Supporting Information

Diterpene Cyclases and the Nature of the Isoprene Fold

Rong Cao¹, Yonghui Zhang², Francis M. Mann³, Cancan Huang², Dushyant Mukkamala¹,

Michael P. Hudock¹, Matthew Mead³, Sladjana Prisic³, Ke Wang², Fu-Yiang Lin¹, Ting-Kai

Chang², Reuben Peters^{3,*}, and Eric Oldfield^{1,2,*}

¹Center for Biophysics & Computational Biology,

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;

²Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue,

Urbana, IL 61801, USA; ³Department of Biochemistry, Biophysics and Molecular Biology,

Iowa State University, Ames, IA 50011, USA

*To whom correspondence may be addressed. E-mail: <u>rjpeters@iastate.edu</u> or eo@chad.scs.uiuc.edu

Table of Contents

upporting Tables	S3-S9
The predicted and experimental numbers of helices and turns	S3
QSAR table	
Distance Matrix of 20 terpene synthases by SSM program	S6-S7
Distance Matrix of 20 terpene synthases by CE program	
upporting Figures	S10-S57
Sequence alignment between bacterial diterpene cyclases and triterpene cyclasesS	S10-S11
Predicted and experimental number of helices and turns	S12
Full alignment of 228 terpene synthases obtained by using the PSI-BLAST	S13-S37
Full Structures of Abies grandis abietadiene synthase inhibitors investigated	S38

Structure Dendrogram	S39
PSI-BLAST output using Blr2149 as query	
FASTA search program output alignment by using Bradyrhizobium japonicu	<i>um</i> γ-domain
only as the query	S55
Supporting Experimental Section	
Supporting references	

Table S1: The number of helices (N_h) and turns (N_t) calculated using the COUDES¹ program versus the number determined experimentally for 10 terpene synthases. The numbers of helices and turns predicted for two bacterial diterpene cyclases (*B. japonicum* CPS, *M. tuberculosis* Rv3377c) and one plant diterpene cyclase (AgABS) are also shown.

		N_h (calc)	N_t (cacl)	N _h (expt)	N_t (expt)
3sqc	SHC	24	31	27	33
1w6k	OSC	26	35	28	34
1kzo	Farnesyl transferase	31	29	31	28
3dra	Geranylgeranyl transferase I	28	20	30	21
3dss	Geranylgeranyl transferase II	27	19	26	22
2a73	complement C3 β subunit	12	7	13	9
2f8z	FPPS	14	9	13	11
2q80	GGPPS	14	10	12	7
1ezf	SQS	13	8	14	11
2zcq	S. aureus CrtM	11	5	12	6
	<i>B. japonicum</i> CPS	23	19		
	M. tuberculosis Rv3377c	19	26		
	AgABS	34	32		

	Experi		0		0	Test Set	pIC ₅₀ (M)	b, c			
Compound ^a	IC ₅₀ (μM)	$pIC_{50}(M)^{b}$	Training	1	2	3	4	5	6	Predicted	Residual
Aza-GGPP	0.01	7.9	7.8	7.9	8	7.9	7.9	7.9	7.9	7.9	0
BPH-916	0.15	6.8	6.7	6.8	6.8	6.7	6.7	6.8	6.8	6.7	0.1
BPH-882	0.19	6.7	6.7	6.7	6.7	6.8	6.7	5.6	6.7	5.6	1.1
BPH-890	0.24	6.6	6.6	6.7	6.7	6.7	6.7	6	6.6	6	0.6
BPH-922	0.25	6.6	6.6	6.6	6.5	6.7	6.6	6.6	6.5	6.5	0.1
BPH-901	0.29	6.5	6.5	6.5	6.2	6.5	6.6	6.7	6.5	6.2	0.3
BPH-899	0.35	6.5	6.5	6.5	6.6	6.5	6.4	6.5	6.4	6.4	0.1
BPH-921	0.48	6.3	6.2	6.1	6.1	6.1	6.1	5.9	6.2	5.9	0.4
BPH-892	0.53	6.3	6.3	6.4	6.2	6.3	6.3	6.3	6.3	6.4	-0.1
BPH-917	0.77	6.1	6.1	6.1	6.1	6	6.2	6.1	6.1	6	0.1
BPH-907	0.94	6	6	6	6	5.9	6	6	6	5.9	0.1
BPH-909	1.02	6	6.1	6.3	6	6.1	6	6	6.1	6.3	-0.3
BPH-908	1.08	6	6	6	5.9	6	6	5.9	5.9	5.9	0.1
BPH-924	1.18	5.9	6.2	6.1	6.1	6.2	6.1	5.9	6.2	5.9	0
BPH-896	1.45	5.8	5.7	5.8	5.6	5.7	5.8	5.5	5.4	5.4	0.4
BPH-863	1.72	5.7	5.7	5.8	5.6	5.7	5.7	5.8	5.5	5.5	0.2
BPH-923	1.94	5.7	5.8	6.2	5.7	5.7	5.7	5.7	5.7	6.2	-0.5
BPH-905	2.47	5.6	5.5	5.6	5.6	5.5	5.3	5.5	5.5	5.3	0.3
BPH-902	3	5.5	5.6	5.5	5	5.4	5.5	5.6	5.6	5	0.5
BPH-661	10.68	5	5	5	5	5	5.2	5.1	5	5.2	-0.2
BPH-904	12.58	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	0
BPH-913	15	4.8	4.8	4.9	4.6	4.8	4.8	4.7	4.8	4.6	0.2
BPH-918	30.34	4.5	4.5	4.5	4.4	4.5	5.3	4.5	4.5	5.3	-0.8
BPH-876	41.63	4.4	4.4	4.4	4.6	4.4	4.4	4.5	5	5	-0.6
BPH-891	41.72	4.4	4.3	4.4	4.3	5.6	4.3	4.4	4.3	5.6	-1.2
BPH-883	67.7	4.2	4.2	4.1	4.2	4.2	5.6	4.2	4.2	5.6	-1.4
BPH-673	175.68	3.8	3.7	3.7	5.2	3.8	3.7	3.8	3.7	5.2	-1.4
BPH-914	274	3.6	3.6	4.4	3.6	3.6	3.5	3.6	3.6	4.4	-0.8
		q^2	0.67	0.56	0.59	0.59	0.64	0.59	0.60		

Table S2: CoMSIA training and test set predictions for AgABS Inhibition using GGPP as the substrate

r ²	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Ν	6	6	5	6	5	6	6
F	734	474	503	503	602	603	916
n	28	23	23	23	23	24	24
%Steric	0.17	0.18	0.16	0.17	0.17	0.15	0.14
%Electrostatic	0.18	0.19	0.20	0.22	0.20	0.25	0.18
%Donor	0.33	0.31	0.33	0.31	0.37	0.37	0.34
%Acceptor	0.31	0.32	0.29	0.32	0.25	0.29	0.33

N = number of components; n = Number of training set compounds

^a the structures of all inhibitors shown in Figure S4.
 ^b pIC₅₀=-log₁₀IC₅₀[M]
 ^c bold values indicated compounds not included in training set.

