Tables e-1 through e-3 Table e-1: Efficacy | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |--------------------------------|---|---|--|---|-----------------|---| | Alexopoulos, 2006 ³ | N=46
Ages 2–18
years;
median
12.1 | Partial,
generalized, and
LG seizures
included | Patient and
family seizure
diaries; median
follow-up 2
years | As compared with baseline, median seizure frequency reduction in the setting of declining numbers was 56% at 3 months (n=46), 50% at 6 months (n=45), 63% at 12 months (n=39), 83% at 24 months (n=23), and 74% at 36 months (n=16); median followup was 2 years; no change in number of AEDs used before and after VNS | 5 | 6 | | Benifla, 2006 ⁴ | N=40
Ages 3–19
years;
mean age
13 | Partial epilepsy
and LG seizures | Parental report;
median follow-
up 31 months | 15 (41%) reported a >90% seizure frequency reduction, 3 more reported at least a 50% seizure frequency reduction for a total of 18 (45%); an additional 3 patients had a more than 25% but less than 50% seizure frequency reduction. However, 20 patients had no significant | Not
reported | 2 | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |--------------------------------|--|---|--|--|-----------------|---| | | | | | seizure frequency change. | | | | Hallböök,
2005 ⁵ | N=15
Ages 4–17
years,
median 11 | Partial with and without secondary generalization, generalized tonic-clonic, atonic, and atypical absence | Seizure diaries; AEDs stable during study period. Duration 9 months: VNS settings stable for the last 8 months of the study. | The seizure frequency decreased 50% or more in 6/15 children; seizure frequency decreased between 25% and 50% in 2 and decreased less than 25% in 4. Seizure frequency increased in 2 patients and was unchanged in 1. Median seizure frequency reduction was 65% ($p = 0.02$) at 3 months and 63% ($p = 0.04$) at 9 months. | 1 | None | | Kang, 2006 ⁶ | N=16 Ages 2 years 5 months to 17 years, 11 months; mean age 9 years 3 months | Partial epilepsy,
secondary
generalized, and
11 with LG
seizures | Seizure diaries;
duration of
follow-up at
least 12 months | >50% frequency reduction in 50% (8/16) of children; 5/16 had 90% seizure frequency reduction at last follow-up | 2 | None | | Parain, 2001 ¹⁷ | N=10
Ages 54- | Complex partial and generalized | Seizure diaries;
meds could be | 1 no change, 9 >50% seizure frequency reduction, 5/9 >90%; | None | None | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |---------------------------------|---|--|--|---|--|---| | | 20; mean age 13, median age 15 | tonic-clonic
seizures
associated with
tuberous
sclerosis | changed as
needed during
the study | follow-up was 6 months | | | | Rossignol,
2009 ⁷ | N=28
Ages 3.5–
21 years;
no mean or
median age
available | Multiple seizure
types; most very
severe | Seizure diaries;
AEDs
unchanged for
the first 6
months | 75% (21/28) had >50% seizure frequency reduction at 6 months. 68% (19/28) had ≥50% reduction in seizure frequency, including 14% (4/28) who became seizure-free at 24 months follow-up. | 4 at 24 months after implant; 1 patient with childhood absence, 1 patient with partial seizures of the frontal lobe, 1 patient with LGS, and 1 patient with Doose syndrome | None, but did not improve seizures in 2 patients | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |-------------------------------|---|---|--|---|-----------------|---| | Colicchio, 2010 ¹¹ | 18 children implanted at ages 0–6 years, 32 at ages 7–12 years, 31 at ages 13–18 years, and 54 adults | Multiple seizure types, including severe multifocal epilepsy, LG seizures, and partial epilepsy | Seizure diaries; follow-up ranged from 6–36 months, with 121 patients at 12 months, 99 patients at 18 months, 87 patients at 24 months, and 78 patients at 36 months | 3 months postimplantation overall seizure reduction of 38.2%, and the 50% responder rates at 3, 6, 12, 18, 24 and 36 months were 27.5%, 26.6%, 36.7%, 42.6%, 41.6%, and 49.2%, respectively. There was a statistically significant increase between 6 and 12 months (McNemar test <i>p</i> =0.04). The rate of seizure-free patients tended to increase over time: 2.4% at 12 months, 4.5% at 24 months, and 5.1% at 36 months. | 2 | None | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |--|--|----------------------------|--|---|------------------------------|---| | Majkowska-
