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Figure S1. Average perturbation centrality and “number of visited nodes” values plotted against
the ratio of inter-modular edges.

Scale-free, modular benchmark graphs [1] were generated as described in Supplementary Methods.
Average perturbation centrality (black squares), average degree (red circles), the reciprocal of average
fill time (green triangles, added perturbation: 10,000 units per step) and average “number of visited
nodes” (blue diamonds) for a damping value of 0.85 were calculated from 3 randomly generated
benchmark graphs with ratios of inter-modular edges ranging from 0.05 to 0.85 with steps of 0.05 as
described in Methods of the main text for Turbine (with the change that a 95% threshold was used for
the fill time — that is, 95% of the network had to have an energy value larger than 1 — since the
benchmark networks were much more homogeneous than real-world networks) and in the
Supplementary Methods for ITM-Probe [2]. Values were normalized using the scale function of the R
package [3]. Note that the Spearman correlation between the various values was more than 0.95,
except for the average degree.
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Figure S2. Correlation of perturbation centrality, “number of visited nodes” and node degree.

Scale-free, modular benchmark graphs [1] were generated as described in Supplementary Methods. Perturbation centrality and “number of visited nodes”
measures were calculated from 3 sets of randomly generated benchmark graphs with ratios of inter-modular edges ranging from 0.05 to 0.85 with steps of 0.05
as described in Methods of the main text and in Supplementary Methods for ITM-Probe [2], respectively. Spearman correlations were calculated using the R
package [3]. Panel A shows correlation of perturbation centrality versus node degree, Panel B shows the correlation of number of visited nodes versus the
node degree, and Panel C shows the correlation of perturbation centrality and number of visited nodes. The data in Panel A reinforces the observation in the
main text that the degree becomes more important in the determination of the silencing time as the modules become more and more fuzzy and overlapping.
Interestingly, results from ITM-Probe behave in an exactly opposite way: as the communities become more overlapping, the number of visited nodes measure
quickly becomes negatively correlated with the degree (possibly because random walks can “turn back™). These two effects taken together resulted in a large
correlation between the perturbation centrality and number of visited nodes when there were pronounced modules, and a negative correlation when the

modules became fuzzier, which is shown by the data in Panel C.
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Figure S1. Comparison of perturbation centrality with the “number of visited nodes” measure of ITM-Probe as a function of node degree with
different ratios of inter-modular edges of benchmark graphs.

Scale-free benchmark graphs [1] with overlapping modules were generated as described in Supplementary Methods. Perturbation centrality (red, Panels A
through F) and “number of visited nodes” measures (blue, Panels G through L) were calculated as described in Methods of the main text and in Supplementary
Methods for ITM-Probe [2], respectively. For the generation of the benchmark graphs with ratios of inter-modular edges 0.05, 0,2, 0.35, 0.5, 0.65 and 0.80
appearing on Panels A/G, B/H, C/I, D/J, E/K and F/L, respectively, a random seed of 87 was used. The results suggest that nodes in the networks with
pronounced modules give similar results using Turbine and ITM-Probe (observe the same striping pattern showing the better perturbation propagation
capability of nodes having inter-modular edges). On the contrary, in networks with fuzzy modules, the result is still correlated with the degree in Turbine, but
ITM-Probe results do not seem to depend on the degree. These are the same results that can be obtained from Figure S2; this figure serves as an illustration of
the possible underlying pattern behind the change in correlation: the number of nodes visited measure seems to have an upper saturation-like limit in ITM-
Probe in networks with largely overlapping modules.
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Figure S4. A visual representation of the relation among different centrality measures.

We calculated Spearman correlations between different centrality measures for the 10 benchmark and
real-world networks shown in Table 2 of the main text. A 7-node graph was created from this data
using the different centrality measures as nodes, and the average correlation between pairs of
centralities as edge weights. The graph was thereafter laid out using the ForceAtlas 2 layout algorithm
(which uses edge weights) of Gephi [4] with default settings except for the “Edge weight influence”
option, which was set to 5.0. The layout generated this way can be a good approximation of the
relations between different centralities, since the more correlated centrality measures are connected by
more powerful “springs”; thereby their final position is closer to each other. It is visible on the figure
that the perturbation centrality measure occupies a new position with largest correlations to closeness
centrality, community centrality and weighted degree, just as the mean correlations of Table 2 in the
main text show.
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Figure S5. Distribution of perturbation centralities in 10 benchmark and real-world networks.

Histograms were generated using the same data set for 2 benchmark and 8 real-world networks that were used for Table S1 and S2. Detailed descriptions of
the networks are available in Supplementary Methods. Perturbation centralities were calculated according to Methods of the main text. Histograms from the
perturbation centralities were generated using the “hist” command of R [3], with default settings. The tested social network (Panel F), the modular benchmark
network [1] with pronounced modules (Panel I) and both conformations of Met-tRNA synthetase [5] (Panels G and H) had approximately normal distributions
of perturbation centrality values. The Filtered Yeast Interactome [6] (Panel E) and the 2010 release of the Database of Interacting Proteins [7] (Panel D), as
well as the modular benchmark network with fuzzy modules (Panel J) seemed to have approximately lognormal distributions for perturbation centrality. The
histogram of the 2005 release of the Database of Interacting Proteins looked like a scale-free distribution (Panel C), and finally, the most skewed distributions
were the perturbation centralities of the two metabolic networks [8,9], which looked like exponential distributions. However, all distributions failed the
Shapiro-Wilk normality test (p=5*10", 5%10%, 10™*, 10", 3¥*10°, 0.0003, 0.0094, 2*107, 3*10°, 3*10™, respectively), so the Wilcoxon rank-sum test had
to be used for statistical significance analysis instead of a t-test.
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Figure S6. Average perturbation centralities for different sets of residues in protein structure
networks.

Protein structure networks of the substrate-free and substrate-bound forms of the E. coli Met-tRNA
synthetase and rabbit cytochrome P450 2B4 proteins were generated as described in Methods and
Supplementary Methods of Text S1. Assignment of secondary structures for different amino acids
was done by PyMOL. Error bars show standard error of the mean. Different letters on top of the bars
mean significantly different groups (0=0.01, Wilcoxon rank-sum test). Panels A and B show data
calculated for the substrate-free and substrate (Met-AMP/tRNAM)-bound form of Met-tRNA
synthetase, respectively. Panels C and D show data calculated for the substrate-free and substrate
(imidazole)-bound form of cytochrome P450 2B4. In all cases amino acids of loops had significantly
(p=3.2%10%, 9.5%10°, 2.3*10°, 0.0001 for the free and bound conformations of Met-tRNA synthetase
and cytochrome P450, respectively; Wilcoxon rank-sum test, 0=0.00625 adjusted with Bonferroni
correction) lower perturbation centrality than average, while o-helices had significantly higher
(p=0.00023, 0.00015, 0.00083 ,0.0014 for the free and bound conformations of Met-tRNA synthetase
and cytochrome P450, respectively; Wilcoxon rank-sum test, 0=0.00625 adjusted with Bonferroni
correction) than average perturbation centrality. Panels E and F show the average perturbation
centralities of amino acids belonging to intra-protein communication pathways predicted by Ghosh
and Vishveshwara [5] (“Signaling residues”), as well as amino acids with experimentally verified
importance [5] (“Experimental residues”). Light blue, dark red and green bars show average
perturbation centralities of amino acids in loop, a-helical and B-sheet structures, while gray bars show
the global average perturbation centrality calculated for the whole protein. Pink and brown bars of
Panels E and F show average perturbation centralities of the Signaling and Experimental residues,
respectively. Note that both betweenness and closeness centralities were less successful than
perturbation centrality in differentiating between the above amino acid sets (cf. the current Figure with
Figures S7 and S8 of Text S1).
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Figure S7. Average betweenness centralities of different residue groups in Met-tRNA synthetase
and cytochrome P450 enzymes.

This figure is a direct parallel to Figure S6 and Figure S8, here using betweenness centrality instead
of perturbation and closeness centralities, respectively. Protein structure networks of the substrate-free
and substrate-bound forms of the E. coli Met-tRNA synthetase and rabbit cytochrome P450 2B4
proteins were generated as described in Methods of the main text and Supplementary Methods.
Assignment of secondary structures for different amino acids was performed by PyMOL. Error bars
show standard error of the mean. Different letters mean significantly different groups (0=0.01,
Wilcoxon rank-sum test). Panels A and B show data calculated for the substrate-free and substrate-
bound form of Met-tRNA synthetase, respectively. Panels C and D show data calculated for the
substrate-free and imidazole-bound forms of cytochrome P450 2B4. Panels E and F show the average
perturbation centralities of predicted communication pathways as described by Ghosh and
Vishveshwara [5] (“Signaling residues”) and other residues with experimentally verified importance
[5] (“Experimental residues™). Light blue, dark red and green bars on Panels A through D show
average perturbation centralities for residues in loops, a-helices and f-sheets, while gray bars show the
global average perturbation centrality calculated for the whole protein. Pink bars on Panels E and F
show average perturbation centralities of the Signaling residues, and brown bars show the means of
the Experimental residues of Met-tRNA synthetase. Betweenness centrality returned by far the largest
deviations of the three tested centralities (i.e. closeness, betweenness and perturbation centralities).
Loops still had significantly (p=0.0016, 0.011, 4.3*10°, 6.8%10” for the free and bound conformations
of Met-tRNA synthetase and cytochrome P450, respectively; Wilcoxon rank-sum test, 0=0.00625
adjusted with Bonferroni correction) lower mean centrality values than the global average in all
networks (but the substrate-bound Met-tRNA synthetase). Using betweenness centrality a-helices can
no longer be distinguished from the global mean (except for the substrate-bound form of cytochrome
P450). Signaling residues could still be distinguished from the global mean (Panels E and F), but the
differences in centralities for the Experimental residues were no longer significant.

11
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Figure S8. Average closeness centralities of different residue groups in Met-tRNA synthetase
and cytochrome P450 enzymes.

This figure is a direct parallel to Figure S6 and Figure S7, here using closeness centrality instead of
perturbation or betweenness centralities, respectively. Protein structure networks of the substrate-free
and substrate-bound forms of the E. coli Met-tRNA synthetase and rabbit cytochrome P450 2B4
proteins were generated as described in Methods of the main text and Supplementary Methods.
Assignment of secondary structures for different amino acids was performed by PyMOL. Error bars
show standard error of the mean. Different letters mean significantly different groups (a=0.01,
Wilcoxon rank-sum test). Panels A and B show data calculated for the substrate-free and substrate-
bound form of Met-tRNA synthetase, respectively. Panels C and D show data calculated for the
substrate-free and imidazole-bound form of cytochrome P450 2B4. Panels E and F show the average
perturbation centralities of predicted communication pathways as described by Ghosh and
Vishveshwara [5] (“Signaling residues™) and other residues with experimentally verified importance
[5] (“Experimental residues”). Light blue, dark red and green bars on Panels A through D show
average perturbation centralities for residues in loops, a-helices and B-sheets, while gray bars show the
global average perturbation centrality calculated for the whole protein. Pink bars on Panels E and F
show average perturbation centralities of the Signaling residues, and brown bars show the means of
the Experimental residues of Met-tRNA synthetase. Closeness centrality returned smaller deviations
than perturbation centrality. Interestingly, the distinction power of closeness centrality was slightly
lower in Met-tRNA synthetase, and exactly the same in cytochrome P450 as the distinction power of
perturbation centrality. In particular, the Experimental residues could no longer be distinguished from
the global mean (Panels E and F, p=0.034, p=0.04, respectively; 0.007 and 0.006 with perturbation
centrality), a-helices did not have significantly higher mean closeness centrality than the global
average in the substrate-bound Met-tRNA synthetase (Panel B, p=0.014 vs. 0.00015 with perturbation
centrality), and B-sheets were no longer distinguishable from loops in the substrate-free Met-tRNA
synthetase (Panel A, p=0.035 vs. 0.0034 with perturbation centrality). P-values were calculated using
the Wilcoxon rank-sum test, a=0.0125 adjusted with Bonferroni correction for a FWER of 0.05.
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Figure S9. Amino acids of Met-tRNA synthetase directly bound to tRNAM",

The underlying protein structure network of Met-tRNA synthetase was calculated and visualized by
the Turbine program as described in Methods, and was overlaid on the 3D image of the substrate-
bound form of the protein (and its tRNA™® complex) generated with PyMOL [10] using ray-tracing.
The bottom of the image shows the structure of tRNAM. The purple molecule in the middle of the
protein structure is the substrate Met-AMP marking the active site of the enzyme, the white sphere on
the right is the Zn”" ion. Blue circles mark those amino acids, which are directly bound to the tRNAM,
evidenced by an atomic distance of less than 4.5A between any atom of the residue and the tRNAM,
excluding hydrogen atoms.
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Figure S10. Results for edgetic perturbations.

We also tested the effects of edge-based perturbations as their importance have previously been stated in the literature [11]. Silencing time for an edge was calculated
by propagating a given amount of energy (10,000, 40,000 and 1,000,000 units) from both end-nodes of an edge, simultaneously. We calculated silencing times for all
edges for two modular benchmark networks [1], one with pronounced modules (only 5% of the links were inter-modular), and one with fuzzy modules (40% inter-
modular links), both generated with the random seed 10. Silencing times were measured with a dissipation value of 1, and silencing threshold was also set to 1. Further
definition of the silencing time is available in Methods of the main text. A link was termed inter-modular, if it was connecting two different communities. Dark red
bars show data obtained on the network with pronounced modules, while light blue bars display data from the network with fuzzy modules. We could observe the very
same effects for edge-based perturbations that we have observed for node-based perturbations. Panel A shows the mean perturbation centralities calculated for a large
starting perturbation (1,000,000 units on both endpoints of an edge). There was a major (p=0, Wilcoxon rank-sum test) difference between the mean silencing times
between fuzzy and pronounced modules in this case, and inter-modular edges were significantly (p=0.0094, a=0.025 with Bonferroni correction, Wilcoxon rank-sum
test) better spreaders of perturbation in the network with pronounced modules. The disparity between the edgetic perturbations of networks with fuzzy versus
pronounced modules was nearly eliminated, if a starting perturbation of 10,000 units was applied (Panel B). These effects were the same as what we have
demonstrated with node-based perturbations on Figures 1 and 2 of the main text. Panel C shows silencing times calculated for 40,000 units of starting energy
corresponding to the definition of perturbation centrality measure. (40,000 units of starting energy was used, since the benchmark networks contained 4000 nodes, and
perturbation centrality was defined as the reciprocal of the silencing time resulting from applying a perturbation of 10*n units of energy, where n is the number of
nodes in the network, see Methods of the main text.) Data of Panel C verifies that the choice of n*10 units as a starting perturbation is a nice compromise between
weighing the nodes’ mesoscopic position, that is, the modular location (which can be detected using a large starting perturbation) and their local position, that is, the
weighted degree of the node and its near neighbors (which can be detected using a small starting perturbation).
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Supplementary Tables

Table S1. Correlation between the reciprocal of fill time and closeness

centrality

Networks® Correlation® Average fill time®
Benchmark graphs with fuzzy modules 0.974 52
Benchmark graphs with pronounced modules 0.930 151
Substrate-free Met-tRNA synthetase protein structure network 0.957 76
Substrate-bound Met-tRNA synthetase protein structure network 0.941 94
Filtered Yeast Interactome 0.856 1344
Database of Interacting Proteins yeast interactome (release 2005) 0.857 215
Database of Interacting Proteins yeast interactome (release 2010) 0.941 168

B. aphidicola metabolic network 0.824 1225

E. coli metabolic network 0.746 1928
School friendship network 0.921 28
Mean and standard error 0.895 (0.023) 528 (219.9)

*Network descriptions are given in Supplementary Methods of Text S1.
®Correlation data show the Spearman’s rho correlation of the reciprocal of the fill time versus the
standard closeness centrality measure. Correlations between the reciprocal of fill time and closeness
centrality are much stronger than those between perturbation centrality and closeness centrality (mean
is 0.895 compared to 0.67 in Table 1, p=0.000487, Wilcoxon rank-sum test (correlations with

closeness centrality in Table 1 failed the Shapiro normality test with p=0.0019).

°Fill time was calculated for each node in each network by applying a perturbation of size 10,000 to
the selected node in each time step until more than 80% of the network nodes had an energy level

larger than 1. Dissipation was set to 0.