Table S3. Distance matrix for 20 terpene synthase structures obtained by using the Protein Structure Alignment by SSM program². The values shown are the normalized C^{α} rmsd values (1000* (C^{α} rmsd (Å)/N), where N is the number of aligned residues in structures *i* and *j*). The letters shown are the PDB file designations.^a

	1JFG	1DI1	5EAS	1N1B	20NG	1PS1	2F7M	2HER	2IHI	1YHK	2FOR	1UBV	2EWG	1RQI	1RTR	2E8T	2J10	2Q80	2ZCP	1EZF
1JFG ^b	-	17.4	13.1	14.7	14.9	15.6	17.4	19.0	19.9	17.7	21.1	17.4	18.2	19.9	20.2	20.0	21.4	21.1	18	19.9
1DI1	17.4	-	24.9	15.3	13.7	11.3	21.2	20.2	20.9	19.8	22.4	21.1	19.7	22.1	25.0	25.7	27.8	25.5	20.5	22.1
5EAS	13.1	24.9	-	4.3	4.0	12.0	15.6	16.2	16.6	15.1	19.7	15.0	15.5	17.8	19.9	14.5	19.9	14.5	17.2	16.9
1N1B	14.7	15.3	4.3	-	2.5	11.9	15.5	16.7	16.6	16.0	20.9	16.5	16.2	20.8	20.3	15.5	20.0	16.2	18.6	18.2
20NG	14.9	13.7	4.0	2.5	-	11.2	14.8	16.4	14.9	14.9	19.9	15.6	18.7	17.8	20.2	15.1	20.7	15.6	17	17.3
1PS1	15.6	11.3	12.0	11.9	11.2	-	16.9	17.5	18.3	16.5	22.5	17.1	16.2	21.3	21.8	17.5	23.0	16.7	17.6	18.1
2F7M	17.4	21.2	15.6	15.5	14.8	16.9	-	7.0	5.1	5.9	10.8	2.7	5.8	10.8	10.5	9.5	12.1	10.3	19.1	18
2HER	19.0	20.2	16.2	16.7	16.4	17.5	7.0	-	5.1	5.7	11.8	7.5	5.4	11.1	11.9	10.3	13.9	10.0	20.1	17.2
2IHI	19.9	20.9	16.6	16.6	14.9	18.3	5.1	5.1	-	4.0	10.4	5.7	4.7	9.1	10.7	10.0	12.3	9.6	19.7	18.2
1YHK	17.7	19.8	15.1	16.0	14.9	16.5	5.9	5.7	4.0	-	10.4	5.8	2.7	9.6	10.9	10.2	12.4	10.1	19.6	17.4
2FOR	21.1	22.4	19.7	20.9	19.9	22.5	10.8	11.8	10.4	10.4	-	11.1	10.3	3.8	4.8	18.5	5.8	10.8	19.6	18.7
1UBV	17.4	21.1	15.0	16.5	15.6	17.1	2.7	7.5	5.7	5.8	11.1	-	6.0	11.0	10.5	9.1	12.3	10.5	19.9	18.8
2EWG	18.2	19.7	15.5	16.2	18.7	16.2	5.8	5.4	4.7	2.7	10.3	6.0	-	8.3	11.3	9.3	12.7	8.9	19	16.3
1RQI	19.9	22.1	17.8	20.8	17.8	21.3	10.8	11.1	9.1	9.6	3.8	11.0	8.3	-	6.2	9.7	7.4	8.8	18.6	17.5
1RTR	20.2	25.0	19.9	20.3	20.2	21.8	10.5	11.9	10.7	10.9	4.8	10.5	11.3	6.2	-	11.8	6.3	11.4	18.1	19
2E8T	20.0	25.7	14.5	15.5	15.1	17.5	9.5	10.3	10.0	10.2	18.5	9.1	9.3	9.7	11.8	-	19.2	4.8	20.3	18.6
2J1O	21.4	27.8	19.9	20.0	20.7	23.0	12.1	13.9	12.3	12.4	5.8	12.3	12.7	7.4	6.3	19.2	-	16.4	21.3	23
2Q80	21.1	25.5	14.5	16.2	15.6	16.7	10.3	10.0	9.6	10.1	10.8	10.5	8.9	8.8	11.4	4.8	16.4	-	17.8	15.7
2ZCP	18	20.5	17.2	18.6	17	17.6	19.1	20.1	19.7	19.6	19.6	19.9	19	18.6	18.1	20.3	21.3	17.8	-	10.8
1EZF	19.9	22.1	16.9	18.2	17.3	18.1	18	17.2	18.2	17.4	18.7	18.8	16.3	17.5	19	18.6	23	15.7	10.8	-

^aThese normalized C^{α} rmsd values were used to construct the phylogenic tree shown in Fig 6a.

^b1JFG: Fusarium sporotrichioides trichodiene synthase
1DI1: Penicillium roqueforti aristolochene synthase
5EAS: Nicotiana tabacum 5-epi-aristolochene synthase
1N1B: Salvia officinalis (+)-bornyl diphosphate Synthase
2ONG: Mentha spicata 4S-limonene synthase
1PS1: Streptomyces sp. pentalenene synthase
2F7M: Homo sapiens farnesyl diphosphate synthase (FPPS)
2HER: Cryptosporidium parvum FPPS
2IHI: Plasmodium vivax FPPS
1YHK: Trypanosoma cruzi FPPS
2FOR: Shigella flexneri FPPS

1UBV: Gallus gallus FPPS 2EWG: Trypanosoma brucei FPPS 1RQI:Escherichia coli FPPS 1RTR:Staphylococcus aureus FPPS 2E8T: Saccharomyces cerevisiae geranylgeranyl diphosphate synthase (GGPPS) 2J1O: Sinapis alba GGPPS 2Q80: Homo sapiens GGPPS 2ZCP: S. aureus dehydrosqualene synthase (crtM) 1EZF: Homo sapiens squalene synthase

	1JFG	1DI1	5EAS	1N1B	20NG	1PS1	2F7M	2HER	2IHI	1YHK	2FOR	1UBV	2EWG	1RQI	1RTR	2E8T	2J1O	2Q80	1EZF	2ZCP
1JFG ^b	-	20.0	13.8	14.8	15.4	13.1	16.9	16.0	33.1	15.9	17.4	16.8	16.5	20.8	16.6	18.7	18.4	23.4	20.4	19.7
1DI1	20.0	-	13.8	15.7	14.3	10.3	18.3	16.6	32.8	20.6	35.0	22.6	22.7	18.8	23.2	20.7	23.5	22.5	20.4	17.9
5EAS	13.8	13.8	-	4.2	4.0	13.4	14.5	18.6	14.2	13.8	16.8	13.9	14.8	16.5	15.7	16.7	18.1	17.3	16.4	15.1
1N1B	14.8	15.7	4.2	-	2.6	15.4	14.5	20.0	17.0	16.7	20.0	16.6	16.7	19.3	20.4	16.0	19.4	17.0	17.3	17.4
20NG	15.4	14.3	4.0	2.6	-	14.2	16.3	19.5	18.0	16.0	19.5	15.9	16.0	18.6	17.8	16.8	23.1	18.0	17.1	16.9
1PS1	13.1	10.3	13.4	15.4	14.2	-	18.8	17.3	19.0	16.8	22.4	18.2	16.9	20.8	20.1	21.5	22.7	18.2	17.4	17.1
2F7M	16.9	18.3	14.5	14.5	16.3	18.8	-	6.3	4.5	5.0	9.9	5.1	5.3	9.0	9.7	9.3	11.5	9.0	16.9	17.8
2HER	16.0	16.6	18.6	20.0	19.5	17.3	6.3	-	5.9	6.0	9.9	8.9	5.9	9.2	9.8	9.7	11.1	8.8	17.6	19.2
2IHI	33.1	32.8	14.2	17.0	18.0	19.0	4.5	5.9	-	4.9	8.9	5.8	4.7	8.5	8.7	8.8	10.5	9.3	17	17.6
1YHK	15.9	20.6	13.8	16.7	16.0	16.8	5.0	6.0	4.9	-	9.2	6.4	2.5	7.6	9.8	9.1	10.9	8.9	17.1	18.3
2FOR	17.4	35.0	16.8	20.0	19.5	22.4	9.9	9.9	8.9	9.2	-	9.8	9.2	3.4	5.6	10.4	9.3	9.7	21.1	19.6
1UBV	16.8	22.6	13.9	16.6	15.9	18.2	5.1	8.9	5.8	6.4	9.8	-	6.4	9.8	8.7	9.5	10.6	9.8	17.1	17.8
2EWG	16.5	22.7	14.8	16.7	16.0	16.9	5.3	5.9	4.7	2.5	9.2	6.4	-	7.9	9.2	9.1	10.9	8.5	19.3	19.2
1RQI	20.8	18.8	16.5	19.3	18.6	20.8	9.0	9.2	8.5	7.6	3.4	9.8	7.9	-	6.7	10.7	12.9	8.5	21.2	20.6
1RTR	16.6	23.2	15.7	20.4	17.8	20.1	9.7	9.8	8.7	9.8	5.6	8.7	9.2	6.7	-	10.9	9.6	10.4	20.3	20
2E8T	18.7	20.7	16.7	16.0	16.8	21.5	9.3	9.7	8.8	9.1	10.4	9.5	9.1	10.7	10.9	-	12.7	4.5	19.6	21.8
2J1O	18.4	23.5	18.1	19.4	23.1	22.7	11.5	11.1	10.5	10.9	9.3	10.6	10.9	12.9	9.6	12.7	-	16.5	23.8	21
2Q80	23.4	22.5	17.3	17.0	18.0	18.2	9.0	8.8	9.3	8.9	9.7	9.8	8.5	8.5	10.4	4.5	16.5	-	16.5	17.8
1EZF	20.4	20.4	16.4	17.3	17.1	17.4	16.9	17.6	17	17.1	21.1	17.1	19.3	21.2	20.3	19.6	23.8	16.5	-	11.4
2ZCP	19.7	17.9	15.1	17.4	16.9	17.1	17.8	19.2	17.6	18.3	19.6	17.8	19.2	20.6	20	21.8	21	17.8	11.4	-