Zwolińska,
2012 ¹² | adolescents with epilepsy (mean age 11.4 ± 3.85 years; all were less than 18 years and 34 were less than 12 years) | Most with partial epilepsy | Seizure diaries; 2-year follow- up in 54 patients; AEDs were held stable in this study | 52% seizure frequency reduction at 12 months and a 50% responder rate of 55% at 2 years | 9.3% seizure free at 2 years | None | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |-----------------------------|---|------------------------------|--|--|-----------------|---| | Wheeler, 2011 ¹³ | patients with mainly partial epilepsies (of which 45 were ≤ 20 years old) | Most with partial epilepsies | Seizure diaries used; at least 12 months of follow-up with a mean of 41 months; the results were evaluated in terms of Engel classifications | Of the 45 predominantly pediatric cases, 6 (13%) had a Class I or II outcome (no or rare disabling seizures), 17 (38%) had a Class III outcome (worthwhile improvement), and 22 (49%) had a Class IV outcome (no worthwhile improvement) | Not reported | Not reported | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |-------------------------------|--|---|--|--|-----------------|--| | Shahwan, 2009 ⁸ | N=26
Age range
5–16 years,
median age
11.8 | Multiple seizure types | Seizure diaries | 54% of patients responded to VNS with ≥50% seizure frequency reduction. Patients with LGS and tonic seizures had a higher responder rate; 78% (7 of 9 patients) (<i>p</i> < 0.01). Follow-up minimum 18 months (up to 8.5 years; median 3 years). | None | 4, 2 of whom also had adverse effects (aggravation of behavioral problems and side effects) | | Zamponi,
2011 ⁹ | N=39
Mean age
13 years, | Drop attacks in all patients, LGS in 14 | Seizure diaries
followed for 3
years; AEDs | 17 had ≥50% frequency reduction at 1 year and 9 were unchanged. Two patients were | 2 | 3 | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |---------------------------------|---|--|---|--|---|---| | | range 2–51
years;
including 3
patients
over 18
years: ages
20, 30 and
51 years | | unchanged | seizure free. The average reduction was 41% at 6 months, 50% at 12 months, and 54% at 36 months. Frequency of 50% responders was significantly greater in the non-LGS group (52%) compared to the LGS group (21%) (<i>p</i> =0.01). | | | | Sherman,
2008 ¹⁰ | N=34
Mean age
12.3, range
3–18 | 16 partial, 17 generalized. 5 with LG | Seizure diaries;
followed for 1
year | 14 patients had >50% seizure frequency reduction and 1 was seizure free | 1 | Not reported | | Elliott, 2011 ¹⁴ | N=141
Mean age
11.1, age
range 1–
18; 86
patients
under 12;
55 patients
12 or older | 39% with
multifocal partial
epilepsy, 29%
with
symptomatic
generalized
epilepsy, 13.5%
with idiopathic
generalized
epilepsy | Seizure logs;
followed for
mean of 5.2
years (range 25
days to 11.4
years) | Of the 128 patients who had follow-up data, 64.8% had >50% seizure frequency reduction | 10 or 7.8% seizure free for at least 6 months at last follow-up | 8 | | Pastrana,
2011 ¹⁵ | N=13
Mean age
12, range | Various seizure
types, however
most patients had | Seizure diaries;
followed for a
minimum of 9 | 54% (7/13) had a 50% or greater reduction in seizure frequency; 3 patients had no | 1 | None | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |----------------------------|---|--|--|---|-----------------|---| | | 6–18 years | generalized
tonic-clonic and
complex partial
seizures | months | benefit | | | | Majoie, 2005 ¹⁹ | N=19
Mean age
10.8 years,
range 5.9–
18.8 | LG seizures | Patient report;
AEDs
unchanged in
the first 12
months | 21% (4/19) had seizure reduction of ≥50%, 20.6% reduction in seizure frequency at 12 months | 1 | None | | Kostov, 2009 ²⁰ | N=30
Mean age
13 years,
range 4–
52; 18
were under
