Population genomic analysis reveals a rich speciation and demographic history of orang-utans (*Pongo pygmaeus and Pongo abelii*)

Xin Ma, Joanna L. Kelley, Kirsten Eilertson, Shaila Musharoff, Jeremiah D. Degenhardt, Andre L. Martins, Tomas Vinar, Carolin Kosiol, Adam Siepel, Ryan N. Gutenkust, Carlos D. Bustamante

Supplementary Figures

Principal Component (Ind=10)

Figure S1: PCA on autosomal SNPs called from the short-read sequencing data for 10 resequenced individuals.

SFS for Synonymous/NonSynonymous Substitution(raw counts)

Figure S2: Summary of SFS distribution for raw SNP counts for synonymous and non-synonymous substitutions.

Genome coverage for each orang-utan individual

Figure S3: Boxplot of distribution of the mtDNA genome coverages for the 10 resequenced individuals.

Supplementary Tables

	Benign	Possibly	Probably	Total
Private to Bornean	413	130	155	698
Private to Sumatran	416	108	142	666
Shared	214	45	88	347
Total	1043	283	385	1711

Table S1: Distribution of SNPs by population and functional class from PolyPhen-2.

Table S2: Parameters for input demographic models. All three models are variations of the Isolation-with-migration model originally fit to the autosomal data [1]. Parameters are as follows. N_A is the size of the ancestral population. Divergence occurred $2 * N_A * T$ generations in the past, with a fraction s_B of the ancestral population forming the initial Bornean population and a fraction $(1 - s_B)$ forming the initial Sumatran population. The Bornean population then shrank exponentially to a size $v_B N_A$ while the Sumatran population grew to a size $v_S N_A$. Ongoing migration is such that each generation a fraction $m_{B \leftarrow S}/(2N_A)$ of individuals in the Bornean population were new migrants from the Sumatran population, and vice versa for $m_{S \leftarrow B}$.

								LL	LL
model	S_B	ν_B	v_S	Т	$m_{B\leftarrow S}$	$m_{S \leftarrow B}$	N_A	synonymous	non-coding
full	0.592	0.491	2.100	0.562	0.395	0.239	17,934	-286.0	-1.62×10^{5}
no-mig	0.601	0.423	2.389	0.326	0	0	19,445	-330.8	-2.82×10^{5}
no-growth	0.344	S_B	$1-s_B$	0.234	0	0	22,359	-369.3	-3.97×10^{5}

models
selection
single-y
ers for
paramet
Inferred
Table S3:

selection		ligic-7 s	erectron mouers	aphic model		no 9528
model	distribution	param	full	no-mig	no-growth	full
neutral	$\Pr(\gamma = 0) = 1$	TT	-6170.5	-6221.86	-6328.4	-2632.6
fixed (pt mass)	$\Pr(\gamma = k) = 1$	TT	-1396.8	-1510.8	-1073.5	-668.9
I		k	-3.1	-3.1	-3.5	-3.1
exponential	$\Pr(\gamma = -x) = \exp(\lambda)$	TT	-648.7	-739.5	-521.7	-367.9
I		۲	10.2	10.6	11.5	10.1
neutral + lethal	$\Pr(\gamma=0)=p^0.\Pr(\gamma=-\infty)=1-p^0$	TT	-313.3	-365.0	-471.6	-216.9
		p^0	0.28	0.28	0.28	0.28
normal	$\Pr(\gamma = x) = \text{NORM}(\mu, \sigma)$	TT	-389.8	-402.9	-318.5	-253.1
		Ц	-16.4	-17.2	-19.4	-16.9
		ь	12.0	13.1	14.8	12.5
pt mass + lethal	$\Pr(\gamma = k) = p$; $\Pr(\gamma = -\infty) = 1 - p$	TT	-257.05	-313.2	-307.9	-195.9
		d	0.36(0.34, 0.37)	0.35	0.43	0.35
		k	-0.85 (-0.99,-0.72)	-0.83	-1.46	-0.82
exponential + lethal	$\Pr(\gamma = -x) = p \operatorname{EXP}(\lambda); \Pr(\gamma = -\infty) = 1 - p$	TT	-259.0	-314.3	-307.9	-197.0
		۲	1.05	1.00	2.5	0.96
		d	0.36	0.35	0.46	0.35
exponential + neutral	$\Pr(\gamma = -x) = p \operatorname{EXP}(\lambda); \Pr(\gamma = 0) = 1 - p$	TT	-279.9	-326.2	-321.6	-208.7
		۲	126.4	133.7		172.0
		d	0.235	0.233	0.180	0.244
gamma	$\Pr(\gamma = -x) = GAMMA(\alpha, \beta)$	TT	-268.7	-319.2	-313.0	-202.8
		ъ	0.16	0.16	0.28	0.15
		Я	14392	18725	547	27515
neutral + pt mass + lethal	$\Pr(\gamma = 0) = p^0;$	TT	-257.1	-313.2	-308.0	-195.9
	$\Pr(\gamma = k) = p;$	p^0	0.02	0	0.03	0
	$\Pr(\gamma=-\infty)=1-p^0-p$	d	0.34	0.35	0.40	0.35
		k	-0.91	-0.84	-1.61	-0.81
neutral + gamma	$\Pr(\gamma = 0) = p^0;$	ΓT	-269.0	-319.3	-313.3	-203.1
	$\Pr(\gamma = -x) = (1 - p^0) \operatorname{GAMMA}(\alpha, \beta)$	p^0	0.01	0.01	0.00	0
		α	0.16	0.17	0.31	0.15
		Я	13988	13662	316	18285
neutral + exponential + lethal	$\Pr(\gamma = 0) = p^0;$	TT	-259.0	-314.5	-707.9	-197.1
	$\Pr(\gamma = -x) = (1 - p^0 - p) \operatorname{EXP}(\lambda);$	p^0	0.00	0.02	0	0
	$\Pr(\gamma = -\infty) = p$	Z	1.08	1.11	2.54	0.99
		d	0.65	0.64	0.54	0.64
normal + lethal	$\Pr(\gamma = x) = p \operatorname{NORM}(\mu, \sigma)$	TT	-257.4	-293.2	-307.8	-196.1
	$\Pr(\gamma=-\infty)=1-p$	d	0.36	0.43	0.44	0.35
		Ц	-0.84	-4.11	-1.81	-0.81
		ь	0.01	6.45	1.15	0.01

Table S4: Interred parameters for multiple- γ modelsdemographic modeldemographic modeldemographic modeldemographic modeldemographic modelparamfullPr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = 1LL-836.2Pr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = 1LL-836.4-279.5Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = p;LL-241.7-286.4-279.5Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = p;LL-241.7-286.4-279.5Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = p;LL-241.7-286.4-279.5Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = p;LL-241.7-286.4-279.5Pr($\gamma_A = (k_B + \gamma_S = k_S) = p;$ LL-227.4-186.3Pr($\gamma_A = (k_B + \gamma_S = k_S) = p;$ LL-227.4-186.3Pr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = p;LL-227.4-186.3-2.52Pr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = p;LL-227.4-186.3-11.71 <th>no 9258</th> <th>full</th> <th></th> <th></th> <th></th> <th></th> <th>-179.1</th> <th>0.00</th> <th>-1.61</th> <th>0.36</th> <th>-173.7</th> <th>1.08</th> <th>-3.91</th> <th>-4.74</th> <th>0.42</th> <th></th>	no 9258	full					-179.1	0.00	-1.61	0.36	-173.7	1.08	-3.91	-4.74	0.42	
Table S4: Inferred parameters for multiple- γ models demographic model distribution distribution param demographic model distribution Pr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = 1 LL -836.2 Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -286.4 Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -241.7 -286.4 Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -241.7 -286.4 Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -241.7 -286.4 Pr($\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -227.4 -11.69 Pr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -227.4 -11.69 Pr($\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S$) = $p;$ LL -227.4 -11.69 Pr($\gamma_A = (k_A - \gamma_B = k_B, \gamma_S = k_S)$ -227.4 -185.6 <td></td> <td>no-growth</td> <td></td> <td></td> <td></td> <td></td> <td>-279.5</td> <td>-0.33</td> <td>-2.52</td> <td>0.43</td> <td>-168.3</td> <td>0.611</td> <td>-11.71</td> <td>-12.09</td> <td>0.52</td> <td></td>		no-growth					-279.5	-0.33	-2.52	0.43	-168.3	0.611	-11.71	-12.09	0.52	
Table S4: Inferred parameters for multiple- γ models demographic distribution distribution provember of the set of	bhic model	no-mig					-286.4	0.03	-1.69	0.36	-185.6	1.29	-8.15	-8.43	0.44	
Table S4: Inferred parameters for m distribution param $Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = 1$ LL k_A k_B k_B k_B $Pr(\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S) = p;$ LL $Pr(\gamma_B = -\infty) = 1 - p$ k_B k_S p $Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = p;$ LL $Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = p;$ k_A k_B $k_$	uultiple-Y models demograf	full	-836.2	-0.23	-5.64	-6.78	-241.7	-0.32	-1.35	0.36	-227.4	$0.89\ (0.40, 1.32)$	-3.97 (-4.57,-2.95)	-4.32 (-4.85,-3.51)	0.42 (0.39,0.44)	
distribution $Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = 1$ $Pr(\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S) = p;$ $Pr(\gamma_A = (k_A, \gamma_B = k_B, \gamma_S = k_S) = p;$ $Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = p;$ $Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = p;$		param	ΓΓ	k_A	k_B	$k_{ m S}$	ΓΓ	k_B	$k_{\rm S}$	d	TT	k_A	k_B	k_{S}	d	
	Table S4: Inferred parameter .	distribution	$\Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = 1$				$\Pr(\gamma_A = (k_B + k_S)/2, \gamma_B = k_B, \gamma_S = k_S) = p;$	$\Pr(\gamma=-\infty)=1-p$			$\Pr(\gamma_A = k_A, \gamma_B = k_B, \gamma_S = k_S) = p;$	$\Pr(\gamma = -\infty) = 1 - p$				