Table S4: Distance matrix for 20 terpene synthase structures obtained by using the Protein Structure Alignment by Incremental Combinatorial Extension (CE) program³. The values shown are the normalized C^{α} rmsd values (1000* (C^{α} rmsd (Å)/N), where N is the number of aligned residues in structures *i* and *j*). The letters shown are the PDB file designations.^a

^aThese normalized C^{α} rmsd values were used to construct the phylogenic tree shown in Fig S5.

^b1JFG: Fusarium sporotrichioides trichodiene synthase 1DI1: Penicillium roqueforti aristolochene synthase 5EAS: Nicotiana tabacum 5-epi-aristolochene synthase 1N1B: Salvia officinalis (+)-bornyl diphosphate Synthase 2ONG: Mentha spicata 4S-limonene synthase 1PS1: Streptomyces sp. pentalenene synthase 2F7M: Homo sapiens farnesyl diphosphate synthase (FPPS) 2HER: Cryptosporidium parvum FPPS 2IHI: Plasmodium vivax FPPS 1YHK: Trypanosoma cruzi FPPS 2FOR: Shigella flexneri FPPS 1UBV: Gallus gallus FPPS 2EWG: Trypanosoma brucei FPPS 1RQI:Escherichia coli FPPS 1RTR:Staphylococcus aureus FPPS 2E8T: Saccharomyces cerevisiae geranylgeranyl diphosphate synthase (GGPPS) 2J1O: Sinapis alba GGPPS 2Q80: Homo sapiens GGPPS 2ZCP: S. aureus dehydrosqualene synthase (crtM) 1EZF: Homo sapiens squalene synthase Figure S1: ClustalW output showing comparison between bacterial diterpene cyclases and two triterpene cyclases (SHC, OSC), the QW motifs and DXDD motif are highlighted in red box.

B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	111111111111	MTEGTCLRRRGGPYKTEPATDLGRWRLNCERGRQTWTYLQDERAGREQTGLEAYALGLDT
B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	1 1 1 1 1 1 61 61	
B.japonicum CPS Xoryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	46 56 52 39 30 33 59 121 121	QDAYAWLIAQQQADGGWGSADFPLFRHAPTWAALLALQRADP-LPGAADAV PNAYAWLIAQQADGGWGSADFPLFRHAPTWAAWLALQRAGACIPGAAAAL RRVQDWLHDAQHADGGWCDPDYPKFRIASSLAALLALHRAGDPRYRAAT ASIVPWLLDQQRSDGGWGLSSVPRARDLPTLASLVALHPYRELTPQVRRAC DLALNWLCERQLPDGSWGAEFPFCYEDRLLSTLAAMISLTSNKHRRRRAAQVE DRRVTWLLDQQRAGGLWGDGPPAYQVLPTLASVTALLAELDRHPEAGHSS TPQIDYLLATQRPDGLWGSVGFELVPTLGAVAGLSSRPEYADRAGVTD D-RMEKIRRYLLHEQREDGTWALYPGGPPDDDTTIEAYVALKYIGMSRDEEPMQKALRFI AGYREEIVRYLRSVQLPDGGWGLHIEDKSTVFGTALNYVSLRILGVGPDDPDLVRARNIL
B. japonicum CPS X.oryzae cyclase B. multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S. clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	96 97 105 103 92 80 81 118 181 181	QTATRFLQRQPDPYAHAVPEDAPIGAELILPQFCGEAASLLGGV EAATAFLERQPDPYARAVPDDAPIGAELILPALSGEAAALSNGA DAGCAFLDRQDPYWRSATLDDIPVGLEIIWPRLQADAQRAGLRF EGGLAFLRNQAAHWETSLPDDIPVGLEILMP
B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	140 141 149 147 138 129 127 178 241 241	AFPRHPALLPLRQACLVKLGAVAMLPSGHPLLHSWEAWGTS AFPRHPALWPLRQARLAKLAKGTSLPSGHPLLHSWEAWGPA SLSPPATLNAIGQARLAKLSRATALPAGHPALHCWEAWGSU DWGPYRALIALGERRALIGKAR-PAAGSAASHSWEGWGSG CHEESILGELVGVREQKLRKLGGSKINKHITAAFSVELAGODGVGML DPEAAHPALAPVPHGRRLTAVHGIPALPRHRLAERLARFARLPVKLH RAVGGKAGQEQEFPSPPGANAELWRQLSDRIARGQAIPKTAWHTL SIVMSRQPVFPLPERRAVPELYEDDVPPRRGAKGGGGWIFDALDRAL SYCYAVRLSAAEDPLVQSLRQELYVEDFASIDWLAQRNNVAPDEL YTPHSWLLRVVYALL
B. japonicum CPS X. oryzae cyclase B. multivorans cyclase S. cellulosum cyclase M. tuberculosis cyclase S. clavuligerus cyclase K. griseola cyclase A. acidocaldarius SHC Human OSC Consensus	181 182 190 187 185 176 173 226 301 301	PTTACPDDDGSIGISPAATAAWRAQAVTRGSTPQVGRADAYLQMASRATRS PASACPDEDGSIGISPAATAAWRAQALQQGDTLQAGRAAAYLQAAARATRS PVAASLGPEGSLAISPSATAAWLRAAHEHELDSALIERASTYLREASRASEA PSPDLLDVSGGVGHSPAATAAWLHASRDKVGLAAARAAAREYLLRASDATEV DVDNLQETNGSVKYSPSASAYFALHVKPGDKRALAYISSIIQAGDG HCFEALAPVCPPGLVPARPDHLLGSSSAATAAWLATATAAPGAPGLDRLLRSTAA EAFHPLPKQFAATVTPAADGAVTCSPSSTAAWLSAVGTDAGASTRAYLDEAQS HGYQKLSVHPFRRAAEIRALDWLLERQAGDGSWGGIQPPWFYALIALKILDMTQHPAFIK NLYEHHHSAHLRQRAVQKLYEHIVADDRFTKSISIGPISKTINMLVRWYVDGPASTAFQE