18 years | LG seizures | Patient report | Seizure frequency reduction rates for atonic seizures were 80.2% (8/12) and for tonic seizures were 73.3% (8/13) during a mean follow-up of 52 months. The frequency of disabling seizures fell from 77.5 monthly to 22.5 monthly. For generalized tonic-clonic seizures, 11/20 or 57.4% were responders. Numbers of AEDs used were significantly reduced during the study. | 1 | 4 | | You, 2008 ²¹ | N=10
Ages not
provided | LG seizures | Seizure diaries;
duration of
follow-up 1–7
years | 7/10 had >50% seizure
frequency reduction; 2/10 had
>75% seizure frequency
reduction | None | None
reported | | Cersósimo, 2011 ²² N=20 LGS Seizure diaries; follow-up for 36 months Seizure frequency reduction None None | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |---|--------------------------------|---|-------------------------------|--|---|-----------------|---| | Mean age 10.28 years, range 5–25 Tuberous Seizure diaries used; 12-month follow-up Mean seizure rate reduction of Mone None reported | | Mean age
12.5, range | LGS | | | None | None | | Age range 2–35 years, median age 14; 2 subjects older than 19 years (ages 27 and 35) Elger, 2000 ²³ N=11 Adult patients with complex partial epilepsy Age range 2–35 years, median age 14; 2 subjects older than 19 years (ages 27 and 35) Adult patients with complex partial epilepsy Patients used self-rated scales; 3 and 6 months follow-up improved (p<0.05). Mood improvements were sustained at the 6-month follow-up (9/11) | Zamponi,
2011 ¹⁸ | Mean age
10.28
years, | Dravet syndrome | used; 12-month | 12% at 3 months, 6% at 6 | None | | | with complex partial epilepsy scales; 3 and 6 months follow-up improvements were sustained at the 6-month follow-up (9/11 | Zamponi,
2010 ¹⁶ | Age range
2–35 years,
median age
14; 2
subjects
older than
19 years
(ages 27 | | used; 12-month | 43% at 3 months (median 40%), 52% at 9 months (median 50%), and 58% at 12 | None | | | Harden, 2000^{24} N=20 Adults with Patients used t tests for change in subject- | | | with complex partial epilepsy | self-rated
scales; 3 and 6
months follow-
up | the 3-month follow-up improved (p <0.05). Mood improvements were sustained at the 6-month follow-up (9/11 subjects). | | | | Author, year | Population | Seizure types | Outcome assessment and study characteristics (including duration of study) | Seizure change | Seizure
free | Number
turned off
and/or
explanted
due to lack
of efficacy | |----------------------------|------------------------------|------------------------------|--|---|-----------------|---| | | | epilepsy | self-rated
scales; 3-month
follow-up | rated scales: Cornell Dysthymia Rating Scale improved ($p = 0.001$), Beck Depression Index improved ($p = 0.045$) | | | | Morris, 1999 ²⁵ | N=440 | Adults with partial epilepsy | From phase III clinical trials; seizure diaries used | A ≥50% seizure reduction postimplantation occurred in 36.8% of patients at 1 year, in 43.2% at 2 years, and in 42.7% at 3 years. Median seizure reductions compared with baseline were 35% at 1 year, 44.3% at 2 years, and 44.1% at 3 years. | | | | Kuba, 2009 ²⁶ | N=90
Ages 13–
64 years | Multiple seizure types | Patient diaries | >50% seizure frequency
reduction in 41% at 1 year, in
53.2% of 87 patients at 2 years,
and in 48.9% at 5 years | | | AEDs = antiepileptic drugs; LG = Lennox-Gastaut; LGS = Lennox-Gastaut syndrome; VNS = vagus nerve stimulation. Table e-2: Adverse effects in children | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |---------------------------------|--|--|--|--|---| | Alexopoulous, 2006 ³ | N=46
Ages 2–18
years;
median 12.1 | Standardized forms to document reason for treatment withdrawal | 5/4 | 56% experienced mild and transient symptoms such as hoarseness, throat pain, drooling, or cough that did not require device removal. These symptoms limited changes of the generator's stimulation settings in 3/46 patients (6.5%). | None | | Benifla, 2006 ⁴ | N=40
Ages 3–19
years; mean
age 13 | Chart review and parent report | 2/1 | 13 patients reported voice change or cough and 1 reported pain. 1 patient had sleep problems and 3 had worsening behavior. Most were managed with adjusting VNS settings. | 2 had the device
removed due to
adverse effects;
1 due to voice
change and 1
