Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactvation

Min Wang ^a, Satyanarayana Maragani ^a, Liyi Huang ^{b,c}, Seaho Jeon ^a, Taizoon Canteenwala ^a, Michael R. Hamblin ^{b,c,d,*}, Long Y. Chiang ^{a,e,*}

- ^a Department of Chemistry, Institute of Nanoscience and Engineering Technology, University of Massachusetts, Lowell, MA 01854, United States
- ^b Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States
- ^c Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States
- ^d Harvard–MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States
- ^e Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada

Supporting Information

- Figure S1. ¹H NMR spectra of (a) 2 in CDCl₃, (b) 3 in CDCl₃, (c) 4 in CDCl₃, (d) 5 in DMSO- d_6 , and (e) 1-(Γ)₁₀ in DMSO- d_6 in Scheme 1.
- Figure S2. FT-IR spectra of (a) $M(C_3N_6^+C_3)_2$ (5), (b) $C_{60}[>M(C_3N_6^+C_3)_2]$ -(Γ)₁₀ [1-(Γ)₁₀], and (c) $C_{60}[>M(C_3N_6^+C_3)_2]$ -(TFA^-)₁₀ [1-(TFA^-)₁₀] in Scheme 1.
- Figure S3. FT-IR spectra of (a) $C_{60}[>M(t-Bu)_2]$ (6), (b) precursor arm $M(C_3N_6^+C_3H)_2$, (c) $C_{60}[>M(C_3N_6^+C_3H)_2]$ 7, (d) $C_{60}[>M(C_3N_6^+C_3)_2]$ -(Γ)₁₀ [1-(Γ)₁₀], and (e) $C_{60}[>M(C_3N_6^+C_3)_2]$ -(TFA⁻)₁₀ [1-(TFA⁻)₁₀] in Scheme 2.

- Figure S4. ¹³C NMR spectra of (a) 6 in CDCl₃–CS₂, (b) 7 in DMF- d_7 –CDCl₃–CS₂, and (c) C₆₀[>M(C₃N₆⁺C₃)₂]-(TFA⁻)₁₀ [1-(TFA⁻)₁₀] in DMSO- d_6 –CDCl₃–CS₂ in Scheme 2.
- **Figure S5.** Analysis of fragmented mass ions based on both MALDI-TOF and ESI mass spectra of $C_{60}[>M(C_3N_6^+C_3)_2] \cdot (\Gamma)_{10}$ [1- $(\Gamma)_{10}$] in Fig. 3.
- **Figure S6.** Illumination time-dependent fluorescent intensity increase of fluorescein probe TFFC in PBS media (*pH* 7.4) in the presence of (a) xanthine/xanthine oxidase by the addition in two steps, (b) xanthine/xanthine oxidase followed by the addition of superoxide dismutase, and (c) xanthine/xanthine oxidase and superoxide dismutase at the same time, showing clearly the fluorescent intensity increase of the fluorescein probe rising from the reaction of DNBs-TFFC with superoxide radical (O_2^{-}). The fluorometric traces were collected at λ_{em} 530 nm with λ_{ex} 480 nm.

Fig. S1. ¹H NMR spectra of (a) **2** in CDCl₃, (b) **3** in CDCl₃, (c) **4** in CDCl₃, (d) **5** in DMSO- d_6 , and (e) **1**- $(\Gamma)_{10}$ in DMSO- d_6 in Scheme 1.

Fig. S2. FT-IR spectra of (a) $M(C_3N_6^+C_3)_2$ (5), (b) $C_{60}[>M(C_3N_6^+C_3)_2]$ - $(\Gamma)_{10}$ [1- $(\Gamma)_{10}$], and (c) $C_{60}[>M(C_3N_6^+C_3)_2]$ - $(\Gamma FA^-)_{10}$ [1- $(\Gamma FA^-)_{10}$] in Scheme 1.

Fig. S3. FT-IR spectra of (a) $C_{60}[>M(t-Bu)_2]$ (6), (b) precursor arm $M(C_3N_6^+C_3H)_2$, (c) $C_{60}[>M(C_3N_6^+C_3H)_2]$ **7**, (d) $C_{60}[>M(C_3N_6^+C_3)_2] - (\Gamma)_{10}$ [**1**- $(\Gamma)_{10}$], and (e) $C_{60}[>M(C_3N_6^+C_3)_2] - (TFA^-)_{10}$ [**1**- $(TFA^-)_{10}$] in Scheme 2.

Fig. S4. ¹³C NMR spectra of (a) **6** in CDCl₃-CS₂, (b) **7** in DMF- d_7 -CDCl₃-CS₂, and (c) C₆₀[>M(C₃N₆⁺C₃)₂]-(TFA⁻)₁₀ [**1**-(TFA⁻)₁₀] in DMSO- d_6 -CDCl₃-CS₂ in Scheme 2.

Fig. S5. Analysis of fragmented mass ions based on both MALDI-TOF and ESI mass spectra of $C_{60}[>M(C_3N_6^+C_3)_2]$ -(Γ)₁₀ [**1**-(Γ)₁₀] in Fig. 3.

Fig. S6. Illumination time-dependent fluorescent intensity increase of fluorescein probe TFFC in PBS media (*pH* 7.4) in the presence of (a) xanthine/xanthine oxidase by the addition in two steps, (b) xanthine/xanthine oxidase followed by the addition of superoxide dismutase, and (c) xanthine/xanthine oxidase and superoxide dismutase at the same time, showing clearly the fluorescent intensity increase of the fluorescein probe rising from the reaction of DNBs-TFFC with superoxide radical (O_2^{-}). The fluorometric traces were collected at λ_{em} 530 nm with λ_{ex} 480 nm.