B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase A.acidocaldarius SHC Human OSC Consensus	232 233 242 239 231 226 286 361 361	GIEGVFPNVWPINVFEPCWSLYTLHLAGLFAHPALAEAVRVIVAQLDA GIEGIVPNVWPINVFEPAWSLYTLHLAGLFAHPALAEAVRATVAPLAA
B. japonicum CPS X. oryzae cyclase B. multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S. clavuligerus cyclase A.acidocaldarius SHC Human OSC Consensus	280 281 290 287 275 275 277 269 346 421 421	RLGVHGLGPALHFAADADDTAVALCVLHLAGRDPAVDALRH RMSARGLGPALHFAADADDTAVVLSVLHLAGRAPTADALRQ RIT
B.japonicum CPS X. oryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase A.acidocaldarius SHC Human OSC Consensus	321 322 331 328 319 315 310 400 481 481	FEIGELFVTFPGERN ASVSTNIHALHA FERGALFVTFPGERN ASVSTNIHALHA FASDGVYATCPGERN PSLSTTVHAMHA FERGGMFITYANELQ PSLSTTVHAMHA FERGGMFITYFHEVG PSISTNVHVLGA FETGDHFACYLGEDT GSVSTNAHVLLA FWAEDHFVSYPGEQT PSETVNAHALEY MTKGFRWIVGMOSSNGGWGAYDVDNTSDLPNHIPFCDFGEV TDPPSEDVTAHVLEC ERLCDAVAVLLNMRNPDGGFATYETKRGGHLLELLNPSEVFGDIMIDYTYVECTSAVMQA fge-fvtf-ge-n
B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	348 349 358 346 342 337 456 541 541	LRLLGK - PAAGASA YVEANRNPHGLWDNEKWHVSWLYPTAHAVAALAQG LRLLGE - PAVATRT YVETNRNPEGVWGNEKWHVSWLYPTAHAIAALAQG LRLQRE - PRTVASA YVLTNRNPEGVWGNEKWHVSWLYPTAHAIAALAQG LASRGE - KASEPAR YLLERQQPDGRWVGDKWHSSWLYTTSQVILALSHE LKQAGY - DKCHPRVR KVLEFIRSSKEPGRFCWRDKWHRSAYYTTAHLICAASN LGTWTR - HHPDTADHGNTIRLLGRWLVERQHGDGHWD - DKWHASPYYATAKVTAALSRH LNHLRM - RRGITEFG - AVEDACAEWVISQQTEDGCWY - DKWHSPYYATAKVTAALSRH LGSFGY - DDAWKVIR RAVEYLKREQKFDGSWFG - RGVNYLYGTGAVVSALKAV LKYFHKRFPEHRAAEIRETLTQGLEFCRRQQRADGSWEGS - WGVCFTYGTWFGLEAFACM
B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase M.tuberculosis cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	396 397 406 398 399 393 508 600 601	KPQWRDERALAALLQAQRDDGGWGAGR-GSTFEETAYALFALHVMDG-SEEAT HPRWRDECALAALLQAQQADGGWGAGS-APTFEETAYALFALHAVDS-GETPE EVDRHGAQTLEGLLACQRADGGWGAGG-APTFEETAYAVLTIDRLCARGPMPP GDDALCSDAIGWILNTQRPDGSWGFAGG-APTAAETAYAVLALRAARRNRELES YDDALCSDAIGWILNTQRPDGSWGFFDGQATAEETAYCIQALAHWQRHSGTSL GGPEAADALRRAARWVRETRRTDGSWGIWG-GTAEETAYAQILLDAPEPP RKQDEP-QLDSLRRAREWLLRHQTDSGWGMAE-PSFETAYAVLALDLFASRGGEG GIDT-REPYIQKALDWVEQHQNPDGGWGEDC-RSYEDPAYAGKGSTPSQTAWALM GQTYRDGTACAEVSRACDFLLSRQMADGGWGEDFESCEERRWVQSAQSQHNTCWAMM
B.japonicum CPS X.oryzae cyclase B.multivorans cyclase S. cellulosum cyclase S.clavuligerus cyclase K.griseola cyclase A.acidocaldarius SHC Human OSC Consensus	447 448 455 451 449 448 562 658 661	GRRRIAQVVARALEWMLARHAAHGLPQTPLWIGKELYCPTRVVRVAELAGLWLALR ARRLIAQAVAQARAWMLARYVPHALPQTTLWIGKELYCPLLVVRVTELAGLWLALQ AARTSLLKAFRLMRDCYRSPRAQASMLWINKELSRPTRVVRAVELAGLWVAHR MARGAWRRGRDWLMSNHDIGAGQEDLRWIGKELYCPARVDRAWVLGALLASQP SAQISRAGGWLSQHCEPYAPLWIAKTLYCSATVVKAAILSALRLVDE TDVLGCAHAHLTARADDDGPPPALWHDKTLFAPDAIVRAELSTLRLDR AEECAAAISRAKEFFTDESRENPPLWMGKDLYTPFRIVDVTVMCGRAVVGR ALIAGGRAESEAARRGVQYLVETQRPDGGWDEPYYTGTGFPGDFYLGYTMYRHVFPTLAL GLMAVRHPDIEAQERGVRCLLEKQLPNGDWPQENIAG-VFNKSCAISYTSYRNIFPIWAL g

X.oryzae cyclase	504	WEQRAADGVTHTGAAP
B.multivorans cyclase	511	RAEALEAACC
S. cellulosum cyclase	508	S WE S
M.tuberculosis cyclase	499	S NQ
S.clavuligerus cyclase	499	RLPAPAPVPPGFDAARTGPAD
K.griseola cyclase	499	Y
A.acidocaldarius SHC	622	GRYKOAI ERR
Human OSC	717	GRESOLYPERALAGHP
Consensus	721	

Figure S2: Graph showing correlation between the number of predicted helices (red) (COUDES program)¹ and turns (blue) versus number seen experimentally in SHC, OSC, FTase I, GGTase I, GGTase II, FPPS, GGPPS, SQS and CrtM (\geq 5 helical residues define a helix; \geq 4 turn residues define a turn).

Figure S3: Full alignment of 228 terpene synthases obtained by using the JPRED3⁴ program. The target sequence (at the top of the output) is abietadiene synthase from *Abies grandis*, minus the plastid targeting segment⁵.

Figure S3 (continued).

Figure S3 (continued).

Ref90

Figure S3 (continued).

Figure S3 (continued).

Figure S3 (continued).

Figure S3 (continued).

Figure S3 (continued).

Figure S3 (continued).

Figure S3 (continued).

UnRef80 094653 UnRef80 094Ub6 UnRef80 094Ub6 UnRef80 094Ub6 UnRef80 094Ub6 UnRef80 092Ub4 UnRef80 025Ub6 UnRef80 025Ub6		WG G S	ВВU С Y M K C Y C Y M K C Y C Y M K C Y C Y M K E N C Y M K E N C C Y M K E N C C Y M K E N C C Y M K C Y C Y M K E N C C Y M K E N C Y M	
Unifields 0.64UU4 Unifields 0.64UU4 Unifields 0.64S97 Unifields 0.62S97 Unifields 0.62S97 Unifields 0.62UX6 Unifields 0.64UV4 Unifields 0.			©©©©©©©©©©©©©©©©©©©©©©_4 %©©©©©©©©©©©©©©©©©©©© %©©©©©©©©©©©©©	
Unitedity_022M4M3 UniRef90_001KN7 UniRef90_22SKN9 UniRef90_22SKN9 UniRef90_U2SCSK9 UniRef90_02SGAS4 UniRef90_022VN3 UniRef90_024JS8 UniRef90_024JS8 UniRef90_02834 UniRef90_028143 UniRef90_028143	$\begin{array}{c} p+p \\ p \\ p$		CYMNCGF SYMCDH SYMCDH CYMCCH CYMCCH SOMREH CYMCCH CYMCCH CYMCCH CYMCCH CYMCCH CYMCC CY C CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC CYMCC C C C	N TISE CHURT A KLUDSEN ED DE WET FINANGE SREET HVELEMPLV VOR NU GT NE KAO EK KLUDSEN ED DE WET FINANGE SREET HVELEMPLV VOR NU GT NE KAO EK KLUDE I VEKA WKD IN OE SLUNK HIL SREIT I LERI GT TI H TY OR LIR EL I ED SWKD MVIEH DT ND DOPLI VE OT V GVT KLEA FRELIVKI U VIA ANKT INE EF LIT GVD FA FIL V KART EV PLEEVA RIVKI OE MIL DE T WRO FINE EW LNK HO PA EL U KRT KVTT GEVALDE KLIGEN IN DE T WRO FINE EW LNK HO PA EL U KRT KVTT GEVALDE KLIGEN IN DE T WRO FINE EW LNK HO PA EL U KRT GVT KLEA EN KLIGEN IN DE T WRO FINE EW LNK HO PA EL U KRT EV PLEEVA RIVKI OE MIL DE T WRO FINE EW LNK HO PA EL U KRT GVT SE EK AVKKI EL LE EVAN SWKD IN DE EL LIN TI VID LIP ML DOR L GGI IT KEE VAKLET VEE SWKD IN DE EL LIN TI VID LIP ML DOR L HLISE EY FALLAL RIVOI DD LWKD MVE NY GEDE VP R GVL MRAV TI NASSERE AVJEKILL, I BEA WKD MVE NY GEDE VP R GVL MRAV
Unimesto, GAULTI 14 Unimesto, GAULTI 14 Unifietto, GOLUN7 Unifietto, GALVI 17 Unifietto, GALVI 17 Unifietto, GALVI 17 Unifietto, GALVI 17 Unifietto, GALVI 17 Unifietto, GAULTI 17 UNIFIETO, GAULTI				

Figure S3 (continued).