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0005515	protein binding	645	296	255.53	8.6e-6
GO:0001882	nucleoside binding	150	84	59.43	1.4e-5
GO:0001883	purine nucleoside binding	150	84	59.43	1.4e-5
GO:0000166	nucleotide binding	196	105	77.65	1.5e-5
GO:0030554	adenyl nucleotide binding	149	83	59.03	2.1e-5
GO:0008134	transcription factor binding	28	22	11.09	2.6e-5
GO:0003712	transcription cofactor activity	20	17	7.92	3.7e-5
GO:0017076	purine nucleotide binding	177	95	70.12	3.8e-5
GO:0005488	binding	1164	491	461.15	4.1e-5
GO:0005524	ATP binding	136	74	53.88	0.00018
GO:0032559	adenyl ribonucleotide bind-	137	74	54.28	0.00024
	ing				
GO:0003713	transcription coactivator ac-	12	11	4.75	0.00027
	tivity				
GO:0032553	ribonucleotide binding	165	86	65.37	0.00038
GO:0032555	purine ribonucleotide binding	165	86	65.37	0.00038
GO:0004714	transmembrane receptor pro-	11	10	4.36	0.00064
	tein tyrosine kinase activity				
GO:0019199	transmembrane receptor pro-	11	10	4.36	0.00064
	tein kinase activity				
GO:0005216	ion channel activity	29	20	11.49	0.00119
GO:0015267	channel activity	29	20	11.49	0.00119
GO:0022803	passive transmembrane trans-	29	20	11.49	0.00119
	porter activity				
GO:0022838	substrate specific channel ac-	29	20	11.49	0.00119
	tivity				
GO:0046873	metal ion transmembrane	29	20	11.49	0.00119
	transporter activity				
GO:0005261	cation channel activity	24	17	9.51	0.00180
GO:0016563	transcription activator activ-	24	17	9.51	0.00180
	ity				
GO:0022836	gated channel activity	26	18	10.3	0.00199
GO:0004672	protein kinase activity	58	34	22.98	0.00220
GO:0003723	RNA binding	52	31	20.6	0.00238
GO:0016301	kinase activity	76	42	30.11	0.00333
GO:0016740	transferase activity	166	82	65.77	0.00425
			(Continued o	n next page

Table S5: Enriched GO MF (Molecular Function) categories under negative selection. Only categories with at least 10 genes and Fisher's exact test P-value < 0.05 are listed.