16



Table S2. Correlation of silencing times calculated for three different-sized starting perturbations in 8 real-world and two benchmark
networks

Network Correlaﬁon bgtween low- a_nd Corr_elat_ion be_tween medium— Correl_ation _between Iow—_and high-
medium-intensity perturbations | and high-intensity perturbations intensity perturbations

Benchmark graph with pronounced modules 0.41 0.90 0.22
Benchmark graph with fuzzy modules 0.94 0.95 0.80
Substrate-free Met-tRNA synthetase protein structure network 0.84 0.78 0.52
Substrate-bound Met-tRNA synthetase protein structure network 0.84 0.78 0.56

Filtered Yeast Interactome 0.88 0.81 0.57

Database of Interacting Proteins yeast interactome (release 2005) 0.94 0.93 0.80

Database of Interacting Proteins yeast interactome (release 2010) 0.85 0.89 0.63

E. coli metabolic network 0.99 0.97 0.96

B. aphidicola metabolic network 0.99 0.96 0.95
School-friendship network 0.87 0.81 0.66

Mean and standard error 0.853 (0.053) 0.877 (0.024) 0.668 (0.070)

Parameters of the different networks are available in the Methods section of the main article. Only the two benchmark graphs were model networks, generated
using the benchmark graph generator tool of Lancichinetti and Fortunato [1]. The other graphs originated from different real-world scenarios. Low-intensity
perturbation corresponds to an n unit large Dirac-delta starting perturbation, medium-intensity perturbation corresponds to 10*n units, and high-intensity
means that a 100*n unit-sized starting perturbation was applied to a single node when calculating its silencing time, n being the number of nodes in the
network. Silencing time was calculated for each node in the network as described in the Methods section of the main article. The columns show Spearman’s
correlation between silencing times calculated for nodes in the same network with different-sized starting perturbations. Correlations above 0.8 were marked
with bold letters. It can be noticed that there are no abrupt changes in the importance in the perturbation dissipation capability of different nodes as the
perturbation grows larger except for the benchmark network with disjunct modules, which means that real-world networks may display behavior closer to the
benchmark graph with fuzzy modules. The table also underlines the choice of choosing Nn*10 as the size of the perturbation when calculating perturbation
centrality, since it already seems to display module entrapment effects evidenced by the high correlation observed between medium- and high-intensity
perturbations in the benchmark network with disjunct modules compared to the substantially lower correlation observed in the same network between low-
and medium-intensity perturbations.
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Table S3. Statistically significantly enriched terms in the top 100 protein set of the DIP yeast interactome (release 2005) [7] containing
proteins with largest absolute perturbation centrality in differently stressed cases.

A. Significantly enriched terms in the top 100 set of largest perturbation centrality in the unstressed DIP (2005) interactome

P-value Term Proteins

3.98¢-06 | non-homologous end-joining YGL090W, YORO005C, YMR224C, YCR014C, YMR284W

0.000139 | cell cycle YOR026W, YGR188C, YOR353C, YOR005C, YKR031C, YBR057C, YJR140C, YMR224C, YERO018C, YEL061C, YLR254C,
YHR184W, YIL132C, YOR368W, YLR045C, YLR190W, YPL253C, YER147C, YGLO075C, YGL249W, YJL090C, YGL251C, YLR383W,
YCR063W, YMLO049C, YDR253C, YHL024W, YMR198W, YJL006C

0.00189 cellular response to stimulus YLR240W, YOR353C, YGL090W, YOR005C, YBR077C, YKRO031C, YMR224C, YBR128C, YGL155W, YCR027C, YCRO014C,
YIL132C, YLROO7W, YOR368W, YBR020W, YMLI112W, YNL145W, YHR134W, YOL043C, YER147C, YIL128W, YJL090C,
YHRO079C, YLR383W, YMR284W, YOR120W, YLR094C, YJL006C, YPL046C, YGL220W, YDR098C, YDL138W

0.00484 | M phase YOR026W, YGR188C, YKR031C, YBRO57C, YMR224C, YER018C, YEL061C, YLR254C, YHR184W, YIL132C, YOR368W,
YLRO045C, YPL253C, YER147C, YGLO75C, YGL249W, YGL251C, YHL024W, YMR198W

0.00637 cell cycle phase YORO026W, YGR188C, YKR031C, YBRO57C, YJR140C, YMR224C, YER018C, YEL061C, YLR254C, YHR184W, YIL132C, YOR368W,
YLRO045C, YPL253C, YER147C, YGLO075C, YGL249W, YJL090C, YGL251C, YHL024W, YMR198W

0.00886 | response to DNA damage stimulus | YGL090W, YOR005C, YMR224C, YCR014C, YIL132C, YLROO7W, YOR368W, YML112W, YHR134W, YOL043C, YER147C,
YIL128W, YJL090C, YLR383W, YMR284W, YJL006C, YPL046C

0.0165 cell cycle process YOR026W, YGR188C, YKR031C, YBR057C, YJR140C, YMR224C, YERO18C, YEL061C, YLR254C, YHR184W, YIL132C, YOR368W,
YLRO045C, YPL253C, YER147C, YGLO075C, YGL249W, YJL090C, YGL251C, YLR383W, YCR063W, YHL024W, YMR198W

0.0212 double-strand break repair YGL090W, YOR005C, YMR224C, YCR014C, YOR368W, YER147C, YJL090C, YLR383W, YMR284W

0.023 DNA metabolic process YGLO090W, YORO005C, YBR057C, YJR140C, YMR224C, YCRO014C, YIL132C, YLR0O07W, YOR368W, YHR134W, YOL043C,
YER147C, YGL249W, YIL128W, YJL090C, YGL251C, YLR383W, YMR284W, YLR0O10C, YDRO082W, YHL024W, YPL046C

0.0256 DNA repair YGL090W, YOR005C, YMR224C, YCRO014C, YIL132C, YLROO7W, YOR368W, YHR134W, YOL043C, YER147C, YIL128W,
YJL090C, YLR383W, YMR284W, YPL046C

0.048 double-strand break repair vianon- | YGL0O90W, YOR005C, YMR224C, YCR014C, YMR284W

homologous end joining

B. Significantly enriched terms in the top 100 set of largest perturbation centrality in the heat-shocked DIP (2005) interactome

P-value | Term Proteins
2.6e-05 condensed chromosome YOR026W, YGR188C, YBR156C, YER018C, YHR014W, YIL0O72W, YEL061C, YOL034W, YLR0O0O7W, YOR368W, YLR045C,
YPL194W, YHR079C-A
0.000126 | double-strand break repair via YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YJL092W, YDR369C
nonhomologous end joining
0.000414 | double-strand break repair YGL090W, YOR005C, YMR224C, YHR056C, YCR014C, YDR004W, YJL092W, YOR368W, YHR079C-A, YDR369C, YPR135W
0.000638 | non-recombinational repair YGLO090W, YOR005C, YMR224C, YHR056C, YCRO014C, YJL092W, YDR369C
0.00304 | condensed nuclear chromosome YORO026W, YGR188C, YERO18C, YHR014W, YILO72W, YEL061C, YOR368W, YLR045C, YPL194W, YHRO079C-A
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0.0063 | recombinational repair YMR224C, YDR004W, YIL132C, YOL034W, YPL194W, YHR079C-A, YDR369C, YPR135W

0.00869 | DNA repair YGL090W, YOR005C, YMR224C, YHRO056C, YCRO14C, YDRO04W, YJL092W, YIL132C, YOL034W, YLROO7W, YOR368W,
YPL194W, YHR079C-A, YHR134W, YDR369C, YPRI35W

00112 | cell cycle YORO026W, YGR188C, YOR353C, YOR005C, YKRO031C, YJR140C, YMR224C, YKL092C, YPL255W, YEROI8C, YHRO14W,
YKRO072C, YDRO04W, YIL072W, YEL061C, YLR254C, YHR184W, YIL132C, YOL034W, YOR368W, YLR045C, YLR190W,
YPL194W, YHR079C-A, YDR369C, YPR135W

0.0127 | nuclear part YDR312W, YOR026W, YGR188C, YJR002W, YNLO75W, YGL090W, YOR005C, YNL182C, YMRO033W, YJR140C, YNRO54C,
YMR224C, YHR056C, YKR092C, YDL148C, YMR025W, YPR112C, YBLO18C, YIR0O09W, YERO18C, YHRO14W, YJL039C, YBLO14C,
YDRO04W, YILO72W, YEL061C, YOR368W, YLR045C, YPL211W, YOR064C, YML112W, YOR191W, YHR004C, YPL194W,
YHRO079C-A, YHR134W, YDR369C, YPRI35W

0.0138 | response to DNA damage stimulus | YGL090W, YOR005C, YMR224C, YHR056C, YCRO14C, YDR004W, YJL092W, YIL132C, YOL034W, YLR0OO7W, YOR368W,
YML112W, YPL194W, YHR079C-A, YHR134W, YDR369C, YPR135W

0.0304 | M phase YORO026W, YGR188C, YKRO031C, YMR224C, YER018C, YHRO14W, YDR004W, YILO72W, YELO61C, YLR254C, YHR184W,
YIL132C, YOR368W, YLR045C, YPL194W, YHR079C-A, YDR369C, YPR135W

0.0322 | cellular response to stimulus YOR353C, YGL090W, YOR005C, YBRO77C, YOL067C, YKR031C, YMR224C, YBR128C, YHR056C, YGL155W, YNL242W,

YMRO025W, YKL092C, YCR027C, YDL166C, YCR014C, YDR004W, YJL092W, YIL132C, YOL034W, YLROO7W, YOR368W,
YBR020W, YML112W, YNL145W, YPL194W, YHR079C-A, YHR134W, YDR369C, YPR135W

C. Significantly enriched terms in the top

100 set of largest perturbation centrality in the oxidatively stressed DIP (2005) interactome

P-value Term Proteins

1.7e-05 cell cycle process YORO026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YLR383W, YCR063W, YHL024W, YMR198W,
YNL152W, YDR439W, YKL049C, YIL132C, YLR045C, YJL090C, YKRO10C, YOR368W, YER149C, YER132C, YELO61C, YJR140C,
YEROI18C, YKL092C, YJL013C, YER147C, YGL174W

2.94e-05 | cell cycle YORO026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YLR383W, YCR063W, YHL024W, YMR198W,
YJL006C, YNL152W, YDR439W, YKL049C, YIL132C, YLR045C, YJL090C, YKR010C, YOR368W, YER149C, YER132C, YEL061C,
YJR140C, YDR253C, YERO18C, YKL092C, YJLO13C, YER147C, YGL174W

0.000225 | M phase YORO026W, YGR188C, YKRO031C, YLR254C, YPL253C, YGLO075C, YGL251C, YHL024W, YMR198W, YNL152W, YDR439W,
YKL049C, YIL132C, YLR045C, YKRO10C, YOR368W, YER132C, YEL061C, YERO18C, YJLO13C, YER147C

0.000284 | microtubule motor activity YPL253C, YMR198W, YKLO79W, YDR488C, YEL061C

0.000354 | cell cycle phase YORO026W, YGR188C, YKR031C, YLR254C, YPL253C, YGL075C, YGL251C, YHL024W, YMR198W, YNL152W, YDR439W,
YKL049C, YIL132C, YLR045C, YJL090C, YKR010C, YOR368W, YER132C, YEL061C, YJR140C, YER018C, YJL013C, YER147C

0.00104 organelle fission YOR026W, YGR188C, YLR254C, YPL253C, YGLO075C, YMR198W, YNLI152W, YDR439W, YKL049C, YKRO10C, YIL065C,
YELO061C, YERO18C, YJLO13C, YER147C

0.00294 mitosis YORO026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNLI152W, YDR439W, YKL049C, YKRO10C, YELO61C,
YEROI18C, YJLO13C, YER147C

0.00331 nuclear division YORO026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YKRO010C, YEL061C,
YERO018C, YJL013C, YER147C

0.00386 chromosome segregation YGRI188C, YPL253C, YLR383W, YMR198W, YDR439W, YKL049C, YIL132C, YKRO10C, YEL061C, YERO018C, YJLO13C, YER147C

0.00531 nucleus YORO026W, YGR188C, YKRO031C, YKR092C, YBL014C, YCR014C, YLR254C, YHR134W, YPL253C, YDR020C, YJR119C, YGLO0O75C,

YHRO079C, YGL251C, YLR383W, YCR063W, YKR022C, YMR198W, YJL006C, YPL046C, YGR278W, YDR439W, YKL049C,
YFL049W, YGR0O06W, YBLO10C, YIL132C, YGL131C, YLR045C, YPR112C, YHR004C, YIL090C, YNRO11C, YDR0OS2W, YKRO010C,
YDLO080C, YOR368W, YLRO10C, YLR094C, YIL128W, YHL006C, YALO51W, YEL061C, YJR140C, YDR253C, YGL220W,
YMR284W, YER018C, YDR09SC, YLROO7W, YJLO13C, YER147C, YML112W, YGL174W, YHR167W, YPRO34W
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0.00595 | mitotic cell cycle YORO026W, YGR188C, YLR254C, YPL253C, YGL075C, YMR198W, YNL152W, YDR439W, YKL049C, YLR045C, YJL090C,
YKRO10C, YEL061C, YJR140C, YDR253C, YERO018C, YJL0O13C, YER147C

0.00851 M phase of mitotic cell cycle YORO026W, YGR188C, YLR254C, YPL253C, YGLO75C, YMR198W, YNL152W, YDR439W, YKL049C, YKR010C, YELO61C,
YERO18C, YJLO13C, YER147C

0.0107 condensed chromosome YORO026W, YGR188C, YLR383W, YDR439W, YKL049C, YLR045C, YOR368W, YEL061C, YER018C, YLROO7TW

0.0125 microtubule-based process YGR188C, YLR254C, YPL253C, YGL0O75C, YMR198W, YKL079W, YDR488C, YLR045C, YEL061C, YER018C

0.0153 cellular response to stimulus YKRO031C, YCR027C, YCRO14C, YNL145W, YHR134W, YHRO079C, YLR383W, YJL006C, YPL046C, YIL132C, YJL090C, YBR128C,
YBRO77C, YOR368W, YER149C, YLR094C, YIL128W, YHLO06C, YALO51W, YGL220W, YMR284W, YDL138W, YDR098C,
YPLO002C, YKL092C, YLR0O0O7W, YER147C, YML112W, YBR020W, YLR240W

0.0201 motor activity YPL253C, YMR198W, YKLO79W, YDR488C, YEL061C

0.0256 mitotic sister chromatid segregation | YGR188C, YPL253C, YMR198W, YDR439W, YKL049C, YKRO10C, YEL061C, YER147C

0.0257 microtubule-based movement YLR254C, YMR198W, YKLO79W, YDR488C, YEL061C

0.0348 chromosome organization YGR188C, YPL253C, YJR119C, YGL251C, YMR198W, YNL152W, YDR439W, YKL049C, YFL049W, YIL132C, YDRO82W,
YKRO10C, YLRO10C, YHL0O0O6C, YEL061C, YJR140C, YMR284W, YER147C, YPR034W

0.0413 sister chromatid segregation YGR188C, YPL253C, YMR198W, YDR439W, YKL049C, YKRO10C, YEL061C, YER147C

0.0443 condensed chromosome YORO026W, YGR188C, YDR439W, YKL049C, YLR045C, YEL061C, YERO18C

kinetochore
0.0479 chromosomal part YORO026W, YGR188C, YLR383W, YDR439W, YKL049C, YGL131C, YLR045C, YJL090C, YDR0O82W, YOR368W, YLRO10C,

YELO061C, YMR284W, YERO018C, YLROO7W, YER147C

D. Significantly enriched terms in the top

100 set of largest perturbation centrality in the osmotically stressed DIP (2005) interactome

P-value | Term Proteins

0.000101 | cell cycle process YGLO075C, YGL251C, YLR383W, YCR063W, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YOR026W, YJL090C,
YLR045C, YMR198W, YJR140C, YHR184W, YER132C, YKRO031C, YEL061C, YGL174W, YHL023C, YJL0O13C, YMR224C,
YGR262C, YPR135W, YOR368W, YER018C, YER147C