	730 740 750
UniRef90_Q94G53 UniRef90_Q84UU6 UniRef90_Q84KL2 UniRef90_Q84KL2 UniRef90_Q92UH4 UniRef90_Q92UH4 UniRef90_Q2XSC5 UniRef90_Q2XSC5 UniRef90_Q23516 UniRef90_Q23516 UniRef90_Q20HU5 UniRef90_Q20HU6 UniRef90_Q652 UniRef90_Q9LH31 UniRef90_Q9LH31 UniRef90_Q9E451 UniRef90_Q9LH31 UniRef90_Q9E36	INLPRMGHEMYTDGDKHGKPD MEKPYVFSLFVNPI LNFARLFDVMYTDGDCKHGKPD KGKPV KFVVFSLFVNPI FDIGRGLQFLYKYRDGUGYSEP KGKUVKDOIFKLLVHQV FNIGRGLQFLYKYRDGGGYDA TEVKDOIFKLVHPVI NLARMSQCMYQYGDGHGSPEKAKIVDORVMSLLFNPI MNVARVTEFAYENEDKYTKPE LLKDYIVALLYDPIS RNLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLEPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLFPPYA ANLGRAAQFMYFDGDG NGSSLQOWIVSLLPDF NVARGLAUFYVGDGDGHGVOHS KIHOOMGGLMFEP NFARGTHFIYEDEDKYTNPD NFARGTHFIYEDEDKYTNPD NFARGLRLIYKYRDGFDVS NGEMKTHIFKILIDPVL ANLGRVAQFFYHGDGGFDVS NGEMKTHIFFKILIDPVL ANLGRLAUFYVGHGDGFGVQHS KTYEHLAGLLFFEPYA
UniRe190_084UU4 UniRe190_084UU4 UniRe190_084U04 UniRe190_027JK5 UniRe190_027JK5 UniRe190_027JK5 UniRe190_027JK5 UniRe190_027JK5 UniRe190_027U27 UniRe190_028GUE4 UniRe190_028GUE4 UniRe190_028GUE4 UniRe190_028GUE4 UniRe190_028GUE4 UniRe190_028GUE4 UniRe190_02858 UniRe190_02858P6 UniRe190_02858P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P6 UniRe190_0258P4 UniRe190_0258P4 UniRe190_0258P4 UniRe190_0258P4 UniRe190_0258P4 UniRe190_0258P4 UniRe190_0258P1 UniRe190_0258P1 UniRe190_0258P1 UniRe190_0258P1 UniRe190_0258P1 UniRe190_0258P4 UniRe190_0258P3 UniRe190_0258P4 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0258P3 UniRe190_0284U99 UniRe190_02843 UniRe190_02843 UniRe190_02843 UniRe190_02834 UniRe190_02834 UniRe190_0281403	N S RV DVF Y RY QD AYTNP K K E H VSLL F F F VM A RVS H G T Y QY QD GG G S S N K Y T E N RI K K L L I D P V YAT E N RI K K L L I D P V YAT E N RI K K L L I D P V YAT E N RI K K L L I D P V YAT E N RI K K L L I D P V YAT E N RI K K D QV Q K V L I V D P I S S N K Y A E F Y K D E D A Y T VS S N L K D QV Q K V L I V D P I Y N L A R K T D V S Y K Y G D G D A Y T D S Q QL K O F V K G S V L I V P P I YN L A R R T A QV Y Q H G D A T D S P D E F T VD D Y V Q H I I F YN L A R T A QV Y Y O D G D A G F S D G F G D S W N M F M S L F A E P L YN L A R M A H QV Y Q D G D A G F S D G F G D S W N M F M S L F A E P L YN L A R M A H QV Y Q D G D A G F S D G F G D S W N M F M S L F A E P L YN L A R T A QV Y Y O D G D A G F S D G F G D S W N M F M S L F A E P L YN L A R T M A H Y Y N L Y Y E E G D N F T Y P M N K L K D T I S L L F I H P F F N I A R T A QV Y Y N Q A D N F T Y O Y D M D A L Q W I H S L Y H P P F A N I G R V A D F Y Y K E R D E F T D P YF G M L K E D T I K S L F Y P Y A YN F G R V A D F M Y K E R D E F T D P YF G M L K E D T I K S L F Y P Y A A N Y S R P H H F M Y K H D D N A Y T F A A T I K L M M A S L Y Y P Y A A N Y S R P H H F M Y K H D D C A Y G B G S H S S V K K Y Y N N A R L Y P Y Y Y Y Y Y Y Y Y D G D G G G G P D S A S Y K Y Y N Y S L L Y F P P A N F G R R V A D F M Y V G G D G G F G O P H S O T K K K M V S L L Y Y P P I A N G R R V A A G V Y Y Y V K G D D G F T F P G K K L H N V S S L L Y F P P A N L G R N A A G V Y Y Y F R D D G F T F P G K K L H N V S S L L Y F P P A N L G R M A H Y G Y G D G G F T F P G K K L H N V S S L L Y P P I A N L A R M A H Y Y F F N D D G F T F P G K K L H K D Y I S S L L Y P P I A N L A R M A H Y Y Y F F N D D G F T F R M G D Y K K M V S L L Y P P I A N L A R M A H Y Y Y F F N D G A F T F M G D N F Y Y N S S L L Y P P I A N L A R M A A C Y Y Y Y F F N G D A Y T N S G T T K K M Y N S L Y Y P P I A N L A R M A A Q Y Y Y Y F F N G D A Y T N S G T T K M Y Y S S J F Y Y P P I A N L A R M A A Q Y Y Y Y F N G D A Y T N S G T K K M Y N S S J F Y Y P P I A N L A R M A A Q Y Y Y Y Y N K K D D
UniRef90_00JE10 UniRef90_02NM14 UniRef90_001LN7 UniRef90_075WN1 UniRef90_09LA1 UniRef90_09LA1 UniRef90_09LVP7 UniRef90_01A9 UniRef90_05GJ60 UniRef90_05GJ60 UniRef90_075I70 UniRef90_075I70 UniRef90_025SBP3 UniRef90_05SBP3 UniRef90_05SBP3 UniRef90_05GJ58 UniRef90_05GJ58 UniRef90_05SBP3 UniRef90_05SBP3 UniRef90_05SBP3 UniRef90_05SBP3 UniRef90_05SBP3 UniRef90_05SBP3 UniRef90_05SBP7 UniRef90_05SBP7 UniRef90_072WM4 UniRef90_07XL0	VDFARTADYMYKETDGFTFSH IN TMAPLYYSDGDGFTFGEG UQEVLEKLYVKPI YDMSRCFEVFYKERDGFSSSTKDMKNHVERLLIEPV VIN ARVMDLFYKEADGFGFDPDKLQ IASLFHPI VIN ARVMDLFYKEADGFGFYPEGKLQ IASLFHPI VIN ARVMDLFYKEADGFGFYPEGKL FDFSRTTDNMYRDRDALTSSE FDFSRTTDNMYRDRDALTSSE FDFSRTTDNMYRDRDALTSSE AKKEMIQLFVEPV TNMARVAHSLYKDGDGFGQQEKGPRTHILSLLFQPI DFGKMLEFTYRSGEEYTHPEGRFKDHITSLFVDFI IDFGKMLEFTYRSGEEYTHPEGRFKDHITSLFVDFI INLARTSQVYKHEQ HTYMLSVDDJ TFFL WDFARMLIVINGYGGFTRPDGKEEYMTSLFVDH TSLAKSMTLFLDKDAYTYSGADLKEEYMTSLFVDH MDFARMLIVINGGGGFTRPDEGKEEYMTSLFVDH MDFARMLFYLMGGDGFFGDQEKGLEYMTSLFVDH INLARTSQVYKHEQ HTYMLSVLFVC NNARTVLFLMYSYDD MDFARSLIVSYTEGEGFTHTKKGKVDEYTTSLFVDH INVARSULFUCAGAGYTY GADLKGLVTALFLDPL VNLTRMLEVIYGGDDGFFGDQFTS GADLKGLVTALFLDPL VNLTRMLEVIYGGDDGFFFDSSESTTTOQVKTLVVDH LNLSRVVKVYKDTDDFFFL VNLTRMLEVIYGGDDGFFFPFF

Figure S3 (continued).