due to pain | | Hallböök, 2005 ⁵ | N=15
Ages 4–17
years, | Families
were
specifically | None | 4 with coughing and hoarseness, 1 with persistent pain in | Patient with persistent pain had VNS turned | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |------------------------------|---|--|--|--|--| | | median 11 | queried for
adverse
effects | | neck, 1 with weight loss | off after study completion | | Kang, 2006 ⁶ | N=16
Ages 2 years
5 months to
17 years, 11
months;
mean age 9
years 3
months | Not stated | 1/none | 1 with hoarseness and wound infection that required revision of the wound site, 1 with excessive salivation, 1 with dyspnea during sleep | 1 patient had
device explanted
due to generator
malfunction | | Parain, 2001 ¹⁷ | N=10
Ages 54-20;
mean age 13,
median age
15 | Not stated | None/none | Coughing occurred in unspecified number of patients; 1 patient had temporary exacerbation of psychotic behavior shortly after implantation | None | | Rossignol, 2009 ⁷ | N=28
Ages 3.5–21
years; no
mean or
median age
available | Not stated | 2/2, but VNS
was
reimplanted
within several
months | 68% (19/28) reported adverse effects, mostly throat pain, voice change, chest discomfort, local thoracic pain at site of VNS battery, dyspnea, coughing or mild dysphagia; 1 | 3; 2 for pain at site (both had VNS reimplanted within several months) and 1 patient with severe dysphagia | | Author, year | Population | Method of obtaining adverse effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |--|---|-------------------------------------|--|--|---| | | | | | severely disabled patient died from upper airway obstruction while eating unattended 2 months after VNS placement | | | Colicchio, 2010 ¹¹ | 18 children implanted at ages 0–6 years, 32 at ages 7–12 years, 31 at ages 13–18 years, and 54 adults | | None reported | None reported | None reported | | Majkowska-
Zwolińska,
2012 ¹² | 57 adolescents with epilepsy (mean age 11.4 ± 3.85 years; all were less than 18 years and 34 were less than 12 years) | | None | Adverse effects included intermittent hoarseness of voice in 14 (25.0%), persistent hoarseness in 2 (3.6%), intermittent cough in 10 (17.9%), local pain and intermittent paresthesia in 9 (16.1%), intermittent | None | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |-----------------------------|---|--|--|--|---| | | | | | dyspnea in 1 (1.8%),
aggressive behavior
in 2 (3.6%), and
vomiting and
dysphagia in 1
(1.8%) | | | Wheeler, 2011 ¹³ | 189 patients with mainly partial epilepsies (of which 45 were ≤ 20 years old) | | Not reported | Not reported | Not reported | | Shahwan, 2009 ⁸ | N=26 Age range 5– 16 years, median age 11.8 | Data
collected on
a diary | None/none | Throat discomfort in 3 patients, weight loss in 3 patients, and dyspnea in 1 patient. Transient left vocal cord paresis also occurred; however, the number of patients who experienced this was not reported. Behavioral problems occurred in 6 patients, 4 of whom became seizure free. | 2 were explanted due to lack of efficacy but 1 also had behavioral problems and the other had weight loss | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |-----------------------------|---|--|--|--|---| | Zamponi, 2011 ⁹ | N=39 Mean age 13 years, range 2–51 years; including 3 patients over 18 years: ages 20, 30 and 51 years | None stated | None/none | Mild transient "chronic side effect stimulation" occurred in an unspecified number of patients | 1 who also had lack of efficacy | | Zamponi, 2010 ¹⁶ | N=11
Age range 2–
35 years,
median age
14; 2 subjects
older than 19
years (ages
27 and 35) | | None | 1 patient had transient cough and vomiting during the first 3 months after the implant | None | | Sherman, 2008 ¹⁰ | N=34
Mean age
12.3, range
3–18 | None stated | Not reported | Not reported | Not reported | | Elliott, 2011 ¹⁴ | N=141
Mean age
11.1, age
range 1–18;
86 patients