0.000167 | cell cycle YGLO75C, YGL251C, YLR383W, YCR063W, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YJL006C, YOR026W,
YORO005C, YJL090C, YLR045C, YMR198W, YJR140C, YHR184W, YER132C, YKRO31C, YEL061C, YGL174W, YHL023C, YJLO13C,
YMR224C, YGR262C, YPR135W, YOR368W, YERO18C, YER147C

0.00027 | microtubule motor activity YDR488C, YPL253C, YKLO79W, YMR198W, YEL061C

0.00028 | M phase YGLO075C, YGL251C, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YOR026W, YLR045C, YMR198W, YHR184W,
YER132C, YKR031C, YEL061C, YHL023C, YJL013C, YMR224C, YPR135W, YOR368W, YER018C, YER147C

0.00028 | non-homologous end-joining YCRO14C, YORO005C, YGL090W, YMR224C

0.000453 | cell cycle phase YGLO075C, YGL251C, YDR439W, YPL253C, YGR188C, YKL049C, YHL024W, YOR026W, YJL090C, YLR045C, YMR198W,
YJR140C, YHR184W, YER132C, YKRO031C, YEL061C, YHL023C, YJLO13C, YMR224C, YPR135W, YOR368W, YER018C, YER147C

0.00389 combined immunodeficiency YGR188C, YOR005C, YJLO13C

0.00769 | nuclear part YGLO075C, YCR063W, YGR278W, YDR439W, YKR092C, YLRO10C, YGR188C, YDR082W, YKL049C, YKR022C, YGL131C,
YMR219W, YJL006C, YOR026W, YFL049W, YOR005C, YGR006W, YJL090C, YBL014C, YLR045C, YJR140C, YPL046C, YNL286W,
YLRO51C, YELO61C, YGL174W, YML112W, YGL090W, YHLO006C, YJL0O13C, YMR224C, YKR086W, YPR034W, YPR135W,
YOR368W, YER018C, YER147C, YOR064C

0.0109 nucleus YJR119C, YGL075C, YGL251C, YLR383W, YCR063W, YGR278W, YDR439W, YBL010C, YCR014C, YPL253C, YKR092C,

YLRO10C, YGR188C, YDRO82W, YKL049C, YHR079C, YKR022C, YGL131C, YMR219W, YJL006C, YOR026W, YLROO7W,
YFL049W, YOR005C, YGR006W, YJL090C, YBL014C, YLR045C, YMR198W, YGL220W, YJR140C, YDR098C, YPL046C,
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YNL286W, YLRO51C, YKRO031C, YLRO14C, YELO061C, YGL174W, YIL128W, YML112W, YGL090W, YDR020C, YNRO11C,
YHLO006C, YJLO13C, YMR224C, YKR086W, YGR262C, YPR034W, YOL043C, YPR135W, YOR368W, YERO18C, YER147C,

YORO064C

0.011 condensed chromosome YLR383W, YDR439W, YGR188C, YKL049C, YOR026W, YLR007W, YLR045C, YEL061C, YOR368W, YER018C

0.0128 upslanted palpebral fissure YJR119C, YGR188C, YOR005C, YEL061C, YJLO13C

0.0133 chromosomal part YLR383W, YDR439W, YLRO10C, YGR188C, YDR082W, YKL049C, YGL131C, YOR026W, YLR0OO7W, YJL090C, YLR045C,
YEL061C, YGR262C, YPR135W, YOR368W, YER018C, YER147C

0.019 motor activity YDR488C, YPL253C, YKLO79W, YMR198W, YEL061C

0.0216 double-strand break repair YLR383W, YCR014C, YOR005C, YJL090C, YGL090W, YMR224C, YPR135W, YOR368W, YER147C

0.0252 chromosome segregation YLR383W, YDR439W, YPL253C, YGR188C, YKL049C, YMR198W, YELO061C, YJL013C, YPR135W, YERO18C, YER147C

0.0253 macromolecular complex YLR383W, YCR063W, YGR278W, YDR439W, YDR488C, YPL253C, YLR0O10C, YBR128C, YGR188C, YDR082W, YKL049C,

YKRO022C, YGL131C, YLR439W, YJL006C, YOR026W, YLROO7W, YFL049W, YORO005C, YNL014W, YKLO79W, YGRO06W,
YNRO049C, YJL090C, YBL014C, YLR045C, YMR198W, YLR185W, YJR140C, YPL046C, YNL286W, YEL061C, YGL174W,
YMLI112W, YGL090W, YHL023C, YLR240W, YPL002C, YHL006C, YJL013C, YMR224C, YKRO086W, YGR262C, YBR0O77C,
YPRO034W, YPR135W, YIL068C, YOR368W, YERO018C, YER147C, YOR064C

0.0255 mitotic sister chromatid segregation | YDR439W, YPL253C, YGR188C, YKL049C, YMR198W, YEL061C, YPR135W, YER147C

0.0256 DNA metabolic process YGL251C, YLR383W, YDR439W, YCRO014C, YLRO10C, YDR082W, YKL049C, YHL024W, YLROO7W, YOR005C, YJL090C,
YJR140C, YPL046C, YIL128W, YGL090W, YHL006C, YMR224C, YGR262C, YOL043C, YPR135W, YOR368W, YER147C

0.0289 cafe-au-lait spot YJR119C, YGR188C, YORO005C, YJLO13C

0.0322 organelle fission YGLO075C, YDR439W, YPL253C, YGR188C, YKL049C, YOR026W, YMR198W, YIL065C, YEL061C, YJLO13C, YPR135W, YERO18C,
YER147C

0.0369 protein complex YLR383W, YDR439W, YDR488C, YPL253C, YBR128C, YGR188C, YKL049C, YGL131C, YJL006C, YOR026W, YLROO7W,

YFL049W, YOR005C, YKLO79W, YNR049C, YJL090C, YBLO14C, YLR045C, YMR198W, YJR140C, YPL046C, YELO61C, YGL174W,
YML112W, YGL090W, YHL023C, YLR240W, YPL002C, YHL006C, YJLO13C, YMR224C, YGR262C, YBR077C, YPR034W,
YPR135W, YIL068C, YOR368W, YER018C, YER147C, YOR064C

0.0395 response to DNA damage stimulus | YLR383W, YCR014C, YJL006C, YLROO7W, YOR005C, YJL090C, YPL046C, YIL128W, YML112W, YGL090W, YHL006C, YMR224C,
YOL043C, YPR135W, YOR368W, YER147C

0.0411 sister chromatid segregation YDR439W, YPL253C, YGR188C, YKL049C, YMR198W, YEL061C, YPR135W, YER147C
0.0433 condensed chromosome YDR439W, YGR188C, YKL049C, YOR026W, YLR045C, YEL061C, YERO018C
kinetochore

Perturbation centralities were calculated with the Turbine software as described in Methods of the main text. Term enrichment analysis was performed with
the R plug-in of g:Profiler [12], which returns both the enriched terms, and the proteins connected with the term. A term was stated as statistically significant,
if the resulting p-value was strictly less than 0.05 after applying Bonferroni correction. Results show the high importance of cell cycle maintenance and DNA
repair in both stressed and unstressed cases.
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Table S4. Statistically significantly enriched terms in the top 100 protein set of the DIP yeast interactome (release 2005) [7] containing
proteins with largest increase of perturbation centrality in differently stressed cases.

A. Significantly enriched terms in the top 100 set of proteins having largest increase of perturbation centrality on heat shock (compared to the unstressed case)

P-value Term Proteins
5.18e-08 cellular carbohydrate metabolic YLR273C, YJL137C, YIL045W, YNL216W, YPR160W, YMR261C, YML100W, YDR074W, YCR005C, YLR258W, YPL201C,
process YNROO1C, YBR149W, YIL053W, YER062C, YJL089W, YMR105C, YPL18OW
6.15e-07 response to stimulus YDL190C, YDL059C, YNL0O76W, YBR169C, YNL103W, YNL216W, YER103W, YMR261C, YEL0O60C, YML100W, YDRO74W,
YFL021W, YDL124W, YBL075C, YNL314W, YIR023W, YIL113W, YLR178C, YPL022W, YLR019W, YOL128C, YGR088W,
YPL154C, YFLO16C, YPR054W, YIL0O53W, YDR168W, YDR214W, YER062C, YOR363C, YKL109W, YDR200C, YOR120W,
YGL163C, YLR259C, YDLO17W, YMR250W, YJLO89W, YHR186C, YLL021W, YPL180W, YNRO0O7C, YBR274W, YJR032W
1.25¢-06 cellular carbohydrate biosynthetic | YLR273C, YJL137C, YIL045W, YMR261C, YML100W, YDR074W, YLR258W, YPL201C, YIL0O53W, YER062C, YMR105C
process
2.31e-05 carbohydrate biosynthetic process | YLR273C, YJL137C, YIL045W, YMR261C, YML100W, YDR074W, YLR258W, YPL201C, YIL053W, YER062C, YJLO89W, YMR105C
0.000188 | response to stress YDL190C, YDL059C, YBR169C, YNL216W, YER103W, YMR261C, YEL060C, YML100W, YDR074W, YDL124W, YBL075C,
YPL022W, YLRO19W, YOL128C, YGR088W, YPL154C, YFLO16C, YIL0O53W, YDR168W, YDR214W, YER062C, YOR120W,
YGL163C, YLR259C, YDLO17W, YMR250W, YHR186C, YPL180W, YNRO0O7C, YBR274W, YJR032W
0.000323 | organic substance catabolic YPLO65W, YJL172W, YIR032C, YDL190C, YLR270W, YCL008C, YCL052C, YNL216W, YOR173W, YPR160W, YPR111W,
process YNL230C, YEL060C, YER143W, YNL314W, YCR005C, YIR023W, YPL022W, YNROO1C, YPL154C, YFLO16C, YKL148C, YDR214W,
YOR363C, YOR120W, YGRO58W, YLL041C, YNL311C, YMR250W, YMR105C, YMR287C
0.000354 | catalytic activity YJIL137C, YMLO16C, YJL172W, YIR032C, YMR315W, YDL190C, YLR270W, YCL008C, YAL0O60W, YBR265W, YOR173W,
YOR317W, YER103W, YPR160W, YLR096W, YIL177C, YMR261C, YPR111W, YPL074W, YEL060C, YML100W, YDR074W,
YDL124W, YBL0O75C, YER143W, YCR005C, YLR258W, YMR104C, YIL113W, YER081W, YMLO065W, YPL022W, YLRO19W,
YOL128C, YGR0O88W, YNROOIC, YBR149W, YPL154C, YIL108W, YPR054W, YIL0O53W, YBL045C, YNL092W, YKL 148C,
YPR191W, YER062C, YOR120W, YGL163C, YLR259C, YDLO17W, YLL041C, YMR250W, YMR105C, YKL210W, YNROO7C,
YMR287C, YBR274W, YJR032W
0.00046 catabolic process YPLO65W, YIL172W, YIR032C, YDL190C, YLR270W, YCL008C, YCL052C, YNL216W, YOR173W, YPR160W, YPR111W,
YNL230C, YEL060C, YER143W, YNL314W, YCR005C, YIR023W, YPL022W, YGR088W, YNROO1C, YPL154C, YFL0O16C, YKL148C,
YDR214W, YOR363C, YOR120W, YGRO58W, YLL041C, YNL311C, YMR250W, YMR105C, YNR0O07C, YMR287C
0.000616 | cellular catabolic process YPLO065W, YJL172W, YIR032C, YDL190C, YLR270W, YCL008C, YCL052C, YNL216W, YOR173W, YPR111W, YNL230C, YEL060C,
YER143W, YNL314W, YCR005C, YIR023W, YPL022W, YGR088W, YNROO1C, YPL154C, YFLO16C, YKL148C, YDR214W,
YOR363C, YGR058W, YLL041C, YNL311C, YMR250W, YNR007C, YMR287C
0.00102 energy derivation by oxidation of | YLR273C, YJL137C, YIL045W, YPR160W, YCRO005C, YLR258W, YNROO1C, YBL045C, YKL148C, YPR191W, YKL109W, YLL041C,
organic compounds YMRI105C
0.00105 oxidation-reduction process YLR273C, YJL137C, YMR315W, YIL045W, YALO60W, YBR265W, YPR160W, YDL124W, YCR005C, YLR258W, YERO81W,
YGRO88W, YNROOIC, YBR149W, YBL045C, YKL148C, YPR191W, YOR363C, YKL109W, YOR120W, YLL041C, YMR105C
0.00116 carbohydrate metabolic process YLR273C, YJL137C, YIL0O45W, YNL216W, YPR160W, YMR261C, YML100W, YDR074W, YCR005C, YLR258W, YPL201C,
YNROO1C, YBR149W, YIL0O53W, YER062C, YOR120W, YJLO89W, YMR105C, YPL180W
0.00276 glycoside biosynthetic process YMR261C, YML100W, YDR074W, YMR105C
0.00276 oligosaccharide biosynthetic YMR261C, YML100W, YDR074W, YMR105C
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process

0.00276 disaccharide biosynthetic process YMR261C, YML100W, YDR074W, YMR105C
0.00276 trehalose biosynthetic process YMR261C, YML100W, YDR074W, YMR105C
0.00547 alditol biosynthetic process YPL201C, YILO53W, YER062C
0.00547 glycerol biosynthetic process YPL201C, YILO53W, YER062C
0.00873 generation of precursor YLR273C, YJL137C, YIL045W, YNL216W, YPR160W, YCRO05C, YLR258W, YNROO1C, YBL045C, YKL148C, YPR191W,
metabolites and energy YKL109W, YLL041C, YMR105C
0.0139 glycogen metabolic process YLR273C, YJL137C, YIL0O45W, YPR160W, YLR258W, YMR105C
0.0156 glycogen biosynthetic process YLR273C, YJL137C, YIL0O45W, YLR258W, YMR105C
0.0188 glycogen breakdown YJL137C, YPR160W, YMR105C
(glycogenolysis)
0.0191 organic substance metabolic YLR273C, YDRO034C, YJL137C, YPL0O65W, YMLO16C, YJL172W, YIR032C, YMR315W, YDL190C, YLR270W, YDLO059C,
process YNLO76W, YCLO08C, YIL045W, YBR169C, YALO60W, YNL103W, YBR265W, YCL052C, YNL216W, YOR173W, YOR317W,
YER103W, YPR160W, YLR096W, YMR261C, YPR111W, YNL230C, YEL0O60C, YML100W, YDR074W, YFL021W, YDL124W,
YBLO75C, YLR453C, YER143W, YNL314W, YCRO05C, YLR258W, YIR023W, YMR104C, YIL113W, YERO81W, YLR178C,
YPL201C, YMLO65W, YPL022W, YOL128C, YNROO1C, YBR149W, YPL154C, YIL108W, YFLO16C, YPR054W, YIL0O53W, YBL045C,
YDR168W, YKL148C, YPR191W, YDR214W, YER062C, YOR363C, YKL109W, YOR120W, YGL163C, YLR259C, YGRO58W,
YDLO17W, YLL041C, YNL311C, YMR250W, YJLO89W, YMR105C, YKL210W, YPL180W, YNROO7C, YMR287C, YDR515W,
YBR274W, YJR032W
0.0199 energy reserve metabolic process YLR273C, YJL137C, YIL045W, YPR160W, YLR258W, YMR105C
0.0217 alpha,alpha-trehalose-phosphate YMR261C, YML100W, YDR074W
synthase complex (UDP-forming)
0.0248 trehalose metabolic process YMR261C, YML100W, YDR074W, YMR105C
0.0368 fungal-type vacuole lumen YJL172W, YEL060C, YLR178C, YPL154C
0.0437 single-organism metabolic process | YLR273C, YDRO034C, YJL137C, YPLO65W, YMLO16C, YJL172W, YIR032C, YMR315W, YDL190C, YLR270W, YDL059C,

YNLO76W, YCLO0SC, YIL045W, YBR169C, YALO60W, YNL103W, YBR265W, YCL052C, YNL216W, YOR173W, YOR317W,
YER103W, YPR160W, YLR0O96W, YMR261C, YPR111W, YNL230C, YEL0O60C, YML100W, YDR0O74W, YFL021W, YDL124W,
YBLO75C, YLR453C, YER143W, YNL314W, YCR005C, YLR258W, YIR023W, YMR104C, YIL113W, YERO81W, YLR178C,
YPL201C, YMLO065W, YPL022W, YOL128C, YGRO88W, YNROO1C, YBR149W, YPL154C, YIL108W, YFLO16C, YPRO54W,
YILO53W, YBL045C, YDR168W, YKL148C, YPR191W, YDR214W, YER062C, YOR363C, YKL109W, YOR120W, YGL163C,
YLR259C, YGRO58W, YDLO17W, YLL041C, YNL311C, YMR250W, YJLOS9W, YMR105C, YKL210W, YPL180W, YNROO7C,
YMR287C, YDR515W, YBR274W, YIR032W