Figure S4: Structures of *Abies grandis* abietadiene synthase inhibitors investigated using GGPP as substrate. Structures are shown in order of decreasing potency (top left is the most potent).

Figure S5: Structure dendrogram for α and $\alpha\beta$ proteins showing strong clustering of GGPPS/FPPS, separate from that seen with the monoterpene and sesquiterpene cyclases. This dendrogram was generated from the structural alignments obtained by using the Incremental Combinatorial Extension (CE) Program³.

Figure S6: JPRED3⁴ output using *Bradyrhizobium japonicum* cylcase blr2149 as the query.

Figure S6 (continued).

	130	140	150	160
			PEQE	E R H
WILA P WE	G T P T [] P E [] F	P R M A S W A R S T	I VPLSLIS A F	R P
WLALP WD	E T P ALA P EIIL]P A W <mark>C</mark> P [] A R A T	LVPLSVISVI	₹ P V

WIQLAGELDGLRDKTFVVPILTNMALAGLVPWKKVSALPF

Figure S6 (continued).

Figure S6 (continued).

Figure S6 (continued).

Figure S7: FASTA⁶ search program output alignment by using *Bradyrhizobium japonicum* γ -domain only as the query. Note the high similarity to *M. tuberculosis* Rv3377c, rice and maize CPS.

Supporting Experimental Section:

Synthetic Aspects. All reagents used for synthesis were purchased from Aldrich (Milwaukee, WI). The purities of all compounds were routinely monitored by using ¹H and ³¹P NMR spectroscopy at 400 or 500 MHz on Varian (Palo Alto, CA) Unity spectrometers using, in some instances, absolute spin-count quantitative analyses. **BPH-882** was purchased from Biomol international (Plymouth Meeting, PA); **BPH-863** was purchased from EMD Biosciences, Inc. (San Diego, CA). **BPH-891**, **BPH-854** were purchased from Sigma-Aldrich. The syntheses of **BPH-892**, **BPH-904**, **BPH-852**, **BPH-911**, **BPH-902** were reported previously⁷⁻¹⁰. **BPH-895** was a gift from Dr. L.L. Gundersen. **BPH-850** was prepared using the procedure reported¹¹⁻¹³. **BPH-261 (Minodronate), BPH-661, BPH-673** were available from our previous work^{12, 13}.

General procedure for BPH-554 and BPH-557. An amine (3 mmol), triethyl orthoformate (3.6 mmol), and diethyl phosphite (12 mmol) were heated to 140 °C under N_2 overnight. The mixture was subjected to column chromatography to give the tetraethyl ester, which was then treated with TMSBr (8 equiv) in acetonitrile for 8 h at room temperature. Upon removal of the solvent, the residue was dissolved in ethanol or acetone to precipitate the substituted aminomethylene bisphosphonate.

{[4-(2-Diethylamino-ethylcarbamoyl)-phenylamino]-phosphono-methyl}-phosphonic acid. (BPH-557).

Anal. $(C_{14}H_{27}N_3Na_2O_9P_2)$ C, H, N. ¹H NMR (400 MHz, D₂O): δ 7.62 (d, 2H, J = 8.0Hz), 6.60 (d, 2H, J = 8.0Hz), 4.15-4.38 (m, 2H), 3.70 (t, 1H, J = 22Hz), 3.25-3.38 (m, 2H), 3.13 (t, 4H, J = 7.2Hz), 1.11 (t, 4H, J = 7.2Hz). ³¹P NMR (162 MHz, D₂O): δ 16.1.

4-[(Bis-phosphono-methyl)-amino]-benzoic acid 2-diethylamino-ethyl ester. (BPH-554).

Anal. $(C_{14}H_{27}N_3Na_2O_9P_2)$ C, H, N. ¹H NMR (400 MHz, D₂O): δ 7.47 (d, 2H, J = 8.0Hz), 6.64 (d, 2H, J = 8.0Hz), 3.89 (t, 1H, J = 21Hz), 3.45-3.60 (m, 2H), 3.00-3.19 (m, 4H), 1.15(t, 4H, J = 7.2Hz). ³¹P NMR (162 MHz, D₂O): δ 16.4.

BPH-876 was prepared by refluxing of 3, 4-dichlorobenzyl chloride (1 mmol) and tributyl phosphine (1 mmol) in acetone (5 mL). Removal of solvent gave BPH-876 as a white solid. Yield 89%. Anal. ($C_{19}H_{32}Cl_3P$) C, H. ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, 1H, J = 8.4Hz), 7.43 (s, 1H), 7.33 (d, 1H, J = 8.4 Hz), 4.56 (d, 2H, J = 12 Hz), 2.44-2.53 (m, 6H), 1.38-1.42 (m, 12H), 0.94 (t, 3H, J = 6.8 Hz).

BPH-916, BPH-922, BPH-901, BPH-899, BPH-905, BPH-904, BPH-913, BPH-918, BPH-919, BPH-920 were prepared using a similar procedure to that previously reported, using alkylbromides and methylallylamine as reactants¹⁴.

16-(N-allyl-N-methylamino)hexadecanoic acid • hydrobromide (BPH-916).

Anal. (C₂₁H₄₂BrNO₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 6.12-6.21 (m, 1H), 5.50-5.60 (m, 2H), 3.6-3.75 (m, 2H), 2.90-3.05 (m, 2H), 2.73 (s, 3H), 2.35 (t, 2H, *J* = 7.2 Hz), 1.80-1.98 (m, 2H), 1.61-1.69 (m, 2H), 1.20-1.40 (m, 22 H).

Methyl 16-(N-allyl-N-methylamino)hexadecanoate•hydrobromide (BPH-922).

Anal. (C₂₁H₄₁NO₂Br•0.3H₂O) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 11.5 (s, 1H), 6.14-6.19 (m, 1H), 5.51-5.60 (m, 4H), 3.66 (s, 3H), 3.55-3.70 (m, 3H), 2.81-3.09 (m, 2H), 2.30 (s, 3H), 2.30 (t, 2H, J = 6.5Hz), 1.79-2.00 (m, 2H), 1.59 (t, 2H, J = 6.5Hz), 1.24-1.32 (m, 24H).

(4-(4-(N-allyl-N-methylamino)butoxy)phenyl)(phenyl)methanone•hydrobromide (BPH-901).

Anal. (C₂₁H₂₆BrNO). C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, 2H, *J* = 8 Hz), 7.69 (d, 2H, *J* = 7.2Hz), 7.47 (t, 1H, *J* = 7.2Hz), 7.45 (t, 3H, *J* = 7.2Hz), 6.10-6.21 (m, 2H), 5.52-5.64 (m, 2H), 3.90 (t, 2H, *J* = 6.4 Hz), 3.60-3.67 (m, 2H), 2.80-3.18 (m, 2H), 2.77 (s, 3H), 1.68-2.00 (m, 4H).

(4-(8-(N-allyl-N-methylamino)octyloxy)phenyl)(phenyl)methanone (BPH-899).