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0005509	calcium ion binding	109	56	43.18	0.00648
GO:0030695	GTPase regulator activity	40	24	15.85	0.00659
GO:0060589	nucleoside-triphosphatase	40	24	15.85	0.00659
	regulator activity				
GO:0030955	potassium ion binding	13	10	5.15	0.00698
GO:0016773	phosphotransferase activity,	70	38	27.73	0.00774
	alcohol group as acceptor				
GO:0005244	voltage-gated ion channel ac-	15	11	5.94	0.00831
	tivity				
GO:0022832	voltage-gated channel activ-	15	11	5.94	0.00831
	ity				
GO:0022843	voltage-gated cation channel	15	11	5.94	0.00831
	activity				
GO:0016772	transferase activity, transfer-	91	47	36.05	0.01096
	ring phosphorus-containing				
	groups				
GO:0022891	substrate-specific transmem-	78	41	30.9	0.01183
	brane transporter activity				
GO:0030145	manganese ion binding	12	9	4.75	0.01390
GO:0003824	catalytic activity	505	220	200.07	0.01461
GO:0015075	ion transmembrane trans-	68	36	26.94	0.01564
	porter activity				
GO:0005249	voltage-gated potassium	14	10	5.55	0.01583
	channel activity				
GO:0005267	potassium channel activity	14	10	5.55	0.01583
GO:0022857	transmembrane transporter	86	44	34.07	0.01680
	activity				
GO:0008237	metallopeptidase activity	18	12	7.13	0.01808
GO:0005083	small GTPase regulator activ-	28	17	11.09	0.01848
	ity				
GO:0008047	enzyme activator activity	28	17	11.09	0.01848
GO:0008324	cation transmembrane trans-	54	29	21.39	0.02295
	porter activity				
GO:0008233	peptidase activity	52	28	20.6	0.02421
GO:0015276	ligand-gated ion channel ac-	15	10	5.94	0.03087
	tivity				
GO:0016564	transcription repressor activ-	15	10	5.94	0.03087
	ity				
			(Continued o	n next page

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0022834	ligand-gated channel activity	15	10	5.94	0.03087
GO:0004713	protein tyrosine kinase activ-	21	13	8.32	0.03149
	ity				
GO:0031420	alkali metal ion binding	17	11	6.73	0.03155
GO:0005085	guanyl-nucleotide exchange	19	12	7.53	0.03171
	factor activity				
GO:0005096	GTPase activator activity	19	12	7.53	0.03171

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0048731	system development	158	93	63.94	5.2e-7
GO:0007399	nervous system development	65	45	26.3	1.5e-6
GO:0007275	multicellular organismal de-	211	114	85.38	1.0e-5
	velopment				
GO:0048856	anatomical structure develop-	180	99	72.84	1.6e-5
	ment	100			
GO:0007242	intracellular signaling cas-	133	76	53.82	3.2e-5
<u> </u>	cade		110	05.00	0.00022
GO:0044267	cellular protein metabolic	235	119	95.09	0.00033
<u> </u>	process	0.4.1	120	07.50	0.00077
GO:0019538	protein metabolic process	241	120	97.52	0.00077
GO:000/16/	enzyme linked receptor pro-	36	24	14.57	0.00116
<u> </u>	tein signaling pathway	110	60	11 51	0.00120
GO:0048323	negative regulation of centular	110	00	44.31	0.00150
<u>GO:0007517</u>	muscle organ development	13	11	5.26	0.001/11
$\frac{00.0007317}{0.0007165}$	signal transduction	31/	150	127.06	0.00141
$\frac{\text{GO:0007103}}{\text{GO:0007154}}$	cell communication	347	164	127.00	0.00103
GO:0007134	negative regulation of biolog-	120	64	48 56	0.00172
00.0040317	ical process	120	04	10.50	0.00174
GO:0008361	regulation of cell size	26	18	10.52	0.00262
GO:0006813	potassium ion transport	17	13	6.88	0.00270
GO:0044265	cellular macromolecule	28	19	11.33	0.00285
	catabolic process				
GO:0043687	post-translational protein	92	50	37.23	0.00371
	modification				
GO:0032502	developmental process	300	142	121.4	0.00373
GO:0016051	carbohydrate biosynthetic	14	11	5.67	0.00417
	process				
GO:0019941	modification-dependent pro-	14	11	5.67	0.00417
	tein catabolic process				
GO:0043632	modification-dependent	14	11	5.67	0.00417
	macromolecule catabolic				
	process	1.4	11	F (7	0.00417
GO:0044257	cellular protein catabolic pro-	14	11	5.67	0.00417
	cess				
			(Continued of	n next page

Table S6: Enriched GO BP (Biological Process) categories under negative selection. Only categories with at least 10 genes and Fisher's exact test P-value < 0.05 are listed.