B. Significantly enriched terms in the top

100 set of proteins having largest increase of perturbation centrality in oxidative stress (compared to the unstressed case)

P-value | Term Proteins

4.24e-07 | cellular carbohydrate metabolic YLR273C, YJL137C, YIL0O45W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YPR160W, YBR149W, YGR166W,
process YCRO005C, YOR178C, YNROO1C, YJLO89W, YDRO0O1C, YBLO58W

2.2e-05 cellular carbohydrate biosynthetic YLR273C, YJL137C, YIL0O45W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YGR166W, YOR178C
process

8.53e-05 | glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBLO5S8W

8.53e-05 | cellular glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL0O58W

0.000254 | carbohydrate biosynthetic process YLR273C, YJL137C, YIL045W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YGR166W, YOR178C, YJLO8OW

0.000585 | glucan biosynthetic process YLR273C, YJL137C, YIL0O45W, YLR258W, YGR143W, YGR166W, YOR178C
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0.000596 | cellular polysaccharide metabolic YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL058W
process
0.000649 | TRAPP complex YORI115C, YDR246W, YGR166W, YMR218C, YDR407C
0.000928 | glycogen metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YPR160W, YOR178C, YBL0O58W
0.00102 carbohydrate metabolic process YLR273C, YJL137C, YIL0O45W, YML100W, YMR261C, YDR074W, YLR258W, YGR143W, YPR160W, YBR149W, YBR229C,
YGR166W, YCR005C, YOR178C, YMR200W, YNROO1C, YJL0O89W, YDROO1C, YBLO58W
0.00143 energy reserve metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YPR160W, YOR178C, YBLO58W
0.00194 | response to stimulus YLR309C, YJL173C, YNLO76W, YER103W, YPRO19W, YMLO032C, YDL124W, YMR250W, YDR453C, YDR179C, YLR178C,
YPL026C, YML100W, YMR261C, YDR074W, YBR202W, YPL154C, YHL035C, YDLO059C, YOL128C, YBR216C, YFR014C,
YORO018W, YMRO038C, YOR178C, YDR049W, YMR200W, YMR218C, YJL201W, YKL213C, YJL0O89W, YDR168W, YDROOIC,
YDL216C, YDL101C, YBL058W, YDR407C
0.00249 | polysaccharide metabolic process YLR273C, YJL137C, YIL0O45W, YLR258W, YGR143W, YPR160W, YGR166W, YOR178C, YBL058W
0.00852 cellular polysaccharide biosynthetic | YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YGR166W, YOR178C
process
0.00993 polysaccharide biosynthetic process | YLR273C, YJL137C, YIL045W, YLR258W, YGR143W, YGR166W, YOR178C
0.0142 oxidation-reduction process YMR315W, YLR273C, YJL137C, YIL045W, YDL124W, YBR265W, YDR453C, YLR258W, YPR160W, YDR231C, YBR149W,
YBR213W, YMRO038C, YNL202W, YLL051C, YCR005C, YOR178C, YER023W, YNROOIC, YBL058W
0.0168 acetyl-CoA + H,0 + oxaloacetate YCROO05C, YNROO1C
=> citrate + CoA
0.0196 glycogen biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YOR178C
0.0196 cis-Golgi network YORI115C, YDR246W, YGR166W, YMR218C, YDR407C
0.0289 alpha,alpha-trehalose-phosphate YML100W, YMR261C, YDR0O74W
synthase complex (UDP-forming)
0.0321 trehalose metabolic process YML100W, YMR261C, YDR074W, YDROO1C
0.0477 protein phosphatase type 1 YLR273C, YIL045W, YOR178C, YBLOS8W

regulator activity

C. Significantly enriched terms in the top

100 set of proteins having largest increase of perturbation centrality in osmotic stress (compared to the unstressed case)

P-value Term Proteins
4.42¢-09 | cellular carbohydrate biosynthetic YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFRO15C, YML100W, YDR074W, YMR105C,
process YORI178C
2.66e-06 | carbohydrate biosynthetic process YLR273C, YJL137C, YIL045W, YPL201C, YILO53W, YER062C, YLR258W, YMR261C, YFR015C, YML100W, YDR074W, YMR105C,
YOR178C
5.85¢-06 | cellular carbohydrate metabolic YLR273C, YJL137C, YIL045W, YPL201C, YILO53W, YER062C, YLR258W, YMR261C, YFRO15C, YIR031C, YML100W, YDRO74W,
process YCRO005C, YDROOIC, YMR105C, YOR178C
1.98e-05 | glycogen biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YFRO15C, YMR105C, YOR178C
0.000582 | glucan biosynthetic process YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C
0.000586 | trehalose metabolic process YMR261C, YML100W, YDR074W, YDR0O0O1C, YMR105C
6e-04 protein phosphorylation YJR059W, YKL116C, YKL048C, YDL025C, YLR096W, YFL033C, YGRO052W, YPL203W, YLR210W, YMR104C, YDR460W,
YFL029C, YER129W, YDR052C, YDR490C
0.000619 | protein serine/threonine kinase YJRO59W, YKL116C, YKL048C, YDL025C, YLR096W, YFLO033C, YGR052W, YPL203W, YMR104C, YFL029C, YER129W,
activity YDR490C
0.000922 | glycogen metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR0O15C, YMR105C, YOR178C
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0.00104 | protein kinase activity YJRO59W, YKL116C, YKL048C, YDL025C, YLR096W, YFL033C, YGR052W, YPL203W, YMR104C, YFL029C, YER129W,
YDR490C
0.00141 energy reserve metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFRO15C, YMR105C, YOR178C
0.00306 | glycoside biosynthetic process YMR261C, YML100W, YDR074W, YMR105C
0.00306 | oligosaccharide biosynthetic YMR261C, YML100W, YDR0O74W, YMR105C
process
0.00306 disaccharide biosynthetic process YMR261C, YML100W, YDR074W, YMR105C
0.00306 | trehalose biosynthetic process YMR261C, YML100W, YDR074W, YMR105C
0.00316 | phosphorylation YJR059W, YKL116C, YKL048C, YKL067W, YDL025C, YLR096W, YHR033W, YFL033C, YGR052W, YPL203W, YLR210W,
YMR104C, YDR460W, YFL029C, YER129W, YDR052C, YDR490C, YKL141W
0.00372 | response to stress YDR159W, YIL053W, YER103W, YBR169C, YER062C, YDR501W, YMR261C, YKL048C, YML100W, YDR074W, YDL124W,
YKL067W, YCR065W, YOR141C, YDL190C, YJL173C, YDR217C, YJR032W, YFL033C, YDL020C, YDR00O1C, YDR460W,
YDLO059C, YGR088W, YBR066C, YDR113C, YGL163C, YLR183C, YOR178C
0.00586 | response to stimulus YDR159W, YIL053W, YER103W, YNLO76W, YBR169C, YER062C, YDR379W, YDR501W, YMR261C, YKL116C, YKL048C,
YML100W, YDRO74W, YDL124W, YKL067W, YCR065W, YAL024C, YOR141C, YDL190C, YJL173C, YDR217C, YJR032W,
YFLO033C, YHLO035C, YDL020C, YPL203W, YDR001C, YDR460W, YDLO059C, YOR018W, YGR088W, YBR066C, YDR113C,
YGL163C, YLR183C, YOR178C, YDR490C
0.00595 alditol biosynthetic process YPL201C, YILO5S3W, YER062C
0.00595 glycerol biosynthetic process YPL201C, YILO53W, YER062C
0.007 kinase activity YJR059W, YKL116C, YKL048C, YKL067W, YDL025C, YLR096W, YHR033W, YFL033C, YGR052W, YPL203W, YMR104C,
YFL029C, YER129W, YDR490C
0.00716 | carbohydrate metabolic process YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFR015C, YIR031C, YKL048C, YML100W,
YDRO074W, YCR005C, YDR0OO1C, YMR105C, YER129W, YOR178C
0.00839 | cellular polysaccharide biosynthetic | YLR273C, YJL137C, YIL045W, YLR258W, YFR015C, YMR105C, YOR178C
process
0.00958 cell cycle phase YDR159W, YJR059W, YDR285W, YORO058C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C, YOR177C,
YJL173C, YDR217C, YFL033C, YLR210W, YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YOR178C
0.00977 polysaccharide biosynthetic process | YLR273C, YJL137C, YIL045W, YLR258W, YFRO15C, YMR105C, YOR178C
0.0127 glycogen synthesis YJL137C, YLR258W, YFRO15C, YMR105C
0.0133 glycoside metabolic process YMR261C, YML100W, YDR074W, YDR0O01C, YMR105C
0.0156 single-organism carbohydrate YLR273C, YJL137C, YIL045W, YPL201C, YIL053W, YER062C, YLR258W, YMR261C, YFRO15C, YKL048C, YML100W, YDR074W,
metabolic process YDRO01C, YMR105C, YER129W, YOR178C
0.0173 glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR0O15C, YMR105C, YOR178C
0.0173 cellular glucan metabolic process YLR273C, YJL137C, YIL045W, YLR258W, YFR0O15C, YMR105C, YOR178C
0.0235 alpha,alpha-trehalose-phosphate YMR261C, YML100W, YDRO74W
synthase complex (UDP-forming)
0.0252 cell cycle process YDR159W, YJR059W, YDR285W, YORO058C, YKL048C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C,
YOR177C, YJL173C, YDR217C, YFL033C, YLR210W, YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YLR457C, YOR178C
0.0323 cell cycle YDRI159W, YJR059W, YDR285W, YORO058C, YKL048C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C,
YORI177C, YJL173C, YDR217C, YFL033C, YLR210W, YDR460W, YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YNLOO7C,
YLR457C, YOR178C
0.0365 mitotic cell cycle YDR159W, YJR059W, YORO058C, YPL155C, YGR238C, YOR195W, YGL216W, YCR065W, YAL024C, YDR217C, YLR210W,
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| [ YNL309W, YFL029C, YNL068C, YDR052C, YDR113C, YOR178C

Perturbation centralities were calculated with the Turbine software as described in Methods of the main text. Term enrichment analysis was performed with
the R plug-in of g:Profiler [12], which returns both the enriched terms, and the proteins connected with the term. A term was stated as statistically significant,
if the resulting p-value was strictly less than 0.05 after applying Bonferroni correction. Results clearly show the stress response as displayed by the significant
enrichment of the terms “response to stimulus” and “response to stress”. Furthermore, the strong up-regulation of carbohydrate metabolism is also obvious
from the data, and it is a well-known stress response [13—15] successfully identified by the perturbation centrality measure.
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Table S5. Most significantly enriched terms in the top 100 protein set of the DIP yeast interactome (release 2005) [7] containing proteins
with largest decrease of perturbation centrality in differently stressed cases.

A. Significantly enriched terms in the top 100 set of proteins having largest decrease of perturbation centrality in heat shock

P-value

Term

Proteins

1.81e-59

ribosome biogenesis

YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOOSW, YGR159C,
YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHR0O72W-A,
YKLO09W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHRO66W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W,
YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YHROS1W, YMR093W, YJL069C,
YOR243C, YIR026C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNR053C, YER0O06W, YKRO81C, YOL142W,
YHRO052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNRO54C, YLR397C, YDLOGOW

6.76e-57

nucleolus

YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOOSW, YGR159C,
YNL248C, YGL171W, YJL033W, YOL077C, YLR186W, YPL217C, YFROOIW, YOR310C, YKL099C, YDLO31W, YHRO72W-A, YKLOOOW,
YOR206W, YGR128C, YHR148W, YHRO66W, YJR002W, YDL148C, YOR340C, YHR143W-A, YKR060W, YPL211W, YKLO021C, YNLO75W,
YIL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDRO87C, YGL078C, YLR221C, YMR093W, YJL069C, YILO76W, YGRO81C, YPR144C,
YNL308C, YER126C, YKL082C, YMR229C, YNRO053C, YER006W, YKR081C, YOL142W, YHRO052W, YCR072C, YMR128W, YER002W,
YNL232W, YNR054C, YPL020C, YDLO60W, YNL175C

4.68e-56

ribonucleoprotein
complex biogenesis

YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLLOOSW, YGR159C,
YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFRO0IW, YDL166C, YOR310C, YKL099C, YDL031W, YHRO72W-A,
YKLO09W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHRO66W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W,
YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YOR276W, YHROS1W,
YMRO93W, YJL069C, YOR243C, YIR026C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNRO53C, YER0O06W,
YKRO81C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YLR397C, YDLOGOW

7.16e-52

preribosome

YCLO054W, YLR129W, YOL010W, YPL093W, YPR137W, YDR324C, YDR449C, YHRO088W, YLLOOSW, YGL171W, YOL077C, YLR186W,
YPL217C, YFRO01W, YOR310C, YKL099C, YDL031W, YKLO0O9W, YOR206W, YGR128C, YHR148W, YJR002W, YDL148C, YKR060W,
YPL211W, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YDRO087C, YGLO078C, YLR221C, YMRO093W, YJL069C, YGRO81C, YPR144C,
YER126C, YMR229C, YNRO053C, YER006W, YKRO81C, YHR052W, YMR128W, YER002W, YLR397C, YDLO60W, YNL175C

1.75e-49

cellular component
biogenesis at cellular
level

YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOOSW, YGR159C,
YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL0O31W, YHR0O72W-A,
YKLO09W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHRO66W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W,
YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YOR276W, YHROS1W,
YMRO93W, YJLO69C, YOR243C, YIR026C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNRO53C, YER0O06W,
YKRO81C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNR054C, YLR397C, YDLO60OW

3.56e-48

nuclear lumen

YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOOSW, YGR159C,
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR00IW, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C,
YHRO72W-A, YKLO09W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C,
YHR143W-A, YKR060W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO031C,
YGLO078C, YLR221C, YOR207C, YHRO81W, YMR093W, YIJL069C, YILO76W, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C,
YMR229C, YNRO53C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNRO54C,
YPL233W, YPL020C, YDLO60W, YNL175C
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1.91e-47

rRNA processing

YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLLOOSW, YGR159C,
YGL171W, YJLO33W, YNLI124W, YLR186W, YPL217C, YFRO0IW, YDL166C, YOR310C, YKL099C, YDLO031W, YHRO72W-A, YKLOO9W,
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W, YKLO021C, YNLO75W, YJL109C, YEL026W, YGL111W,
YBR247C, YDRO87C, YGL078C, YHRO81W, YMR093W, YJL069C, YOR243C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C,
YMR229C, YERO06W, YKRO81C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDL0O60W

1.84e-46

rRNA metabolic
process

YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO088W, YLLOO8W, YGR159C,
YGL171W, YJLO33W, YNL124W, YLR186W, YPL217C, YFR001W, YDL166C, YOR310C, YKL099C, YDL031W, YHRO072W-A, YKLOO9W,
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W, YKLO021C, YNLO75W, YJL109C, YEL026W, YGL111W,
YBR247C, YDRO87C, YGLO78C, YHRO81W, YMRO093W, YJL069C, YOR243C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C,
YMR229C, YER006W, YKRO81C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDLO60W

2.09¢e-41

ncRNA processing

YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHROS8W, YLLOOSW, YGR159C,
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFRO0IW, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKLOOOW,
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W,
YBR247C, YDRO87C, YGLO78C, YNL062C, YHRO81W, YMR093W, YJL069C, YOR243C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C,
YKL082C, YMR229C, YER006W, YKRO81C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDLO60W

1.78e-39

ncRNA metabolic
process

YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLLOOSW, YGR159C,
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFROOIW, YDL166C, YOR310C, YKL099C, YDLO31W, YHRO72W-A, YKLOOOW,
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W, YKLO021C, YNLO75W, YJL109C, YEL026W, YGL111W,
YBR247C, YDRO87C, YGLO78C, YNL062C, YHRO81W, YMR093W, YJL069C, YOR243C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C,
YKL082C, YMR229C, YER006W, YKR081C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDRO37W, YDLO60W