Anal. (C₂₅H₃₄BrNO•0.3H₂O) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, 2H, *J* = 8.8Hz), 7.74 (d, 2H, *J* = 7.2Hz), 7.57 (t, 1H, *J* = 7.2Hz), 7.46 (t, 3H, *J* =7.2Hz), 6.14-6.21 (m, 2H), 5.51-5.61 (m, 2H), 3.62-3.68 (m, 2H), 2.80-3.18 (m, 2H), 2.73 (s, 3H), 1.78-2.00 (m, 4H), 1.32-1.49 (m, 8H).

(4-(3-(methylallylamino)propoxy)phenyl)(phenyl)methanone•hydrobromide (BPH-905).

Anal. (C₂₀H₂₄BrNO₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 11.8 (s, 1H), 8.04 (d, 2H, *J* = 9.0 Hz), 7.7 (d, 2H, *J* = 9.0Hz), 7.59 (t, 1H, *J* = 7.5Hz), 7.56 (t, 2H, *J* = 7.5Hz), 6.92 (t, 2H, *J* = 9.0Hz), 6.19-6.23 (m, 1H), 5.56-5.65 (m, 2H), 4.18 (t, 3H, *J* = 4.8 Hz), 3.60-3.82 (m, 2H), 3.10-3.42 (m, 2H), 2.81 (s, 3H), 2.4-2.60 (m, 2H).

(E)-N-allyl-5-((4aR,5R)-decahydro-1,1,4a-trimethylnaphthalen-5-yl)-N,3-dimethylpent-2en-1-amine•hydrobromide (BPH-904). Anal. (C₂₄H₄₄BrNO) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 6.12-6.20 (m, 1H), 5.42-5.80 (m, 4H), 3.4-3.75 (m, 4H), 2.65 (s, 3H), 0.6-2.4

6-(m-tolyloxy)-N-allyl-N-methylhexan-1-amine (BPH-913). Anal. (C₁₇H₂₇NO) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 7.18 (t, 2H, J = Hz), 6.82-6.87 (m, 3H), 5.8-6.0 (m, 1H), 5.11-5.21 (m, 2H), 3.96 (t, 2H, J = 6.8Hz), 3.00 (d, 2H, J = 6.4Hz), 2.31-2.35 (m, 5H), 2.21 (s, 3H), 1.76-1.80 (m, 2H), 1.39-4.58 (m, 6H).

10-(N-allyl-N-methylamino)decanoic acid•hydrobromide) (BPH-918). Anal. (C₁₄H₂₈BrNO₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 6.12-6.20 (m, 1H), 5.52-5.60 (m, 2H), 3.6-3.75 (m, 2H), 2.90-3.05 (m, 2H), 2.75 (s, 3H), 2.35 (t, 2H, *J* = 7.2 Hz), 1.80-1.98 (m, 2H), 1.61-1.69 (m, 2H), 1.20-1.40 (m, 10H).

N1, N6-diallyl-N1,N6-dimethylhexane-1,6-diamine•Hydrobromide (BPH-919).

Anal.(C₁₄H₃₀Br₂N₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 10.81 (s, 2H), 6.08-6.17 (m, 2H), 5.54-5.59 (m, 4H), 3.43-3.78 (m, 4H), 3.16-3.18 (m, 4H), 3.02-3.04 (m, 4H), 2.7 (s, 6H), 1.87-1.98 (m, 2H), 1.50-1.53 (m, 4H).

N1, N8-diallyl-N1, N8-dimethyloctane-1, 8-diamine•hydrobromide (1:2) (BPH-920).

Anal.(C₁₆H₃₄Br₂N₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 10.96 (s, 2H), 6.09-6.18 (m, 2H), 5.53-5.70 (m, 4H), 3.45-3.79 (m, 4H), 3.16-3.18 (m, 4H), 3.02-3.04 (m, 4H), 2.7 (s, 6H), 1.83-1.98 (m, 2H), 1.34-1.53 (m, 8H).

BPH-890, **BPH-921**, **BPH-917**, **BPH-907**, **BPH-909**, **BPH-908**, **BPH-924**, **BPH-896**, **BPH-923** were prepared by refluxing different alkyl bromides in pyridine followed by removal of solvent and recrystallization from acetone.

[(4-phenylcarbonyl)-phenyoxyoctyl]pyridinium bromide (BPH-890). Anal. (C₂₆H₃₀BrNO₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 9.54 (d, 2H, *J* = 5.6 Hz), 8.50 (t, 1H, *J* = 8 Hz), 8.10 (t, 2H, *J* = 6.8 Hz), 7.80 (d, 2H, *J* = 6.8Hz), 7.60 (d, 2H, *J* = 6.8Hz), 7.55 (t, 1H, *J* = 7.6Hz), 7.50 (t, 2H, *J* = 7.6 Hz), 6.95 (d, 2H, *J* = 8 Hz), 5.05 (t, 2H, *J* = 7.6 Hz), 4.02 (t, 2H, *J* = 6.4 Hz), 2.04-2.08 (m, 2H), 1.74-1.82 (m, 2H), 1.36-1.46 (m, 8H).

[6-(4-(formylphenyl)(phenoxy))hexyl]pyridinium bromide (BPH-921). Anal. (C₂₄H₂₆BrNO₂) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 9.60 (d, 2H, *J* = 5.6 Hz), 8.46 (t, 1H, *J* = 7.6Hz), 8.07 (t, 2H, *J* = 7.2Hz), 7.64-7.17 (m, 4H), 7.50 (t, 1H, *J* = 7.8Hz), 7.42 (t, 2H, *J* = 7.8Hz), 6.90 (t, 2H, *J* = 8.8Hz), 5.00 (t, 2H, *J* = 7.2 Hz), 3.95 (t, 2H, *J* = 6.0 Hz), 2.00- 2.07 (m, 2H), 1.73-1.78 (m, 2H), 1.43-1.47 (m, 4H). **[1-carbamoylhexadecanyl]pyridinium chloride (BPH-917).** Anal. (C₂₁H₃₆ClNO₂•0.3H₂O) C, H, N. ¹H NMR (400 MHz, CD3OD): δ 9.56 (d, 2H, *J* = 5.6 Hz), 8.42 (t, 1H, *J* = 7.6 Hz), 8.01 (t, 2H, *J* = 6.8 Hz), 4.9 (t, 2H, *J* = 7.6 Hz), 2.60 (t, 2H, *J* = 7.2Hz), 2.2-2.4 (m, 2H), 1.30-2.4 (m, 24H).

[6-(4-(methoxycarbonyl)-3-hydroxyphenoxy)hexyl]-pyridinium bromide (BPH-907). Anal . (C₁₉H₂₄BrNO4•1.4H₂O) C, H, N. ¹H NMR (400 MHz, D₂O): δ 8.74 (d, 2H, *J* = 6Hz), 8.35 (t, 1H, J = 7 Hz), 7.82 (t, 2H, J = 7Hz), 7.54 (d, 1H, J = 9Hz), 6.23 (d, 1H, J = 9Hz), 6.20 (s, 1H), 4.31 (t, 2H, J = 7.5Hz), 3.80 (t, 2H, J= 6Hz), 3.70 (s, 3H), 1.82-1.85 (m, 2H), 1.50-1.80 (m, 2H), 1.29-1.51 (m, 4H).

[8-(4-carbonyl)phenoxy)octyl] pyridinium bromide (BPH-909). Anal. (C₂₀H₂₆BrNO₃) C, H, N. ¹H NMR (400 MHz, D₂O): δ 8.63 (d, 2H, *J* = 5.5Hz), 8.33 (t, 1H, *J* = 8 Hz), 7.82 (t, 2H, *J* = 6.5Hz), 7.78 (d, 1H, *J* = 9Hz), 6.84 (d, 1H, *J* = 8.5Hz), 4.37 (t, 2H, *J* = 7.5Hz), 3.92 (t, 2H, *J* = 6.5Hz), 1.75-1.82 (m, 2H), 1.55-1.80 (m, 2H), 1.29-1.51 (m, 8H).

