0.5 bar, yielding positional stability better than 4 µm.   

 

Fig S5 (Single cell solution delivery) 

 

Fig S5. Targeted delivery to individual HEK293 cells by means of the multipurpose pipette. The flow recirculation is maintained throughout 
the experiment, thus delivery to the cell is controlled through positioning of the pipette tip. A small isolated patch of HEK293 cells adhered to a 
glass coverslip is approached. Both recirculation volume and cell colony are visible in a combined brightfield and fluorescence image (A). 
Initially the cells contain no fluorescently labelled species (B).  Individual cells from the collective are targeted, and a Rhodamine B solution is 
delivered to label the cells (C). The label remains inside the cells upon retraction of the pipette. However, progressing photobleaching diminishes 
the fluorescent signal (D). The scale bar in panel B represents 90 µm. 
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Supplementary analysis (Solution exchange times) 
Here we provide a breakdown of the components contributing to the solution exchange time. Solenoid valves and external 
tubes were characterized experimentally (Fig. S2). 

 

Inertia 
If we change pressures and therefore the flow rates, the liquid has to be accelerated, which happens not instantaneously. ݌∆ܣ = ݌ሺܣ − ܴܳሻ =  ܸܽߩ

Where A is the cross section area, p is applied pressure change, Q is the flow rate, R is the fluidic resistance of the channel, ρ is 
the density of the liquid, V is the volume of the channel and a is the average acceleration 

݌ሺܣ − ܴܳሻ = ݐ݀ܳ݀ߩ  

නܴܣߩ− ݀ܳܳ − ܴ݌ = න ்ݐ݀
଴

௤
଴  

ܴܣߩ− ݈݊ ൬1 − ܴ݌ݍ ൰ = ܶ 

If we consider an exponential rise of the flow rate then ݍ = ሺ1 − ݁ିଵሻ ௣ோ and 

߬ =  ܴܣߩ

In our system: ܣ = 20 ∙ 40 ∙ 10ିଵଶ݉ଶ = 8 ∙ 10ିଵ଴݉ଶ, ܴ = 2.8 ∙ 10ଵହ ௠య௦	௉௔, ߩ = 1000 ௞௚௠య ߬ =  ݏ݉	0.45

 

 

Supply channel 
Channel deformation was also studied using COMSOL models for structural mechanics coupled with a moving mesh (Arbitrary 
Langrangian-Eulerian technique) (Fig. S6). The necessary mechanical parameters of Dow Corning Sylgard 184 PDMS were 
reported previously (F. Schneider, T. Fellner, J. Wilde, U. Wallrabe, J. Micromech. Microeng., 2008, 18, 065008). As a result, a 
roughly linear dependence was found between the applied pressure and a subsequent volume increase (at 1 bar the channel 
volume increases roughly 40%). This gives a specific fluidic capacitance of channel c 

ܿ = ܥ݈݀݀ = 3.2 ∙ 10ିଵହ ݉ଶܲܽ  
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Fig S6. PDMS channel deformation at an applied internal pressure of 1 bar. The largest channel deformation is directed towards the thin 

bottom layer. PDMS channels extending into the bulk of the device contribute much less,	ܿ ≈ 1 ∙ 10ିଵହ ௠మ௉௔ , but this is harder to estimate 

accurately due to complex device geometry. 

Flow rate propagation in a fluidic RC-line 

If we look the channel it is a one dimensional conducting line ܴܮ ݔ݀݌݀ = ܹ = ݐ݀ܳ݀  

ݔܹ݀݀ = ݐ݀݌݀ܿ  

ܮܴܿ ݀ଶݔ݀݌ଶ = ݐ݀݌݀  

Differential equations with this form are known as diffusion or thermal conductance equations. We can solve it for 1D form in 
COMSOL. For channels, of which 41mm are in supported and 10mm in unsupported PDMS. This yields a rise time of ~30 ms. 
(Fig. S7) 

 

Fig S7. Results of a COMSOL model, estimating the increase of the flow rate at the end of the supply channel after applying a pressure pulse to 

the entrance to the channel (well).  
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Dead volume of the switch 
For fluid switching to occur, the fluid front has to move over the output channel and a certain volume of the switch cavity has 
to be filled, requiring fluid flow	 ߬ =  ݌∆ܴܸ

 

This volume is ~0.03 nL, which for a pressure step of 0.3 bar results in a contribution to the solution exchange time of ~2.5 ms. 