7.58e-39

organelle lumen

YCLO054W, YLR129W, YOLO10W, YPL0O93W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHROS8W, YLLOOSW, YGR159C,
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C,
YHRO72W-A, YKL0O09W, YOR206W, YHR170W, YGR128C, YHR 148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C,
YHR143W-A, YKRO60W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO31C,
YGLO78C, YLR221C, YOR207C, YHRO81W, YMRO093W, YJLO69C, YILO76W, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C,
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C,
YPL233W, YPL020C, YDLO60W, YNL175C

7.58e-39

intracellular organelle
lumen

YCLO054W, YLR129W, YOLO10W, YPL0O93W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOOSW, YGR159C,
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C,
YHRO72W-A, YKL0O09W, YOR206W, YHR170W, YGR128C, YHR 148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C,
YHR143W-A, YKRO60W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO31C,
YGLO78C, YLR221C, YOR207C, YHRO81W, YMRO093W, YJLO69C, YILO76W, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C,
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C,
YPL233W, YPL020C, YDLO60W, YNL175C

1.14e-38

membrane-enclosed
lumen

YCL054W, YLR129W, YOLO10W, YPL0O93W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOOSW, YGR159C,
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C,
YHRO72W-A, YKLO09W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C,
YHR143W-A, YKRO60W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO31C,
YGLO078C, YLR221C, YOR207C, YHRO81W, YMRO93W, YJL069C, YILO76W, YGRO81C, YPR144C, YNL308C, YER126C, YFRO11C, YNL182C,
YKL082C, YMR229C, YNR053C, YDR045C, YER0O06W, YKRO81C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W,
YNRO54C, YPL233W, YPL020C, YDLO60W, YNL175C

2.48e-34

nuclear part

YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHROS8W, YLLOOSW, YGR159C,
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR001W, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C,

28




YHRO72W-A, YKLO09W, YOR206W, YHR170W, YGR128C, YHR 148W, YHR066W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C,
YHR143W-A, YKRO60W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO31C,
YGLO78C, YLR221C, YOR207C, YHRO81W, YMRO093W, YJLO69C, YILO76W, YGR081C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C,
YMR229C, YNR053C, YDR045C, YER006W, YKR081C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YNL232W, YNR054C,
YPL233W, YPL020C, YDLO60W, YNL175C

6.61e-32 | RNA processing YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL0OO8W, YGR159C,
YGL171W, YJL033W, YNL124W, YLR186W, YPL217C, YFROOIW, YDL166C, YOR310C, YKL099C, YDL031W, YHR072W-A, YKLO09W,
YGR128C, YHR148W, YJR002W, YDL148C, YHR197W, YKRO60W, YPL211W, YKL021C, YNLO75W, YJL109C, YEL026W, YGL111W,
YBR247C, YDRO87C, YGLO78C, YNL062C, YHRO81W, YMRO093W, YJL069C, YOR243C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C,
YKL082C, YMR229C, YER006W, YKRO81C, YOL142W, YMR128W, YER002W, YNL232W, YNR054C, YDLO60W
1.67e-31 | cellular component YCLO054W, YLR129W, YOLO10W, YPL0O93W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLL0O0O8W, YGR159C,
biogenesis YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFR0O01W, YDL166C, YOR310C, YKL099C, YDL031W, YHRO72W-A,
YKLO009W, YOR206W, YHR170W, YGR128C, YHR148W, YBR267W, YHR066W, YJR002W, YDL148C, YHR197W, YKR060W, YPL211W,
YKLO021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YGL078C, YLR221C, YOR276W, YHRO81W,
YMRO093W, YJL069C, YOR243C, YIR026C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNRO053C, YERO06W,
YKRO81C, YOL142W, YHR052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNRO054C, YLR397C, YDLO60W
1.47e-28 | ribosomal large YCLO054W, YPL093W, YLR276C, YHR0O88W, YLLOO8W, YOLO077C, YFRO01W, YDLO031W, YKLO09W, YBR267W, YHR066W, YHR197W,
subunit biogenesis YPL211W, YKL021C, YGL111W, YGR245C, YGL078C, YLR221C, YIR026C, YER126C, YNL182C, YKL082C, YMR229C, YKRO081C, YHR052W,
YCRO072C, YER002W, YLR397C
4.33e-27 | maturation of 5.8S YCLO054W, YLR129W, YOL0O10W, YDR449C, YHRO88W, YGL171W, YLR186W, YFRO01W, YOR310C, YKL099C, YDL031W, YJR002W,
rRNA from YDL148C, YKL021C, YJL109C, YBR247C, YGL078C, YHRO81W, YJL069C, YPR144C, YNL308C, YER126C, YMR229C, YKRO81C, YOL142W,
tricistronic rRNA YNL232W, YNRO54C
transcript (SSU-
rRNA, 5.8S rRNA,
LSU-rRNA)
6.41¢-27 | maturation of 5.8S YCLO054W, YLR129W, YOL0O10W, YDR449C, YHRO88W, YGL171W, YLR186W, YFRO01W, YOR310C, YKL099C, YDL031W, YJR002W,
rRNA YDL148C, YKL021C, YJL109C, YBR247C, YGL078C, YHRO81W, YJL0O69C, YPR144C, YNL308C, YER126C, YMR229C, YKRO81C, YOL142W,
YNL232W, YNR054C
2.17e-25 | non-membrane- YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YFR031C-A, YHRO88W, YLLOO8W,
bounded organelle YGR159C, YNL248C, YGL171W, YJL033W, YOL077C, YLR186W, YPL217C, YFRO01W, YOR310C, YKL099C, YDLO031W, YHRO72W-A,
YKLO09W, YOR206W, YGR128C, YHR148W, YHR066W, YJR002W, YDL148C, YOR340C, YHR143W-A, YKR060W, YPL211W, YKLO021C,
YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO031C, YGL078C, YLR221C, YMRO093W, YJL069C, YJLO76W,
YGRO81C, YPR144C, YNL308C, YER126C, YKL082C, YMR229C, YNRO53C, YER006W, YKRO81C, YOL142W, YHRO052W, YCR072C,
YMR128W, YER002W, YNL232W, YNRO054C, YPL233W, YPL020C, YDL0O60W, YNL175C
2.17e-25 | intracellular non- YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YFR031C-A, YHRO88W, YLLOO8W,
membrane-bounded YGR159C, YNL248C, YGL171W, YJL033W, YOL077C, YLR186W, YPL217C, YFR001W, YOR310C, YKL099C, YDL031W, YHRO72W-A,
organelle YKLO09W, YOR206W, YGR128C, YHR148W, YHR066W, YJR002W, YDL148C, YOR340C, YHR143W-A, YKR060W, YPL211W, YKLO021C,
YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C, YDR087C, YHRO031C, YGL078C, YLR221C, YMR093W, YJL069C, YJLO76W,
YGRO81C, YPR144C, YNL308C, YER126C, YKL082C, YMR229C, YNRO53C, YER006W, YKRO81C, YOL142W, YHRO052W, YCR072C,
YMR128W, YER002W, YNL232W, YNRO054C, YPL233W, YPL020C, YDL0O60W, YNL175C
5.69e-25 | ribonucleoprotein YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YFR031C-A, YHRO88W, YLL0O0O8W, YGL171W, YNL124W,
complex YOLO077C, YLR186W, YPL217C, YFRO01W, YOR310C, YKL099C, YDL031W, YHRO72W-A, YKL009W, YOR206W, YGR128C, YHR148W,

YJR002W, YDL148C, YKRO60W, YPL211W, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YDRO87C, YGL078C, YLR221C,
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YMRO93W, YJL069C, YGRO81C, YPR144C, YER126C, YMR229C, YCL037C, YNRO53C, YER006W, YKRO81C, YHR052W, YMR128W,
YERO002W, YPL226W, YLR397C, YDLO60W, YAL036C, YNL175C

2.39¢-24 | preribosome, large YCLO054W, YPL093W, YHRO88W, YLLOO8W, YOLO77C, YFRO01W, YDL0O31W, YKLO0O9W, YOR206W, YPL211W, YGL111W, YDRO87C,
subunit precursor YGLO078C, YLR221C, YER126C, YNRO053C, YER006W, YKRO81C, YHRO052W, YER002W, YLR397C
5.36e-24 | nucleus YCLO054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHR088W, YLL0O0O8W, YGR159C,
YNL248C, YGL171W, YJL033W, YNL124W, YOL077C, YLR186W, YPL217C, YFROO1W, YDL166C, YNL151C, YOR310C, YKL099C, YDLO31W,
YKL144C, YDR399W, YHRO072W-A, YKLO09W, YOR206W, YHR170W, YGR128C, YHR148W, YHR066W, YPR190C, YJR002W, YDL148C,
YHR197W, YOR340C, YHR143W-A, YKRO60W, YPL211W, YKLO021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YGR245C,
YDRO87C, YHRO31C, YGL078C, YNL062C, YLR221C, YOR207C, YHRO81W, YMR093W, YJL069C, YJLO76W, YOR243C, YIR026C, YGROS1C,
YPR144C, YNL308C, YER126C, YNL182C, YKL082C, YMR229C, YNRO53C, YDR045C, YMR310C, YER006W, YMLO021C, YKRO81C, YOL142W,
YHRO052W, YCR072C, YMR128W, YER002W, YPL226W, YNL232W, YNRO054C, YPL233W, YPL020C, YPR189W, YDL0O60W, YNL175C
2.08e-22 | ribosomal small YLR129W, YOLO10W, YDR324C, YDR449C, YGR159C, YGL171W, YLR186W, YFRO01W, YDL166C, YOR310C, YKL099C, YGR128C,
subunit biogenesis YJRO02W, YDL148C, YKR060W, YJL109C, YEL026W, YBR247C, YMR093W, YJL069C, YGRO81C, YPR144C, YNL308C, YKL082C, YMR229C,
YMRI128W, YPL226W, YNRO054C
3.22e-22 | RNA metabolic YCL054W, YLR129W, YOLO10W, YPL093W, YPR137W, YDR324C, YDR449C, YLR276C, YMR239C, YHRO88W, YLLOO8W, YGR159C,
process YNL248C, YGL171W, YJL0O33W, YNL124W, YLR186W, YPL217C, YFROO1W, YDL166C, YNL151C, YOR310C, YKL099C, YDL031W, YKL144C,
YHRO72W-A, YKL0O09W, YGR128C, YHR148W, YPR190C, YJR002W, YDL148C, YHR197W, YOR340C, YHR143W-A, YKR060W, YPL211W,
YKLO021C, YNLO75W, YJL109C, YEL026W, YGL111W, YBR247C, YDRO87C, YGLO078C, YNL062C, YOR207C, YHRO81W, YMRO093W, YJL069C,
YJLO76W, YOR243C, YGRO81C, YPR144C, YNL308C, YER126C, YNL182C, YKLO082C, YMR229C, YDR045C, YER006W, YKRO81C, YOL142W,
YMR128W, YER002W, YNL232W, YNR054C, YDR037W, YPR189W, YDLO60W
3.68e-22 | 90S preribosome YLRI29W, YOLO10W, YPR137W, YDR324C, YDR449C, YGL171W, YLR186W, YPL217C, YOR310C, YOR206W, YGR128C, YHR148W,
YJRO02W, YDL148C, YKRO60W, YNLO75W, YJL109C, YBR247C, YMR093W, YJL0O69C, YGRO81C, YPR144C, YMR229C, YMR128W, YDLO60W
6.62e-21 | cleavage involved in YLRI129W, YOLO10W, YDR449C, YGL171W, YLR186W, YFRO0O1W, YOR310C, YKL099C, YHR072W-A, YJR002W, YDL148C, YJL109C,
rRNA processing YBR247C, YGL078C, YHRO81W, YJL069C, YPR144C, YNL308C, YMR229C, YOL142W, YNL232W, YNR054C
9.54e-21 | RNA phosphodiester | YLR129W, YOLO10W, YDR449C, YGL171W, YLR186W, YFRO01W, YOR310C, YKL099C, YHR072W-A, YJR002W, YDL148C, YJL109C,
bond hydrolysis YBR247C, YGL078C, YHRO81W, YJL0O69C, YPR144C, YNL308C, YMR229C, YOL142W, YNL232W, YNR054C
4.42¢-20 | maturation of SSU- YLRI29W, YOLO10W, YDR324C, YDR449C, YGL171W, YLR186W, YFROOIW, YDL166C, YOR310C, YKL099C, YGR128C, YJR0O02W,
rRNA from YDL148C, YJL109C, YEL026W, YBR247C, YMR093W, YJL069C, YGRO81C, YPR144C, YNL308C, YMR229C, YMR128W, YNR054C
tricistronic rRNA
transcript (SSU-
rRNA, 5.8S rRNA,
LSU-rRNA)
B. Significantly enriched terms in the top 100 set of proteins having largest decrease of perturbation centrality in oxidative stress
P-value Term Protein
6.62¢-38 | ribosome biogenesis YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKRO60W, YPR137W,
YGL111W, YPL211W, YHRO88W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YPL226W, YLR129W, YOR206W, YPR144C,
YLRO002C, YBR267W, YFRO01W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YJR002W, YMR093W, YLLOOSW, YOR078W,
YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YHR170W, YOR243C, YDR398W, YPR112C, YNLO75W,
YHRO81W, YKLO021C, YGL099W, YHR197W, YBR247C, YKR024C, YHR052W, YNL224C
5.98e-37 | preribosome YKLO099C, YPL217C, YDL148C, YGL171W, YDR324C, YOL077C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W, YPL211W,

YHRO88W, YGLO078C, YMR229C, YGR128C, YLR129W, YOR206W, YPR144C, YLR002C, YFRO01W, YHR148W, YLR409C, YLR221C,
YJR002W, YMRO093W, YLLOO8W, YOR078W, YHR196W, YFL002C, YER002W, YJL069C, YNL175C, YDR398W, YPR112C, YNLO75W,
YBR247C, YHR052W, YNL224C
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1.99¢-35

ribonucleoprotein
complex biogenesis

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKRO60W, YPRI37W,
YGLI111W, YPL211W, YHROS8W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YPL226W, YLR129W, YOR206W, YPR144C,
YLR002C, YBR267W, YFROO1W, YHRO66W, YHR148W, YNL182C, YLR409C, YLR221C, YJR002W, YMR0O93W, YLLOOSW, YOR078W,
YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YHR170W, YOR243C, YDR398W, YPR112C, YNLO75W, YIR005W,
YHRO81W, YKL021C, YGL099W, YHR197W, YBR247C, YKR024C, YHR052W, YNL224C

4.58e-34

nucleolus

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKR0O60W,
YPRI137W, YGL111W, YPL211W, YHRO88W, YGLO78C, YMR229C, YKL082C, YGR128C, YLR129W, YOR206W, YPR144C, YLR002C,
YELO55C, YFR0O01W, YHR066W, YHR148W, YLR409C, YLR221C, YOR340C, YJR002W, YMRO093W, YLLOO8W, YOR078W, YNRO054C,
YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YNL175C, YDR398W, YPR112C, YNLO75W, YKLO021C, YBR247C, YKR024C, YNL113W,
YHRO52W

2.38e-32

rRNA processing

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPRI37W, YGLI11W,
YPL211W, YHRO88W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFRO01W, YHR 148W, YNL182C,
YLR409C, YJR002W, YMR093W, YLLOOSW, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C,
YOR243C, YDR398W, YPR112C, YNLO75W, YHRO81W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C

1.39¢-31

rRNA metabolic
process

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKRO60W, YPRI37W, YGLI11W,
YPL211W, YHRO88W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR0OO1W, YHR 148W, YNL182C,
YLR409C, YJR002W, YMR093W, YLLOOSW, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJLO69C,
YOR243C, YDR398W, YPR112C, YNLO75W, YHRO81W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C