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0051603	proteolysis involved in cellu-	14	11	5.67	0.00417
GO:0007169	transmembrane receptor pro-	27	18	10.93	0.00495
	tein tyrosine kinase signaling				
	pathway				
GO:0015672	monovalent inorganic cation transport	33	21	13.35	0.00553
GO:0007264	small GTPase mediated sig-	45	27	18.21	0.00561
	nal transduction				
GO:0043170	macromolecule metabolic process	571	254	231.06	0.00571
GO:0032269	negative regulation of cellular protein metabolic process	11	9	4.45	0.00630
GO:0032501	multicellular organismal pro- cess	337	156	136.37	0.00717
GO:0010646	regulation of cell communi- cation	56	32	22.66	0.00744
GO:0034962	cellular biopolymer catabolic process	22	15	8.9	0.00756
GO:0009966	regulation of signal transduc- tion	52	30	21.04	0.00788
GO:0016049	cell growth	24	16	9.71	0.00805
GO:0006511	ubiquitin-dependent protein catabolic process	13	10	5.26	0.00831
GO:0034637	cellular carbohydrate biosyn- thetic process	13	10	5.26	0.00831
GO:0031325	positive regulation of cellular metabolic process	26	17	10.52	0.00844
GO:0051179	localization	277	130	112.09	0.00854
GO:0010604	positive regulation of macro- molecule metabolic process	30	19	12.14	0.00890
GO:0009893	positive regulation of metabolic process	32	20	12.95	0.00902
GO:0048513	organ development	115	59	46.54	0.00911
GO:0003012	muscle system process	15	11	6.07	0.00998
GO:0044260	cellular macromolecule metabolic process	556	246	224.99	0.01016
GO:0044248	cellular catabolic process	57	32	23.07	0.01057
				Continued or	n next page

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0046467	membrane lipid biosynthetic process	10	8	4.05	0.01303
GO:0001558	regulation of cell growth	21	14	8.5	0.01317
GO:0008285	negative regulation of cell	23	15	9.31	0.01374
	proliferation				
GO:0051056	regulation of small GTPase	23	15	9.31	0.01374
	mediated signal transduction				
GO:0006928	cell motion	39	23	15.78	0.01377
GO:0051674	localization of cell	39	23	15.78	0.01377
GO:0022008	neurogenesis	29	18	11.73	0.01447
GO:0006464	protein modification process	122	61	49.37	0.01614
GO:0051248	negative regulation of protein metabolic process	12	9	4.86	0.01622
GO:0044255	cellular lipid metabolic pro-	67	36	27.11	0.01678
	cess				
GO:0006793	phosphorus metabolic pro- cess	107	54	43.3	0.01868
GO:0006796	phosphate metabolic process	107	54	43.3	0.01868
GO:0006468	protein amino acid phospho-	61	33	24.68	0.01920
	rylation				
GO:0032940	secretion by cell	16	11	6.47	0.02042
GO:0007243	protein kinase cascade	38	22	15.38	0.02092
GO:0016043	cellular component organiza- tion	213	100	86.19	0.02176
GO:0045786	negative regulation of cell cy- cle	20	13	8.09	0.02250
GO:0006811	ion transport	79	41	31.97	0.02262
GO:0040008	regulation of growth	22	14	8.9	0.02299
GO:0044237	cellular metabolic process	701	302	283.66	0.02301
GO:0034960	cellular biopolymer	546	239	220.94	0.02321
	metabolic process				
GO:0043069	negative regulation of pro- grammed cell death	24	15	9.71	0.02322
GO:0060548	negative regulation of cell death	24	15	9.71	0.02322
GO:0032268	regulation of cellular protein	26	16	10.52	0.02325
	metabolic process				
GO:0007155	cell adhesion	88	45	35.61	0.02359
				Continued o	n next page