Fluid dispersion in the outlet channel 
During the transport of the concentration pulse through the outlet channel, it is subject to dispersion. In our case,  

ܲé ≈ ሺ݀ 2⁄ ሻܦݒ = 250 

where ݀ = 20μ݉ is the channel dimension, ݎ ≈ ݀ 2⁄  is the approximate radius, ݒ = 12.5݉݉ ⁄ݏ  is the average flow velocity 
corresponding to a flow rate ܳ = ܦ and ݏ/ܮ5݊ = 5 ∙ 10ିଵ଴ ݉ଶ ⁄ݏ  is molecular diffusivity of fluorescein (a good estimate also 
for other small molecules). In order to choose a suitable dispersion model, we also evaluate the ratio of channel length and 
radius. ݎܮ = 100 

This processes is convection dominated (ܲé > 0), but since ܲé < 10 ௅௥ = 1000, diffusion cannot be neglected. The channel 

length is not sufficient to establish the Taylor regime (ܲé > 0.4 ௅௥ = 40).  The observed more complex regime is located in a 

transition region on a landscape of dispersion modes, according to R. F. Probstein, “Physiochemical Hydrodynamics. 2nd 
Edition, ch. 4.6: Taylor Dispersion in a Capillary Tube”, John Wiley & Sons, 1995. Therefore, the stepwise propagation of solute 
concentration through the square channel was modeled in COMSOL Multiphysics using a transient convection-diffusion 
simulation (Fig. S8). The concentration rise times obtained from this simulation were fitted to a power function. ߬ ≈ [ݏ]6.728 ∙ ሺܮ/[݉]ሻ଴.଺ହ଻ 

We can compare this result with Taylor dispersion on one hand 

߬ = ሺ1 − ݁ିଵሻඨߨ ݀ଶݒܦ48ܮ = ሺ1 − ݁ିଵሻඨߨ ݀ସܳܦ48ܮ ≈ 0.16 ∙ ݀ଶඨ  ܳܦܮ

and with pure convective dispersion on another hand. 

߬ ≈ 4.21  ௠௔௫ݒܮ

Regime Scaling Rise time L=1mm channel 
Taylor dispersion (circular tube) ߬ ∝ ݀ଶܮ଴.ହܳି଴.ହ ~40 ms 
Pure convection (circular tube) ߬ ∝ ݀ଶܮଵܳିଵ ~234 ms 

Simulation (square tube) ߬ ∝ ଴.଺ହ଻ܮ 70 ms 
 

With respect to both scaling and rise time, the simulated results reside between these two pure regimes, being somewhat 
closer to the Taylor regime. 
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Fig S8. COMSOL Simulation of spreading from a rectangular concentration front, when passing through the output channel. (A) Evaluation for 
different channel lengths from L = 100-1000 µm. Flow rate Q = 5nL/s. (B) 63 % concentration rise times depending on channel length, fitted 
with a power function ߬ ≈ [ݏ]6.728 ∙ ሺܮ/[݉]ሻ଴.଺ହ଻ 

Outlet to cell 
Solution delivery from the device outlet to the cell or surface is the most difficult to describe and to analytically solve or 
approximate, due to the complex interplay of recirculating flow, geometry and diffusion. Therefore a numerical COMSOL 
simulation was performed.  

Scaling 
We evaluate the scaling laws in dependence on the channel size for constant flow and pressure (Fig. S9) 

 

Fig S9. Scale dependence of the rise times (Sum of the components of inertia, dead volume, supply channel and output channel, but without 
external components) on the channel size, in case of constant flow rates (A) and constant pressures (B). 

From this analysis we conclude that at constant flow rates small channels are favourable. However, when considering a 
constant pressure regime, using the same pressure control, a channel size range around 40-60µm could be most suitable for 
high speed switching. This increase implies that the flow rates are significantly larger (20-80x times), indicating that the 
integrated wells would be depleted in <1 min. However, this could be a suitable option when designing a device for applying 
rapid, short pulses. 
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Captions of supplementary movies 
 

SMovie 1 (Positionable solution exchange) 
This movie demonstrates the ability to reposition the flow recirculation zone during solution exchange between three colored 
liquids (green, yellow and red). 

 

 

 

SMovie 2 (Individual cell-targeted delivery) 
A small isolated patch of several HEK-293 cells adhered to a glass coverslip are approached by the pipette, and one or two cells 
are targeted for labeling with a Rhodamine B solution, delivered by the pipette. The recirculation zone is maintained 
throughout the clip, such that delivery is mediated through positioning. The panels for figure S5 were extracted from this 
movie. 
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