1.82e-30

cellular component
biogenesis at cellular
level

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YOL077C, YLR186W, YDR299W, YKR060W, YPR137W,
YGL111W, YPL211W, YHRO88W, YGLO78C, YMR229C, YKL082C, YDL166C, YGR128C, YPL226W, YLR129W, YOR206W, YPR144C,
YLR002C, YBR267W, YFRO01W, YHRO66W, YHR148W, YNL182C, YLR409C, YLR221C, YJR002W, YMR0O93W, YLLOOSW, YOR078W,
YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C, YHR170W, YOR243C, YDR398W, YPR112C, YNLO75W, YIR005W,
YHRO81W, YKLO021C, YGL099W, YHR197W, YBR247C, YKR024C, YHR052W, YNL224C

9.66e-30

nuclear lumen

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLRI86W, YNL151C, YPR190C, YDR299W,
YKRO60W, YPR137W, YGL111W, YPL211W, YHROS8W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W,
YOR206W, YPR144C, YLR002C, YELO055C, YFROO1W, YHRO66W, YHR 148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W,
YMRO093W, YLLOOSW, YOR078W, YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W,
YNL175C, YDR398W, YPR112C, YNLO75W, YHROS1W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, YOL012C,
YHRO052W, YOR207C

1.34e-26

ncRNA processing

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKRO60W, YPRI37W, YGLI11W,
YPL211W, YHRO88W, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR0OO1W, YHR 148W, YNL182C,
YLR409C, YJR002W, YMR093W, YLLOOSW, YOR078W, YNL124W, YNR054C, YHR196W, YLR276C, YFL002C, YER002W, YJLO69C,
YOR243C, YDR398W, YPR112C, YNLO75W, YHRO81W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C

3.12e-25

ncRNA metabolic
process

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPRI37W, YGL111W,
YPL211W, YHRO88W, YOL097C, YGL078C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFROO1W, YHR 148W,
YNL182C, YLR409C, YJR002W, YMR093W, YLLOOSW, YOR078W, YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C,
YOR243C, YDR398W, YPR112C, YNLO75W, YHROS1W, YKLO021C, YHR197W, YBR247C, YKR024C, YNL224C

1.01e-23

90S preribosome

YPL217C, YDL148C, YGL171W, YDR324C, YLR186W, YDR299W, YKR060W, YPR137W, YMR229C, YGR128C, YLR129W, YOR206W,
YPR144C, YHR148W, YLR409C, YJR002W, YMRO093W, YOR078W, YHR196W, YFL002C, YJL069C, YDR398W, YPR112C, YNLO75W,
YBR247C, YNL224C

1.2e-22

organelle lumen

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W,
YKRO60W, YPR137W, YGL111W, YPL211W, YHRO88W, YGLO78C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W,
YOR206W, YPR144C, YLR002C, YEL055C, YFRO01W, YHR066W, YHR148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W,
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YMRO093W, YLLOO8W, YORO078W, YNL124W, YNRO054C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W,
YNL175C, YDR398W, YPR112C, YNLO75W, YHRO81W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, YOL012C,
YHRO052W, YOR207C

1.2e-22

intracellular organelle
lumen

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W,
YKRO60W, YPRI37W, YGL111W, YPL211W, YHR0O88W, YGLO78C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W,
YOR206W, YPR144C, YLR002C, YELO055C, YFROO1W, YHRO66W, YHR 148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W,
YMRO093W, YLLOOSW, YOR078W, YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W,
YNL175C, YDR398W, YPR112C, YNLO75W, YHRO81W, YKLO021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W, YOLO12C,
YHRO052W, YOR207C

1.64e-22

membrane-enclosed
lumen

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNLI51C, YPR190C, YDR299W,
YKRO60W, YPRI37W, YGL111W, YPL211W, YHR088W, YGL078C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W,
YOR206W, YPR144C, YLR002C, YELO055C, YFROO1W, YHRO66W, YHR 148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W,
YMRO093W, YLLOOSW, YOR078W, YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W,
YNL175C, YDR398W, YPR112C, YNLO75W, YFRO11C, YHRO81W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C, YNL113W,
YOLO012C, YHR052W, YOR207C

4.57e-21

nuclear part

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YNL248C, YDR324C, YNL308C, YOL077C, YLR186W, YNL151C, YPR190C, YDR299W,
YKRO60W, YPR137W, YGL111W, YPL211W, YHROS8W, YGL0O78C, YMR229C, YKL082C, YGR128C, YLR129W, YKL144C, YDR227W,
YOR206W, YPR144C, YLR002C, YEL055C, YFRO01W, YHR066W, YHR 148W, YNL182C, YLR409C, YLR221C, YOR340C, YJR002W,
YMRO93W, YLLOOSW, YOR078W, YNL124W, YNRO54C, YHR196W, YLR276C, YFL002C, YER002W, YMR176W, YJL069C, YHR170W,
YNL175C, YDR398W, YPR112C, YDR303C, YNLO75W, YIR005W, YHROS1W, YKL021C, YBR289W, YHR197W, YBR247C, YKR024C,
YNL113W, YOL012C, YHR052W, YOR207C

2.28e-20

RNA processing

YMR239C, YKL099C, YPL217C, YDL148C, YGL171W, YDR324C, YNL308C, YLR186W, YDR299W, YKR060W, YPR137W, YGL111W,
YPL211W, YHRO88W, YGLO78C, YMR229C, YKL082C, YDL166C, YGR128C, YLR129W, YPR144C, YLR002C, YFR0O01W, YHR148W, YNL182C,
YLR409C, YJR002W, YMRO093W, YLLOOSW, YOR078W, YNL124W, YNRO054C, YHR196W, YLR276C, YFL002C, YER002W, YJL069C,
YOR243C, YDR398W, YPR112C, YNLO75W, YIR005W, YHRO81W, YKL021C, YHR197W, YBR247C, YKR024C, YNL224C

C. Significantly enriched terms in the top 100 set of proteins having largest decrease of perturbation centrality in osmotic stress

P-value

Term

Proteins

1.29¢-40

ribosome biogenesis

YGLI111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C,
YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL0O0O9W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C,
YLRI129W, YOR243C, YNL124W, YGR128C, YHR170W, YGRO81C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHRO8SW,
YPR137W, YKLO021C, YHR197W, YKR081C, YHR072W-A, YFROO1W, YDR091C, YHR148W, YNLO61W, YDR087C, YGL099W, YLR409C,
YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C

2.56e-39

ribonucleoprotein
complex biogenesis

YGL111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C,
YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL0O09W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, YIRO0O5W,
YLRI129W, YOR243C, YNL124W, YGR128C, YHR170W, YGRO81C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHRO88W,
YPRI137W, YKL021C, YHR197W, YKRO81C, YHRO72W-A, YFR001W, YDR091C, YHR148W, YNL061W, YDRO87C, YGL099W, YGR178C,
YLR409C, YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C

5.54e-37

preribosome

YGLI11W, YGL078C, YOL077C, YFL002C, YOR206W, YKL172W, YLR002C, YMR229C, YDL148C, YDR299W, YDR324C, YKLO0OOW,
YKL099C, YCL054W, YNL175C, YGR103W, YLR221C, YLR129W, YGR128C, YGR081C, YOR294W, YPL211W, YHR052W, YHROSSW,
YPR137W, YKRO81C, YFROO1W, YHR148W, YNL061W, YDR087C, YLR409C, YPR112C, YNL002C, YOL010W, YPR144C, YNLO75W,
YPL126W, YLR186W, YNL224C

2.1e-35

nucleolus

YGL111W, YNL308C, YMR239C, YGLO078C, YNL248C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YEL055C, YLR276C, YLR002C,
YMR229C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL175C, YGR103W, YLR221C, YOR340C, YLRI129W,
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YGR128C, YGRO81C, YOR294W, YPL211W, YHRO52W, YHRO088W, YPR137W, YKL021C, YKRO81C, YHR072W-A, YFRO01W, YHR143W-A,
YHR148W, YNL061W, YDRO87C, YPL020C, YLR409C, YPR112C, YNL002C, YOLO10W, YPR144C, YNLO75W, YPL126W, YLR186W, YGR159C,
YNL113W

4.88¢-34 | cellular component YGLI11W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C,
biogenesis at cellular | YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, YIR005W,
level YLR129W, YOR243C, YNL124W, YGR128C, YHR170W, YGRO81C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHROS8W,
YPRI137W, YKL021C, YHR197W, YKRO081C, YHRO72W-A, YFROOIW, YDR091C, YHR148W, YNLO61W, YDR087C, YGL0O99W, YGR178C,
YLR409C, YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C
2.21e-32 | rRNA processing YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C,
YKLO009W, YKL099C, YCLO054W, YNL182C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, YOR294W, YPL211W,
YHRO88W, YPR137W, YKLO021C, YHR197W, YKR081C, YHR072W-A, YFRO0IW, YDR091C, YHR148W, YNL061W, YDR087C, YLR409C,
YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNL0O75W, YPL126W, YLR186W, YNL224C, YGR159C
1.29¢-31 | rRNA metabolic YGLI111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C,
process YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGRO81C, YOR294W, YPL211W,
YHRO88W, YPR137W, YKL021C, YHR197W, YKR081C, YHRO72W-A, YFR0O01W, YDR091C, YHR148W, YNL061W, YDR087C, YLR409C,
YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C
1.67¢-27 | ncRNA metabolic YGLI11W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YOL097C, YDL148C, YDR299W,
process YDR324C, YKL009W, YKL099C, YCL054W, YNL182C, YGR102C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGROSIC,
YOR294W, YPL211W, YHRO88W, YPR137W, YKL021C, YHR197W, YKR081C, YHR072W-A, YFROOIW, YDR091C, YHR148W, YNLO61W,
YDRO87C, YLR409C, YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YHR019C, YGR159C
1.24¢-26 | ncRNA processing YGLI111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C,
YKL009W, YKL099C, YCL054W, YNL182C, YGR103W, YLR129W, YOR243C, YNL124W, YGR128C, YGRO81C, YOR294W, YPL211W,
YHRO88W, YPR137W, YKL021C, YHR197W, YKR081C, YHRO72W-A, YFR0O01W, YDR091C, YHR148W, YNL061W, YDR087C, YLR409C,
YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C
1.69¢-25 | nuclear lumen YGLI11W, YNL308C, YMR239C, YGL078C, YNL248C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YEL055C, YLR276C, YLR002C,
YMR229C, YDL148C, YDR299W, YDR324C, YKLO09W, YKL099C, YCLO54W, YNL182C, YNL175C, YGR103W, YLR221C, YOR340C,
YLR129W, YNL124W, YKL144C, YGR128C, YHR170W, YGRO81C, YOR294W, YPL211W, YHR052W, YHRO88W, YPR137W, YKL021C,
YHR197W, YKRO81C, YHRO72W-A, YFR001W, YHR143W-A, YHR148W, YNLO061W, YDR087C, YPL020C, YCR092C, YLR409C, YPR112C,
YNL002C, YOLO10W, YPR144C, YNLO75W, YPL126W, YLR186W, YMR167W, YHR031C, YGR159C, YNL113W
2.12¢-25 | ribosomal large YGLI111W, YGL078C, YHR066W, YOL077C, YFL002C, YLR276C, YMR229C, YIR026C, YKLOO9W, YCL054W, YNL182C, YGR103W,
subunit biogenesis YBR267W, YLR221C, YOR294W, YPL211W, YHR052W, YPR102C, YHR088W, YKL021C, YHR197W, YKRO81C, YFRO0IW, YDR091C,
YGL099W, YNL002C
1.41e-22 | preribosome, large YGLI11W, YGL078C, YOL077C, YOR206W, YKL172W, YLR002C, YKLO0O9W, YCL054W, YGR103W, YLR221C, YOR294W, YPL211W,
subunit precursor YHRO052W, YHRO88W, YKR081C, YFRO0IW, YNLO61W, YDR087C, YNL002C, YNL224C
2.19¢-21 | RNA processing YGL111W, YNL308C, YMR239C, YGL078C, YFL002C, YKL172W, YLR276C, YLR002C, YDL166C, YMR229C, YDL148C, YDR299W, YDR324C,
YKL009W, YKL099C, YCLO054W, YNL182C, YGR103W, YIR005W, YLR129W, YOR243C, YNL124W, YGR128C, YGR081C, YOR294W,
YPL211W, YHRO88W, YPR137W, YKL021C, YHR197W, YKR081C, YHRO72W-A, YFR0O0IW, YDR091C, YHR148W, YNL061W, YDROS7C,
YGR178C, YLR409C, YPR112C, YNL002C, YOL0O10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C
3.37e-20 | ribonucleoprotein YGLI11W, YGL078C, YOL077C, YFL002C, YOR206W, YKL172W, YLR002C, YMR229C, YDL148C, YDR299W, YDR324C, YKLO0OOW,
complex YKL099C, YCLO54W, YNL175C, YGR103W, YLR221C, YIR005W, YLR129W, YNL124W, YGR128C, YGR081C, YPL226W, YGR054W,
YOR294W, YPL211W, YHR052W, YPR102C, YHRO88W, YPR137W, YKRO81C, YFR0O31C-A, YHRO72W-A, YFRO01W, YDR091C, YALO35W,
YHR148W, YNLO61W, YDR087C, YGR178C, YLR409C, YPR112C, YNL002C, YOLO10W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C
9.28¢-20 | cellular component YGLI111W, YNL308C, YMR239C, YGL078C, YHR066W, YOL077C, YFL002C, YOR206W, YKL172W, YLR276C, YLR002C, YDL166C,
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biogenesis

YMR229C, YIR026C, YDL148C, YDR299W, YDR324C, YKL0O09W, YKL099C, YCL054W, YNL182C, YGR103W, YBR267W, YLR221C, YIR005W,
YLRI129W, YOR243C, YNL124W, YGR128C, YHR170W, YGRO81C, YPL226W, YOR294W, YPL211W, YHR052W, YPR102C, YHRO8SW,
YPR137W, YKLO021C, YHR197W, YKR081C, YHR072W-A, YFROOIW, YDR091C, YHR148W, YNLO61W, YDR087C, YGL099W, YGR178C,
YLR409C, YPR112C, YNL002C, YOLO10W, YNL207W, YPR144C, YNLO75W, YPL126W, YLR186W, YNL224C, YGR159C

Perturbation centralities were calculated with the Turbine software as described in Methods of the main text. Term enrichment analysis was performed with
the R plug-in of g:Profiler [12], which returns both the enriched terms, and the proteins connected with the term. A term was stated as statistically significant,

if the resulting p-value was strictly less than 0.05 after applying Bonferroni correction. The list was cut at p=10

20 for brevity of the table. The full list can be

obtained by running the ,stressed profile.R” script available at the Turbine web-site http://turbine.linkgroup.hu. The data suggests a very strong down-
regulation of ribosome biogenesis and protein translation in all types of stress, which is a well-studied change in stress [16—18] successfully identified by the
perturbation centrality measure.
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Table S6. Run-time and memory usage of the Turbine program during simulation of

different synthetic networks

Network® | Number of nodes | Number of links | Run-time? | Peak memory | Disk space | Data-on-
usage usage disk’
BA-100/2 100 200 0.03s 4,452 kB 796 kB no
BA-1K/2 1,000 2,000 0.33s 11,892 kB 7,908 kB no
BA-10K/2 | 10,000 20,000 4.16s 86,008 kB 78,980 kB | no
BA-100K/2 | 100,000 200,000 50.24 s 828,292 kB 771 MB no
BA-100K/2 | 100,000 200,000 51.36s 45,476 kB 771 MB yes
BA-1M/2 1,000,000 2,000,000 8m32s 421,640 kB 7713 MB yes
BA-1M/6 1,000,000 6,000,000 14m3s 921,668 kB 7797 MB yes

'Networks were generated with the “grown” plug-in of the netgen tool of the Turbine toolkit. This
plug-in creates Barabasi—Albert-type scale-free networks given the total requested number of nodes
and the degree of newly added nodes.

Run-times are reported as measured by Turbine. This is only the raw simulation time, without
accounting for loading and saving the file to/from the hard disk in the cases, where data-on-disk® mode
is switched off. 1000 time steps were simulated with the communicating vessels model, on a server
with a Xeon 3.6 GHz processor, using only one CPU. Column-major matrix ordering was used for
better performance. The run-time is linear function of both the number of nodes and the simulation
time. Note that the calculation of the perturbation centrality measure for all nodes in a network
requires a separate simulation for each node, thus having a quadratic computational complexity with
respect to the number of nodes.