under 12; 55 | | 4/1 | 85 patients were under age 12; 55 patients were age 12 or older. The adverse effects were presented in terms of this age | None | | Author, year | Population | Method of obtaining adverse effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |------------------------------|------------------------------------|-------------------------------------|--|---|---| | | patients 12 or older | | | cut-off. 2 patients below age 12 had neurologic complications (hoarseness and cough in 1 each); hoarseness was present in 1 child older than 12. No child under 12 had neck pain, but 1 child older than 12 had neck pain. 1 superficial infection treated with antibiotics occurred in both age groups, and 1 deep infection requiring removal occurred in the under 12 group. 1 seroma/hematoma and 1 pneumothorax occurred in the older than 12 group. | | | Pastrana, 2011 ¹⁵ | N=13
Mean age 12,
range 6–18 | | 1 surgical
complication (a
partial wound | None reported | None | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |----------------------------------|---|--|--|---|--| | | years | | dehiscence
treated with IV
antibiotics and
debridement) | | | | Majoie, 2005 ¹⁹ | N=19
Mean age
10.8 years,
range 5.9–
18.8 | | None/none | Coughing in 4, tingling sensation in 2 | None | | Kostov, 2009 ²⁰ | N=30
Mean age 13
years, range
4–52; 18
were under
18 years | | 1/1 | Drooling and voice alteration were the most frequent adverse effects (6/30); a single patient reported enuresis, light sensitivity, and fever | 1 case of vocal cord paralysis occurred, with recovery after VNS was turned off, but eventually was explanted due to this effect | | You, 2008 ²¹ | N=10
Ages not
provided | | None/none | 1 patient with
dyspnea while
sleeping and 1 with
drooling | None | | Cersósimo,
2011 ²² | N=20
Mean age
12.5, range
5–19 years | | 2/1 | Transient hoarseness in the majority | None | | Smyth, 2003 ^{e13} | N=74
Mean age 8.8 | | 6/3
Infectious | 2 with electrode fracture, 1 with | 4 (5.4%) were removed for | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |----------------------------|--|--|--|---|--| | | years, range 11 months— 18 years with a minimum follow-up of 1 year and a mean follow- up of 2.2 years | | surgical complications occurred in 6/74 or 7.1% overall, including deep infection in 3 (3.6%) which required explantation. 2 with superficial infection were treated with oral antibiotics and 1 was treated with IV antibiotics and surgical debridement. | ipsilateral vocal cord paralysis. 1 patient each reported hoarseness, cough, involuntary arm movement, inappropriate laughter, drooling, torticollis, and urinary retention. 1 of the 2 electrode fractures was thought to result from the child pulling at the surgical sites. | lack of efficacy and device intolerance, including symptomatic tachycardia, fever of unknown origin (1 each) and 2 with discomfort at the site | | Kirse, 2002 ^{e14} | 102 patients (mean age 12 years 3 months, range 21 months-40 years with only 12 patients over age 18) | | 4/3 4 patients (4%) had wound infections (1 treated with IV antibiotics (no explantation); 1 treated with IV antibiotics eventually | 1 patient had wound dehiscence from wrestling 9 days after implantation and was treated with IV then oral antibiotics. 5 patients (5%) had lead fracture. 4 of 46 patients who responded to a | None | | Author, year | Population | Method of obtaining adverse effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |--------------|------------|-------------------------------------|---|--|---| | | | | requiring explantation even after changing generator, 6 weeks later VNS was reimplanted successfully; 1 patient treated with antibiotics but eventually needed explantation and was reimplanted 2 months later; 1 patient treated with IV antibiotics, abscess eventually found thought to be due to patient scratching wound, device explanted and | follow-up questionnaire reported difficulty swallowing while the device was stimulating. | | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections reimplanted 6 | Other adverse effects | Explanted or
turned off due
to adverse
effects | |-----------------------------------|--|--|--|--|--| | | | | weeks later | | | | Kabir, 2009 ^{e15} | N=69
Mean age
10.7 years,
range 3–16