GO.ID	Term	Annotated	Significant	Expected	Fisher's P
GO:0022610	biological adhesion	88	45	35.61	0.02359
GO:0051239	regulation of multicellular or-	49	27	19.83	0.02484
	ganismal process				
GO:0008152	metabolic process	749	321	303.09	0.02493
GO:0043412	biopolymer modification	129	63	52.2	0.02657
GO:0009987	cellular process	1130	470	457.26	0.02769
GO:0016310	phosphorylation	91	46	36.82	0.02820
GO:0048522	positive regulation of cellular	78	40	31.56	0.03041
	process				
GO:0006629	lipid metabolic process	87	44	35.2	0.03125
GO:0030001	metal ion transport	37	21	14.97	0.03126
GO:0051093	negative regulation of devel-	37	21	14.97	0.03126
	opmental process				
GO:0006936	muscle contraction	13	9	5.26	0.03402
GO:0007601	visual perception	31	18	12.54	0.03439
GO:0008610	lipid biosynthetic process	31	18	12.54	0.03439
GO:0050953	sensory perception of light	31	18	12.54	0.03439
	stimulus				
GO:0043283	biopolymer metabolic pro-	555	241	224.58	0.03583
	cess				
GO:0005976	polysaccharide metabolic	15	10	6.07	0.03596
	process				
GO:0016568	chromatin modification	15	10	6.07	0.03596
GO:0048699	generation of neurons	27	16	10.93	0.03616
GO:0048870	cell motility	27	16	10.93	0.03616
GO:0006810	transport	240	110	97.12	0.03648
GO:0051234	establishment of localization	240	110	97.12	0.03648
GO:0010628	positive regulation of gene	17	11	6.88	0.03708
	expression				
GO:0010557	positive regulation of macro-	19	12	7.69	0.03759
	molecule biosynthetic pro-				
	cess				
GO:0007156	homophilic cell adhesion	21	13	8.5	0.03765
GO:0009891	positive regulation of biosyn-	21	13	8.5	0.03765
	thetic process				
GO:0008283	cell proliferation	66	34	26.71	0.04122
GO:0042127	regulation of cell prolifera-	40	22	16.19	0.04221
	tion				
			(Continued of	n next page

Table 50 – continueu from previous page						
GO.ID	Term		Annotated	Significant	Expected	Fisher's P
GO:0044262	cellular	carbohydrate	40	22	16.19	0.04221
metabolic process						
GO:0048468 cell development			40	22	16.19	0.04221
GO:0044238 primary metabolic process			686	293	277.59	0.04791

References

D. P. Locke, L. W. Hillier, W. C. Warren, K. C. Worley, L. V. Nazareth, D. M. Muzny, S. P. Yang, Z. Wang, A. T. Chinwalla, P. Minx, M. Mitreva, L. Cook, K. D. Delehaunty, C. Fronick, H. Schmidt, L. A. Fulton, R. S. Fulton, J. O. Nelson, V. Magrini, C. Pohl, T. A. Graves, C. Markovic, A. Cree, H. H. Dinh, J. Hume, C. L. Kovar, G. R. Fowler, G. Lunter, S. Meader, A. Heger, C. P. Ponting, T. Marques-Bonet, C. Alkan, L. Chen, Z. Cheng, J. M. Kidd, E. E. Eichler, S. White, S. Searle, A. J. Vilella, Y. Chen, P. Flicek, J. Ma, B. Raney, B. Suh, R. Burhans, J. Herrero, D. Haussler, R. Faria, O. Fernando, F. Darre, D. Farre, E. Gazave, M. Oliva, A. Navarro, R. Roberto, O. Capozzi, N. Archidiacono, G. Della Valle, S. Purgato, M. Rocchi, M. K. Konkel, J. A. Walker, B. Ullmer, M. A. Batzer, A. F. Smit, R. Hubley, C. Casola, D. R. Schrider, M. W. Hahn, V. Quesada, X. S. Puente, G. R. Ordonez, C. Lopez-Otin, T. Vinar, B. Brejova, A. Ratan, R. S. Harris, W. Miller, C. Kosiol, H. A. Lawson, V. Taliwal, A. L. Martins, A. Siepel, A. Roychoudhury, X. Ma, J. Degenhardt, C. D. Bustamante, R. N. Gutenkunst, T. Mailund, J. Y. Dutheil, A. Hobolth, M. H. Schierup, O. A. Ryder, Y. Yoshinaga, P. J. de Jong, G. M. Weinstock, J. Rogers, E. R. Mardis, R. A. Gibbs, et al. Comparative and demographic analysis of orang-utan genomes. *Nature*, 469(7331):529–33, 2011.