*Data-on-disk mode is a special feature of Turbine enabling long simulations that would otherwise not
fit in the computer memory. In this mode, data files are accessed directly on the disk without
consuming any memory, at the price of lower access speed. The performance penalty for using data-
on-disk mode is actually surprisingly small according to the data in the Table. Using row-major
ordering with data-on-disk mode leads to lower performance, because sequential writes in each time
step will become random writes on the disk.
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Table S7. Details of the used realizations of modular benchmark graphs

A. Networks used for testing fuzzy versus pronounced modules (all except the ITM-Probe series)

Pre-set ratio of inter- Random Number of Number of intra- Number of inter- Overlap?
modular links seed links modular links modular links
5% 10 13491 12819 672 No
5% 10 13695 13326 369 Yes
5% 19 13583 12872 711 No
5% 19 13755 13614 141 Yes
5% 20 13938 13237 701 No
5% 20 13583 13392 191 Yes
5% 42 13966 13263 703 No
5% 42 14206 13942 264 Yes
5% 85 13619 12919 700 No
5% 85 13908 13830 78 Yes
5% 87 13772 13086 686 No
5% 87 13884 13595 289 Yes
5% 88 13818 13134 684 No
5% 88 13772 13445 327 Yes
40% 10 13491 8111 5380 No
40% 10 13695 9590 4105 Yes
40% 19 13583 8140 5443 No
40% 19 13755 10444 3311 Yes
40% 20 13938 8361 5577 No
40% 20 13583 10052 3531 Yes
40% 42 13966 8383 5583 No
40% 42 14206 10331 3875 Yes
40% 85 13619 8170 5449 No
40% 85 13908 10746 3162 Yes
40% 87 13772 8269 5503 No
40% 87 13887 9913 3974 Yes
40% 88 13818 8292 5526 No
40% 88 13772 9748 4024 Yes
B. Networks used in comparing ITM-Probe and Turbine with different fuzziness values
Pre-set ratio of inter- Random Number of Number of intra- Number of inter- Overlap
modular links seed links modular links modular links
5% 59 7717 7319 398 No
5% 87 7824 7429 395 No
5% 88 7788 7395 393 No
10% 59 7692 6916 776 No
10% 87 7837 7054 783 No
10% 88 7820 7035 785 No
15% 59 7755 6581 1174 No
15% 87 7837 6653 1184 No
15% 88 7827 6653 1174 No
20% 59 7780 6213 1567 No
20% 87 7852 6279 1573 No
20% 88 7850 6269 1581 No
25% 59 7795 5844 1951 No
25% 87 7850 5891 1959 No
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25% 88 7824 5861 1963 No
30% 59 7776 5438 2338 No
30% 87 7849 5485 2364 No
30% 88 7857 5499 2358 No
35% 59 7803 5059 2744 No
35% 87 7850 5103 2747 No
35% 88 7857 5102 2755 No
40% 59 7792 4670 3122 No
40% 87 7848 4710 3138 No
40% 88 7858 4710 3148 No
45% 59 7805 4292 3513 No
45% 87 7845 4309 3536 No
45% 88 7849 4305 3544 No
50% 59 7794 3885 3909 No
50% 87 7850 3923 3927 No
50% 88 7858 3937 3921 No
55% 59 7805 3509 4296 No
55% 87 7848 3528 4320 No
55% 88 7850 3524 4326 No
60% 59 7805 3124 4681 No
60% 87 7850 3127 4723 No
60% 88 7858 3147 4711 No
65% 59 7797 2716 5081 No
65% 87 7849 2750 5099 No
65% 88 7852 2743 5109 No
70% 59 7803 2340 5463 No
70% 87 7850 2359 5491 No
70% 88 7851 2340 5511 No
75% 59 7801 1939 5862 No
75% 87 7852 1961 5891 No
75% 88 7853 1963 5890 No
80% 59 7803 1556 6247 No
80% 87 7849 1572 6277 No
80% 88 7855 1560 6295 No
85% 59 7805 1166 6639 No
85% 87 7852 1169 6683 No
85% 88 7857 1180 6677 No

The used networks were generated with the benchmark network generator tool of Lancichinetti and
Fortunato [1] with the random seed (“seed.dat” file) set to the value in the second column. The exact
commands used for generation were the following:

benchmark -N 4000 -k 6 -maxk 100
benchmark -N 4000 -k 6 -maxk 100

-mu %fuzziness% -t1 3
-mu %fuzziness% -t1 3

for networks in part A with and without overlapping

were generated with the command

benchmark -N 1000 -k 15

commands.

-maxk 50 -mu %fuzziness% -t1 2
The variable %fuzziness% was substituted with the corresponding values of the first column in all

-t2 0.2 -minc 20 -maxc 100 -on 200 -om 2
-t2 0.2 -minc 20 -maxc 100 -on © -om ©

communities, respectively. Networks in part B

-t2 1

Yes” indicates that the network was generated with overlapping modules, that is, 200 nodes were
selected as “overlapping nodes” having two parent communities and receiving intra-modular links
from both of them. “No” indicates that no such nodes were present in the network.
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Table S8: Average perturbation centrality of inter-modular nodes and inter-modular hubs as compared to the average perturbation centrality of

intra-modular, non-hub nodes

Relative perturbation centrality of inter-

Relative perturbation centrality of intra-

Networks modular non-hubs” modular hubs®
Benchmark graphs with pronounced modules® 126% 115%
Benchmark graphs with fuzzy modules 102% 149%
Substrate-bound Met-tRNA synthetase protein structure network 118% 126%
Substrate-free Met-tRNA synthetase protein structure network 113% 125%
Filtered Yeast Interactome 96% 273%
Database of Interacting Proteins yeast interactome (release 2010) 129% 193%
Database of Interacting Proteins yeast interactome (release 2005) 153% 256%
E. coli metabolic network 90% 479%
B. aphidicola metabolic network 112% 281%
School friendship network 107% 149%
Mean and standard error 115% (5.81%) 215% (35.6%0)

Perturbation centralities were calculated as described in Methods for each node of the network, and their average was taken. Hubs were nodes with a degree
in the top 10%. Modularization was performed using the ModuLand Cytoscape plug-in [19]. Inter-modular nodes were defined as nodes having more than

40% inter-modular edges.

"Network descriptions are given in Supplementary Methods of Text S1.
PPercentages reported are the percentage of the average perturbation centrality of the node set marked in the description of the column header compared to the

average perturbation centrality of intra-modular, non-hub nodes.
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Table S9. Signaling residues and residues of experimentally verified importance in Met-
tRNA synthetase protein structure network

A. List of individual perturbation properties of residues with experimentally verified importance [5]

Residue High importance in | High importance in High increase of High decrease of importance on
the substrate-free the substrate-bound importance on binding
conformation conformation binding

ASP-456 Y

ASN-452

ASP-353 Y Y

ALA-352 Y Y Y

TYR-357 Y Y

LEU-355

TYR-359

ARG-356 Y Y

ARG-395

ASN-348

PHE-350

HIS-349

ASP-351 Y Y

TRP-461 Y Y

ASP-449

TYR-358 Y

THR-360 v v

ALA-361 Y Y

LYS-362 Y Y

SER-354 Y Y

B. List of individual perturbation properties of residues predicted to participate in intra-protein signaling [5]

Residue High importance in | High importance in High increase of High decrease of importance on
the substrate-free the substrate-bound importance on binding
conformation conformation binding

GLN-538 Y

VAL-543

PHE-484

MET-488

PHE-437 Y Y

ASP-456 Y

ASN-452

LEU-495 Y Y

TRP-432 Y Y

THR-499 Y Y

HIS-21

ARG-36 Y Y

ASP-32 Y Y

LEU-13 Y Y

PHE-377 Y

VAL-381

PHE-84 Y Y

ASN-391

LEU-392
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PHE-87

ILE-89

ASP-384

MET-25

<|=<|<|=

LYS-388

TYR-357

]

ILE-385

=~

HIS-323 %

LEU-26

<| === <] == =]<|=

HIS-28 Y

LEU-355

TYR-531

VAL-326 Y

TYR-359

TRP-346

LEU-498 v

MET-333 Y Y

ARG-395

PHE-350

TYR-37

TRP-461

LYS-492 v

LEU-363

<|=|=|=

Y

The list of amino acids of E. coli Met-tRNA synthetase predicted to participate in the transmission of
conformational changes was taken according to the text and Figure 5 of the paper of Ghosh and
Vishveshwara [5]. The list of amino acids with experimentally verified importance was taken from the
same article [5] listing earlier findings. Protein structure networks of the substrate-free and substrate-
bound forms of E. coli Met-tRNA synthetase were constructed as described in Supplementary
Methods. Perturbation centralities were calculated as described in Methods of the main text.
Differences of perturbation centralities were obtained by subtracting the rank of the perturbation
centrality of the substrate-bound conformation from the rank of the perturbation centrality of the
substrate-free conformation. Residues in the top 20% of largest perturbation centrality in either the
substrate-free or the substrate-bound conformation, and residues having an increase or decrease of
perturbation importance in the top 20% are shown in the respective column marked by letter “Y”.
Boldface Y-s signify a top 10% level of importance. Starting and ending residues of the predicted
communication pathways, Leu-13 and Trp-461 were also marked with bold letters.
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Supplementary Results

Connection of the communicating vessels model with perturbation dissipation using
shortest paths and having an exponential decay

In the communicating vessels model the change of the energy of a node is given by the
following differential equation:

S (S-S
EZ—Z(TWJ— Dy

i=0

where S is the energy of the current node, | is the number of edges of the current node, w; is
the weight of the i edge, S, is the current energy of the node on the other end of the i" edge,
and D, is a parameter defining the amount of energy dissipated by a node in a given time
step.

Let us define the case of unobstructed propagation as S >> S, . The consequence of the above
definition is that at any given time step, the amount of perturbation transmitted to neighbors is

W. W. n
approximatelyST'. The amount transferred to the n™ neighbor is approximately S[?'j

using the same logic, which results in an exponential decline with distance. Ifw; > 1, transfer

will stop after a second or less in simulation with energy levels evening out to S/2, S/2 for the
two affected nodes, which results in the same exponential decline, if the condition S>> S,
holds for the other nodes as well. If there is a connection between nodes at the same distance
from the origin, no energy will be transmitted, since S =S; if the edge weight from the origin
is the same for both nodes. Generally, if there are no large differences between edge weights,
nodes with the same distance from the origin will tend to have similar values. If there are
multiple edges at a given network shell (i.e. distance from the node where perturbation
started) to the next one, this only changes the amount of energy propagated by a proportional
amount. According to this logic, we can hypothesize that these perturbations tend to travel on
shortest paths.

The dissipation of energy in time will be exponential in the unobstructed case. This comes
from integrating equation (1) with the condition S >> S, , which yields the result

_ SgWy _% 2D,
SO="" T W, o),

|
which describes an exponential decay, if the weighted out-degree, W, = z w, >0.
i=0
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If the flow of perturbation is totally obstructed (all nodes in the neighborhood have the same
energy level) then S =S§;, thus S(t) =S, —D,t, which is a simple linear dissipation with time,
resulting in no energy transfer with distance. Most real world cases are somewhere between
the above two extremes.

Module entrapment occurs when the energy level of a module is too high for the number and
weight of inter-modular edges to propagate the perturbation outwards the module, so the
energy level inside the module is raised to S; = S; for every i and j node inside the module.

Comparison of the communicating vessels model with the random walk model of ITM-
Probe

ITM-Probe is an algorithm modeling information propagation in complex networks using a
random walk model [2]. For the comparison of the communicating vessels model used by
Turbine with the ITM-Probe method, perturbation centralities obtained on networks with
different ratios of inter-modular edges were compared with the “number of visited nodes”
measure of the emitting model of the ITM-Probe method as described in the Supplementary
Methods section.

The “number of visited nodes” measure used by the emitting model of the ITM-Probe method
is theoretically quite similar to the perturbation centrality of the communicating vessels model
used by Turbine, since in the ITM-Probe model the random walk has a defined probability
(with a default value of 15%) to end at every node visited. This means that the average
distance of the last node of the random walk is proportional with the distance from the
originating node, so in the end the nodes closer to the origin tend to dissipate more walks in
ITM-Probe [2] in the same manner as nodes closer to the origin dissipate more energy in our
communicating vessels model.

In the comparison of Turbine with ITM-Probe a total of 51 benchmark graphs [1] were
tested, with a ratio of inter-modular edges increasing from 0.05 to 0.85 with steps of 0.05.
Three networks were generated with each ratio of inter-modular edges value, with three
different random seeds to make the results more robust as described in Supplementary
Methods. Perturbation centrality and the “number of visited nodes measure” were calculated
for each node (1,000 in each network).

In the first simulation perturbation centrality and the “number of visited nodes” measure were
averaged for all the 3 randomly generated networks for each inter-modular edge ratio.
Spearman correlation of perturbation centrality and the “number of visited nodes” measure
was calculated with the R program package [3]. Results are shown in Figure S1. Spearman
correlation of the average number of visited nodes with the average perturbation centrality
calculated for low-intensity perturbations was a perfect 1 meaning that the limitation of
perturbation propagation imposed by modular boundaries decreased in exactly the same
manner, when assessed by either the Turbine or the ITM-Probe method as the modular
structure was coalescing by the gradual increase of the number of inter-modular edges.

Despite the above effect, large differences were observed between the tested measures of
ITM-Probe and Turbine. Correlations of degrees, number of visited nodes and perturbation
centrality were much lower in different simulations depending on the level of modularity as
shown on Figure S2. The correlation between perturbation centrality and the “number of
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visited nodes” measure (Figure S2C) was high when the modularity of the network was
noticeable (the ratio of inter-modular edges was smaller than 0.3). However, when the
modules started to merge, the correlation diminished, and even turned to negative at the
highest ratios of inter-modular edges. An explanation of this effect lies in the fact that in the
ITM-Probe method, the degree of a node is inversely correlated with the “number of visited
nodes” measures at ratios of inter-modular edges higher than 0.2 (Figure S2B). The
diminished importance of hubs in information spread is rather counter-intuitive. For low ratios
of inter-modular edges, the correlation between the “number of visited nodes” measure and
node degree was positive, which shows that high-degree inter-modular nodes are the most
important information spreaders in highly modular networks, and in the scale-free benchmark
graphs nodes having a higher degree also have a higher chance of gaining inter-modular
edges. Correlation of perturbation centrality with node degree varied with a much lower effect
size (Ar=0.25), as shown on Figure S2A. The differences observed can be explained by the
limiting effect of modular boundaries on perturbation propagation described in the main text.

Figure S3 illustrates the individual perturbation centralities and “number of visited nodes”
measures for a single scale-free benchmark graph generated using the random seed value of
87. Perturbation centrality was positively correlated with the node degree in all ratios of inter-
modular edges analyzed, but the limiting effect of modular boundaries on the propagation of
perturbations was noticeable at low ratios of inter-modular edges. This effect was evident by
the segregation of perturbation centrality data to stripes at the ratio of inter-modular edges of
0.05. At this benchmark graph configuration nodes had only one or two inter-modular edges,
if any. The top segregated layer of perturbation centrality data corresponds to nodes having
two inter-modular edges, while the middle layer of perturbation centrality values corresponds
to nodes having one inter-modular edge. The highest “number of visited nodes” values did not
change with growing ratios of inter-modular edges (cf. Panels G through L of Figure S3),
only the lowest “number of visited nodes” values — and thus the average — got higher as ratio
of inter-modular nodes increased, resulting in a saturation-like effect for the “number of
visited nodes” measure possibly explaining the inverse correlation with degree in networks
with highly overlapping modules.