years | | 3/3 2 were implanted again later. 2 had fluid collections around the VNS treated with aspiration and antibiotics although the aspirates did not grow organisms. 1 of these required lead revision. | 2 other cases had lead fracture. 1 patient died due to unrelated causes. | 1 patient had difficulty swallowing and 1 had the VNS turned off due to persistent neck pain | | Handforth,
1998 ^{e16} | N=254 adult patients with refractory partial epilepsy (mean age 32, range 13–60 years) | | 3/3 (1.2%) 1 was reimplanted later in the study (time frame not specified) | The frequency of other adverse events was "dose" related, greater at the highest-tolerated stimulation intensity vs the lowest-perceptible stimulation intensity: voice alteration 47.4% vs. 9.7%, dyspnea 11.6% vs. | 2 | | Author, year | Population | Method of
obtaining
adverse
effects | No. wound infections/no. explanted due to wound infections | Other adverse effects | Explanted or
turned off due
to adverse
effects | |--------------|------------|--|--|-------------------------------------|---| | | | | | 1.0%, pharyngitis
15.8% vs. 3.9% | | VNS = vagus nerve stimulation. Table e-3: Findings of case reports of complications from VNS use | Author, year | Complication | Description | |---|--|--| | Amark, 2007 ³²
Iriarte, 2009 ³³
Borusiak, 2009 ³⁴ | Late-onset bradycardia | 2.4, 6, and 9 years post-implant, resolved with VNS discontinuation | | Ali, 2004 ³⁵
Asconape, 1999 ³⁶
Schuurman,
2009 ³⁷
Tatum, 1999 ³⁸
Ardesch, 2007 ³⁹ | Intraoperative bradycardia and asystole during implantation and initiation | Patients with intraoperative asystole. only 1 continued VNS therapy; VNS later activated in both of the patients with intraoperative bradycardia | | Sheck, 2011 ⁴⁰ | Episodic monocular blindness | Theorized as vasospasm of left common carotid artery; treated successfully by decreasing the VNS stimulus intensity | | Cukiert, 2009 ^{e1} | Extrapyramidal signs | Child with "double-cortex syndrome" treated for epilepsy. Reversed with VNS turned off and resumed when it was turned on; VNS effect on the basal ganglia theorized | | St Louis, 2010 ^{e2} | Sleep-related stridor | Young woman with epilepsy. Resolved with reduction of current intensity | | Hajnšek, 2010 ^{e3} | VNS-induced bronchospasm | , and the second | | El Tahry, 2010 ^{e4} | SUDEP | 62-year-old woman 6 months post–VNS implant | | Gerson, 2011 ^{e5} | Mania | 19-year-old woman with JME and a history of unipolar depression. Resolved with temporary VNS discontinuation; VNS resumed without mania exacerbation | | Murr, 2011 ^{e6} | New, disabling seizure type | 51-year-old man with refractory partial epilepsy. After VNS discontinuation and medication changes, the new, recurrent seizures stopped | | Spitz, 2010 ^{e7} | Discontinuity in the silicone insulation over a VNS electrode | Current leak to the phrenic nerve caused diaphragmatic dysfunction, inability to vocalize, and severe radiating pain into the jaw and upper | | Author, year | Complication | Description | |---|-----------------|---| | | | incisor for the duration of each stimulation. | | | | Device explanted; symptomatic relief; new device implanted | | Marzec, 2003 ^{e8}
Ebben, 2008 ^{e9} | Increase in AHI | 16 patients, the average baseline AHI was 1.9, which increased to 4.2 after VNS activation ^{e8} ; CPAP titration in a patient with obstructive sleep apnea could not be achieved in the presence of the patient's standard VNS on/off cycling mode ^{e9} | | Chayasirisobhon,
2003 ³⁰
Amar, 1999 ^{e10}
Kawai, 2002 ^{e11} | Other AEs | 164 adult patients with partial epilepsy. At 21 months: Lead fracture (1.8%), transient voice alterations during stimulation (56%), unspecified pain (20%), headache (16%) (headache having not been reported previously at this rate ³⁰); headache rate of 4.5% found in a 3-year follow-up study ^{e10} 13 adults with partial epilepsy receiving long-term therapy. One patient found dead in the early morning of day 6 of therapy with no sign of seizure ^{e11} | AE = adverse effect; AHI = apnea-hypopnea index; CPAP = continuous positive airway pressure; JME = juvenile myoclonic epilepsy; SUDEP = sudden unexpected death in epilepsy; VNS = vagus nerve stimulation.