1-[8-(4-(methoxycarbonyl)phenoxy)octyl]-pyridinium bromide (BPH-908). Anal . $(C_{21}H_{28}BrNO3\bullet H_2O) C, H, N. {}^{1}H NMR (400 MHz, D_2O): \delta 8.66 (d, 2H, <math>J = 5.5Hz$), 8.33 (t, 1H, J = 8 Hz), 7.86 (t, 2H, J = 6.5 Hz), 7.52 (d, 1H, J = 8.5 Hz), 6.52 (d, 1H, J = 8.5 Hz), 4.37 (t, 2H, J = 7.5 Hz), 3.66 (s, 3H), 3.51 (t, 2H, J = 6.5 Hz), 1.71-1.75 (m, 2H), 1.30-1.55 (m, 2H), 0.98-1.20 (m, 8H).

[6-(4-(phenylcarbonyl)(phenoxy))propyl]pyridinium bromide (BPH-924).

Anal. (C₂₁H₂₀NO₂Br) C, H, N. ¹H NMR (400 MHz, CDCl₃): δ 9.62 (d, 2H, *J* = 6 Hz), 8.48 (t, 1H, *J* = 8.0 Hz), 8.04 (t, 2H, *J* = 8.0 Hz), 7.60-7.63 (m, 4H), 7.48 (t, 1H, *J* = 7.5 Hz), 7.36 (t, 2H, *J* = 7.5 Hz), 6.73 (d, 2H, *J* = 7.5 Hz), 5.27 (t, 2H, *J* = 7.0 Hz), 4.23 (t, 2H, *J* = 5.5 Hz), 2.57-2.62 (m, 2H).

[6-(4-(carboxy)-3-hydroxyphenoxy)hexyl]-pyridinium chloride (BPH-923A). Anal. ($C_{18}H_{22}CINO_4$) C, H, N. ¹H NMR (400 MHz, D₂O): δ 8.64 (d, 2H, *J* = 6Hz), 8.32 (t, 1H, J = 8 Hz), 7.82 (t, 2H, J = 7Hz), 7.50 (d, 1H, J = 9Hz), 6.26(d, 1H, J = 9Hz), 6.18 (s, 1H), 4.41 (t, 2H, J = 7.5Hz), 3.80 (t, 2H, J = 6Hz), 1.80-1.84 (m, 2H), 1.49-1.80 (m, 2H), 1.19-1.51 (m, 4H).

General procedure for BPH-888 and BPH-914. To a solution of malonic acid, monoethyl ester (1 mmol) were added N-ethyl-N-(3-dimethylaminopropyl)-carbodiimide (EDC) (1.5 mmol) and 1-hydroxybenzotriazole (1 mmol). After stirring for 2h at room temperature, 50 mL of ethyl acetate was added and the reaction mixture washed successively with 1N HCl (5 mL), water (5 mL) and saturated NaHCO₃ (5 mL), dried, and evaporated. The amide was purified using flash chromatography.

N-[3-(3-Phenoxy-phenyl)-propyl]-melonic acid monoamide (**BPH-888**). 3-(3-phenoxyphenyl)-propylamine was coupled with monoethyl ester of malonic acid to give the ethyl ester of BPH-888, which was then hydrolyzed with 3 equiv. of KOH in MeOH/H₂O for 1h. The reaction mixture was acidified, extracted with ethyl acetate, and the organic layer evaporated. The oily residue was dissolved in methanol, neutralized with KOH and evaporated to give **BPH-888** as a white powder (250 mg, 66% overall yield). Anal . (C₁₈H₁₈KNO4•0.5H₂O•0.25KCl) C, H, N. ¹H NMR (400 MHz, D₂O): δ 6.70-7.40 (m, 9H), 3.33-3.40 (m, 2H), 3.32 (s, 2H,), 2.62 (t, 2H, *J* = 7.6 Hz), 1.80-1.90 (m, 2H).

(4-(6-bromohexyloxy)phenylcarbamoyl)methylphosphonic acid (BPH-914). 4-(6bromohexyl)aniline was coupled with dibenzyl phosphonoacetic acid, according to the general method, to give the dibenzyl ester of **BPH-914**. The benzyl groups were removed by hydrogenation for 1hr, catalyzed with 5% Pd/C in methanol, followed by neutralization with NaOH to give **BPH-914** as a white powder (289 mg, 60%). Anal. ($C_{14}H_{19}NaNO_{5}\bullet 2.5H_{2}O$) C, H, N. ¹H NMR (400 MHz, D₂O): δ 7.22 (d, 2H, *J* = 9Hz), 3.90 (t, 3H, *J* = 7Hz), 3.45 (t, 3H, *J* = 7Hz), 2.51 (d, 2H, *J* = 18.5Hz), 1.56-1.62 (m, 4H,), 1.28-1.32 (m, 4H).

References:

1. Fuchs, P. F.; Alix, A. J., High accuracy prediction of beta-turns and their types using propensities and multiple alignments. *Proteins* **2005**, *59*, (4), 828-39.

2. Krissinel, E.; Henrick, K., Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. *Acta Crystallogr D Biol Crystallogr* **2004**, 60, (Pt 12 Pt 1), 2256-68.

3. Shindyalov, I. N.; Bourne, P. E., Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. *Protein Eng* **1998**, 11, (9), 739-747.

4. Cuff, J. A.; Clamp, M. E.; Siddiqui, A. S.; Finlay, M.; Barton, G. J., JPred: a consensus secondary structure prediction server. *Bioinformatics* **1998**, 14, (10), 892-893.

5. Vogel, B. S.; Wildung, M. R.; Vogel, G.; Croteau, R., Abietadiene synthase from grand fir (*Abies grandis*). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. *J Biol Chem* **1996**, 271, (38), 23262-8.

6. Pearson, W. R.; Lipman, D. J., Improved tools for biological sequence comparison. *Proc Natl Acad Sci U S A* **1988**, 85, (8), 2444-8.

7. Roy, A.; Roberts, F. G.; Wilderman, P. R.; Zhou, K.; Peters, R. J.; Coates, R. M., 16-Aza-*ent*-beyerane and 16-Aza-*ent*-trachylobane: potent mechanism-based inhibitors of recombinant ent-kaurene synthase from *Arabidopsis thaliana*. *J Am Chem Soc* **2007**, 129, (41), 12453-60.

8. Ravn, M. M.; Jin, Q.; Coates, R. M., Synthesis of allylic isoprenoid diphosphates by SN₂ displacement of diethyl phosphate. *Eur. J. Org. Chem.* **2000**, 2000, (8), 1401-10.

9. Peters, R. J.; Ravn, M. M.; Coates, R. M.; Croteau, R. B., Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. *J Am Chem Soc* **2001**, 123, (37), 8974-8.

10. Prisic, S.; Xu, J.; Coates, R. M.; Peters, R. J., Probing the role of the DXDD motif in Class II diterpene cyclases. *Chembiochem* **2007**, *8*, (8), 869-874.

Wiemer, A. J.; Yu, J. S.; Shull, L. W.; Barney, R. J.; Wasko, B. M.; Lamb, K. M.; Hohl,
 R. J.; Wiemer, D. F., Pivaloyloxymethyl-modified isoprenoid bisphosphonates display enhanced inhibition of cellular geranylgeranylation. *Bioorg Med Chem* 2008, 16, (7), 3652-60.

12. Szabo, C. M.; Martin, M. B.; Oldfield, E., An investigation of bone resorption and *Dictyostelium discoideum* growth inhibition by bisphosphonate drugs. *J Med Chem* **2002**, 45, (14), 2894-903.

Liu, C. I.; Liu, G. Y.; Song, Y.; Yin, F.; Hensler, M. E.; Jeng, W. Y.; Nizet, V.; Wang, A.
H.; Oldfield, E., A cholesterol biosynthesis inhibitor blocks *Staphylococcus aureus* virulence. *Science* 2008, 319, (5868), 1391-1394.

14. Dehmlow, H.; Aebi, J. D.; Jolidon, S.; Ji, Y. H.; von der Mark, E. M.; Himber, J.; Morand, O. H., Synthesis and structure-activity studies of novel orally active non-terpenoic 2,3-oxidosqualene cyclase inhibitors. *J Med Chem* **2003**, 46, (15), 3354-70.