Dissipation-free propagation of perturbation is characterized by fill time, which
reciprocally correlates with closeness centrality

Fill time was defined as a measure assessing the propagation of a continuous perturbation in
the communicating vessels model without dissipation as stated in the main text. The fill time
of node i is the time needed to raise the energy level of 80% of the nodes above 1 unit (0.01%
of initial perturbation) in a simulation, where a perturbation of 10,000 units was added to node
I in each time step, and was propagated without dissipation. Fill time was calculated for all
nodes in several benchmark graphs and in real-world networks. Table S1 shows that the
reciprocal of the fill time of node i strongly correlated with the closeness centrality of the
same node (T = 0.895;95%CI = 0.843-0.946; p =2.1-10""", one-sample t-test, Shapiro-Wilk
normality test successful with p=0.178). We note that the two metabolic networks, where the
correlation with the fill time was the lowest, correspond to a different class of networks
according to Guimera et al. [20] Since the closeness centrality of node i is defined as the
mean geodesic distance (mean shortest path) between node i and all other nodes, the high
correlation between the reciprocal of fill time and closeness centrality meant that the shortest
paths determined most of the dissipation-free propagation of perturbations. This agrees with
the expectations [21], and validates the use of the communication vessels model, which has
this property as shown in the Supplementary Results of Text S1.
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Comparing the effect of degree and modular position on perturbation centrality in real-
world networks

In the experiment comparing the silencing times of the Lancichinetti [1] benchmark networks,
the ratio of perturbation dissipation efficiencies of two node categories out of the 4, namely:
inter-modular non-hubs and intra-modular hubs, had interesting changes with the modular
structure. As we noted earlier, modules of real world networks seem to be more overlapping
than the pronounced modules of our benchmark graphs. Starting from these notions we
compared the mean perturbation centrality of intra-modular hubs against inter-modular non-
hubs as the percentage of the mean perturbation centrality of intra-modular non-hubs in
multiple real-world networks (Table S8). Hubs were nodes with the top 10% degree, and
inter-modular non-hubs were those with at least 40% inter-modular edges — just as in the
previous calculations. Inter-modular non-hubs had only a 15% larger perturbation centrality,
while hubs had a 115% larger perturbation centrality than intra-modular non-hubs. The large
(87%) difference between the effect of hubs versus the effect of inter-modular non-hubs
suggest that from a perturbation perspective real-world networks resemble the benchmark
graphs with fuzzy modules more, than the benchmark graphs with pronounced modules.
(Note that the same observation was obtained when we compared the low-intensity and high-
intensity silencing times — see Table S2.)

Amino acids participating in intra-protein signaling have a high perturbation centrality
in the protein structure network

We have assessed the perturbation centrality of amino acids forming a-helices, B-sheets and
loops in two pairs of protein structure networks corresponding to the substrate-free and
substrate-bound conformations of E. coli Met-tRNA synthetase and rabbit cytochrome P450
2B4, respectively. The Wilcoxon rank-sum test (0=0.00625 adjusted with Bonferroni
correction) indicated significantly (p=0.00023, 0.00015, 0.00083, 0.0014 for the free and
bound conformations of Met-tRNA synthetase and cytochrome P450, respectively) larger
perturbation centralities of a-helices compared to the global mean, while the same test
indicated significantly (p=3.2%¥10°, 9.5%10°, 2.3*10°, 0.0001 for the free and bound
conformations of Met-tRNA synthetase and cytochrome P450, respectively) smaller
perturbation centralities for loops compared to the global mean. (Figure S6A through S6D;
0=0.001). The average perturbation centrality for B-sheets showed a larger variation. The
same data calculated for betweenness and closeness centralities is shown on Figures S7 and
S8 of Text S1. Betweenness centrality had a much larger deviation than perturbation
centrality, and both closeness and betweenness centralities could differentiate less between
amino acids in different secondary structures than perturbation centrality.

We continued the analysis of protein structure networks by assessing the perturbation
centralities of E. coli Met-tRNA synthetase amino acids participating in intra-protein
signaling. We selected Met-tRNA synthetase, since an earlier molecular dynamics study [5]
identified key amino acids involved in the transmission of conformational changes upon
substrate binding (termed as “Signaling residues” on Figures S6E and S6F). We have also
checked a set of residues, whose importance have already been experimentally established [5]
termed as “Experimental residues” on Figures S6E and S6F). Figures S6E and S6F show
that the perturbation centrality was significantly (Wilcoxon rank-sum test, 0=0.0125 adjusted
with Bonferroni correction for a FWER of 0.05) higher for both the Signaling (p=1.7*10,
1.1¥10° for the free and Met-tRNA-bound conformations, respectively) and Experimental
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residues (p=0.0072, 0.061 for the free and Met-tRNA-bound conformations, respectively)
than average. Data in Figures S7 and S8 of Text S1 show that both closeness and
betweenness centralities could differentiate Signaling residues, but neither closeness nor
betweenness centralities could differentiate the Experimental residues from the average
centrality of the whole protein. 67 or 60% of Signaling or Experimental residues, respectively,
were in the top 20% of amino acids having the largest perturbation centrality and/or the
largest change of perturbation centrality upon substrate binding (Table S9 of Text S1).

Testing the effects of edgetic perturbations

The definition of perturbation centrality described in the main text: “the reciprocal of
silencing time retrieved by using a Dirac delta type starting perturbation of 10*n units, where
n is the number of nodes in the network, using a dissipation value of 1 can be extended to
describe the perturbation centrality of an edge, where the perturbation centrality of the edge
connecting nodes i and j is the reciprocal of the silencing time obtained when the same
perturbation was started from nodes i and j at the same time. Testing these edgetic
perturbations on benchmark networks revealed that edgetic perturbations show the same basic
properties as (single) node-based perturbations (cf. Figure 1 and Figure S10 of Text S1).
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Supplementary Methods

Description of the networks used
Benchmark graphs

Scale-free, modular benchmark graphs were generated using the unweighted, undirected
benchmark graph generating tool of Lancichinetti and Fortunato [1]. Double edges were
removed from the generated networks. Random seed values of 59, 87 and 88 were used to
generate three sets of networks. When 7 sets of networks were generated, the additional seeds
19, 20, 42 and 85 were used. These benchmark graphs had 4,000 nodes and 13,785 + 421
edges. The ratio of inter-modular edges was set to 0.05 in the case of the networks termed as
“networks with pronounced modules”, and 0.4 for the networks termed as “networks with
fuzzy modules”. Networks with no overlapping nodes were used in all cases except for the
testing of inter-modular nodes (Figure 2 of the main text), where 200 overlapping nodes were
generated, each belonging to two separate modules. A total of 28 networks of this type were
created. For the ITM-Probe simulations in this Supplementary Information the number of
nodes was 1,000 and the number of edges was 7,825 + 133 with the ratio of inter-modular
edges varying between 0.05 and 0.85 in steps of 0.05 for a total of 51 networks. None of the
networks generated for the ITM-Probe comparison contained overlapping nodes. Detailed
information about the generated benchmark graphs, as well as the exact commands used for
generation is available in Table S7. Benchmark graph data can be downloaded from our web-
site: http://turbine.linkgroup.hu.

Protein structure networks

The protein structure networks of Escherichia coli Met-tRNA synthetase were generated from
the starting and equilibrated state of the molecular simulation of the E. coli Met-tRNA
synthetase/tRNAM/Met-AMP complex corresponding to the substrate-free and substrate-
bound forms of the enzyme, respectively. The structure for the substrate-free form of E. coli
Met-tRNA synthetase is available (pdb ID: 1QQT) [22]. However, the substrate-bound
conformation containing tRNAM® and Met-ATP was not experimentally solved yet, but was
created using molecular simulation software using the known substrate-bound structure of
Aquifex aeolicus Met-tRNA synthase as a template, as described and kindly shared by Ghosh
and Vishveshwara [5]. The protein structure network was obtained from the PDB data with
the help of the RINerator software [23], which uses the Probe program [24] for calculating
interaction strengths. Probe returns negative values for repulsive interactions; we have taken
the absolute value of the interaction strength for all interactions, since both repulsive and
attractive interactions transmit perturbations. In contrast with the previous article of Szalay-
Beko et al [19], where multiple edges adversely affect calculations, in Turbine, multiple
edges are neutral, so the full network was used with every edge and self-loop intact instead of
averaging the strengths of multiple links into a single one. The rationale behind this is to
retain as much information as possible from the original file. The protein structure network
had 547 nodes, since the first 3 N-terminal amino acids were not participating in the network
and all ligands and cofactors, including the tRNA were removed. The final weighted,
undirected protein structure networks of the substrate-free and substrate-bound enzyme
contained 6,901 and 6,744 edges, respectively.
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Protein structure networks of the substrate-free and substrate-bound forms of rabbit
cytochrome P450 2B4 protein were also created with the RINerator software [23] by using the
1POS and 1SUO pdb files of the Protein Data Bank, and taking the absolute value of the
resulting interaction strengths. The surrounding water molecules, the ligands and the cofactors
were removed from the networks, resulting in 465 nodes with 6,278 edges in the substrate-
free (open) conformation and 465 nodes with 6,409 edges in the substrate-bound (closed)
conformation, both undirected, weighted networks. Protein structure network data can be
downloaded from our web-site: http://turbine.linkgroup.hu.

Yeast protein-protein interaction networks

The Filtered Yeast Interactome (FYI) is a high-fidelity yeast protein-protein interaction
dataset containing data consistently obtained using several different methods [6]. The
downloadable data set in the Supplement of the article contained 1,302 proteins (nodes)
having 2,312 interactions (edges). The giant component of this network had 695 nodes and
1,614 edges.

The “Database of Interacting Proteins yeast interactome (release 2005)” network is the giant
component of the unweighted and undirected yeast protein-protein interaction network
assembled by Ekman et al. [25] using the 2005 March compilation of the Database of
Interacting Proteins [26] consisting of 2,444 nodes and 6,271 edges covering approximately
half the proteins of yeast genome. Besides the rather high confidence of its data, we choose
this network, because it was used in the identification of party and date hubs, an interesting
dynamic feature of protein-protein interaction networks [25] and its properties were assessed
in our earlier publications [19].

The “Database of Interacting Proteins yeast interactome (release 2010)” network was created
from the 2010 October compilation of the Database of Interacting Proteins [26]. Only high-
fidelity interactions marked as “core” were included in the network, yielding a giant
component of 1,884 nodes and 4,234 edges.

Interaction weights of yeast proteins were obtained from the yeast whole-genome mRNA
expression dataset of Holstege et al. [27] containing data of 6,180 yeast genes (5461 with
expression levels, and one gene with two different expression levels). Missing data (719
nodes total, less than 12%) were substituted as the In-transformed average expression level of
all other proteins, 0.9205, taking into account that the distribution of expression data is
approximately lognormal [28]. For calculating the changes of expression levels in different
types of stress, the datasets of Gasch et al. [29] were used, which describe the relative changes
of expression levels based on a set of microarray data. Thus, the stressed expression levels
were calculated by multiplying the Holstege baseline with the Gasch relative changes
according to the previous article [30]. The particular datasets used for the different stresses
were the following: “Heat Shock 15 minutes hs-1" (25°C to 37°C heat shock for 15 minutes)
for the heat-shocked network; “constant 0.32 mM H,0, (30 min) redo” (0.32 mM hydrogen-
peroxide treatment for 30 minutes) for the oxidative stress, and “1 M sorbitol - 15 min”
(hyper-osmotic shock using 1 M sorbitol for 15 minutes) for the osmotic stress. Detailed
experimental data is available in the article describing the dataset [29]. Edge-weights of non-
stressed and stressed protein-protein interaction networks were generated from the expression
data by multiplying the abundances of the two connected proteins as described earlier [30],
since larger concentrations of involved proteins make their interaction more likely. Thus all
final interactomes were weighted and undirected.

47



The use of even larger interactomes such as BioGRID or STRING were also considered, but
was dropped due to computational constraints, since there were 6 magnitudes of difference
between weighted out-degrees. Adding the fact that the weight distribution was approximately
lognormal (so most of the nodes had low weighted outdegrees), and the required constraint

|
that the maximum weighted outdegree should be no more than 1 (—-1< Atz W, <1) meant
i=0
that unrealistically high analysis times would have been required to attenuate the
perturbations, since enforcing an upper limit for the maximum weighted outdegree results in
median weighted outdegrees becoming extremely low, which in turn makes propagation
speed disproportionately slow. Protein-protein interaction network data can be downloaded
from our web-site: http://turbine.linkgroup.hu.

Metabolic networks

Metabolic networks were created by Balazs Szappanos (Biological Research Centre,
Hungarian Academy of Sciences, Szeged, Hungary), and were the same as used in the papers
of Mihalik and Csermely [30] and Szalay-Bek6 et al. [19]. Escherichia coli metabolic
network contained 249 metabolites (nodes) and their 730 transformations (edges), while the
Buchnera aphidicola metabolic network contained 190 nodes and 563 edges. These networks
were constructed based on the primary data of Feist et al. [9] and Thomas et al. [8],
respectively. Frequent cofactors were deleted from the networks, except of those metabolic
reactions, where cofactors were considered as main components. For the better comparison of
networks, metabolic reactions were taken irreversible, and flux balance analyses (FBA) were
performed resulting in weighted networks. All flux quantities were minimized, whereas
reactions non-affecting the biomass production were considered having zero flux. Weights
were generated as the mean of the appropriate flux quantities in absolute value, except the
case when one of the fluxes was zero that automatically resulted in a zero weight [30]. For E.
coli, data from rich medium was used to make the metabolic network more similar to the
network of B. aphidicola. Final networks were thus weighted and undirected. Metabolic
network data can be downloaded from our web-site: http://turbine.linkgroup.hu.

School friendship network

The social network was community-44 from the Add Health survey” as described by James
Moody [31] and Mark Newman [32]. This network has an approximately equal number of
black and white students and 4 well-developed, rather dense communities. The network
contains 1,147 students with 6,189 directed edges between them. In our current study directed
parallel edges were merged into a single undirected edge with a weight equal to the sum of the
original weights, and only the giant component of the network was used. This process resulted
in a weighted undirected network consisting of 1,127 nodes and 5,096 edges with weights
between 1 and 12. Network data can be downloaded from our web-site:
http://turbine.linkgroup.hu.

*This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman, and
Kathleen Mullan Harris, and funded by a grant PO1-HD31921 from the National Institute of Child Health and
Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald
R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files
from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill,
NC 27516-2524 (addhealth@unc.edu).
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Network measures and their calculation

The degree of a node is defined as the number of edges of the node. More precisely for the
perturbation simulations we have to consider the number of outgoing edges (i.e. the out-
degree). However, all networks we used were undirected, so the degree of a node was
equivalent to its out-degree in all cases. Weighted degree was calculated by summarizing the
edge weights of all edges for a given node. Degree and weighted degree were calculated using
the built-in algorithm of Turbine.

PageRank is a random-walk based measure [33], where the outbound edges of a node increase
the centrality of those nodes for which the given edge is an inbound edge. The exact value of
increase is proportional to the current PageRank value of the edge’s outbound node. Multiple
iterations of this method yielded a converging result [33]. PageRank values were calculated
using the algorithm of the igraph [34] package.

Closeness centrality [35] is defined as the mean geodesic distance (mean shortest path)
between a given node and all other nodes reachable from it. Betweenness centrality [36] gives
the (relative) number of shortest paths between every two nodes in the network, which include
the examined node. Closeness centrality and betweenness centrality were calculated using the
Pajek [37] package.

Community centrality is a measure coined for the ModuLand overlapping community
structure determination program [19], which measures the centrality of a node separately for
different communities. Community centrality was calculated by the ModuLand Cytoscape
plug-in [19].

Network modularization

Community structures of networks were determined by the ModuLand Cytoscape plug-in [19]
with basic settings. A threshold of 0.9 was used for merging highly correlated modules in all
networks. For the school friendship network, modules of the second hierarchical level were
used (where meta-nodes of the level represent modules of the original network and meta-
edges of the level represent the overlap of the modules of the original network as described in
[19]) to obtain the 4 densely connected communities of the network [32,38].

Determination of the “number of visited nodes” measure of the ITM-Probe method

To compare the “number of visited nodes” measure of the ITM-Probe method [39] with the
perturbation centrality obtained by using the Turbine program, the recently released
standalone version of the ITM-Probe method [39] was used, since calculating the ITM-Probe
results for all nodes on a network would take a tremendous amount of time using the web-
based interface. A plug-in was written for Turbine that converts any complex network in
Turbine format (needed for the fast-calculation of the Turbine program) to the format required
by ITM-Probe (JSON). This plug-in can be downloaded from the Turbine web-site at
http://turbine.linkgroup.hu. The ITM-Probe method was used with its emitting model with a
damping factor of 0.85. The main script file of the ITM-Probe method was executed
separately for every single node in a certain network, and all output was concatenated into a
single text file. The “number of visited nodes” measures were extracted from the resulting
ITM Probe text file with an awk script.
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