Supplementary Information

VO₂ thermochromic smart window for energy savings and generation

Jiadong Zhou^{1,2}, Yanfeng Gao^{1,2*}, Zongtao Zhang³, Hongjie Luo^{1,2}, Chuanxiang Cao², Zhang Chen², Lei Dai², Xinling Liu²

¹ School of Materials Science and Engineering, Shanghai University, Shangda Rd. 99, Baoshan, Shanghai 200444, China.

² Shanghai Institute of Ceramics (SIC), Chinese Academy of Sciences (CAS), Dingxi 1295, Changning, Shanghai, 200050, China.

³ School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Calculations

The total internal reflection occurs when the light propagation into an optically thinner medium from an optically dense medium at the angle of incidence bigger than the total internal reflection angle. The corresponding formula is as follow:

$$\sin c = 1/n$$

in which n represents the refractive index of the optically dense medium and c represents the internal reflection angle. In our devices, n is 1.59, and c can be calculated to be 38.9° .

To investigate the optical properties of the devices, the transmittances spectra (visible and solar) and the IR modulation abilities of three devices were characterised and further calculated according to the equation

$$T_i = \int \varphi_i T(\lambda) d\lambda / \int \varphi_i(\lambda) d\lambda$$

where T_{λ} denotes the transmittance at wavelength (λ), i denotes vis or sol for the calculations, is the standard luminous efficiency function for the photonic vision and is the solar irradiance spectrum for an air mass 1.5 corresponding to 37 °C above the horizon¹.

To investigate the properties of the devices, we characterised the solar cell by

measuring the efficiency, open-circuit voltage (V_{oc}), fill factor (*FF*) and short-circuit current density (J_{sc}) under AM 1.5 illumination.

Discussion

Figures S1-a and S1-b show the XRD patterns of the VO_2 film and VO_2 nanoparticles, respectively. All of the peaks from Figures S1-a and S1-b can be indexed to VO_2 (M).

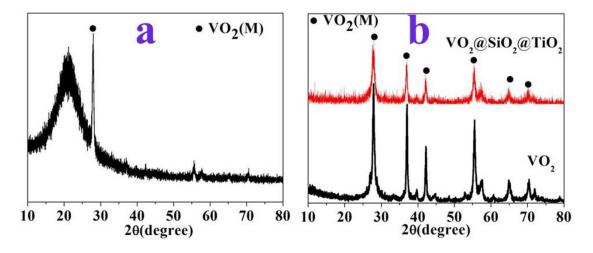


Figure S1|XRD result of VO₂ film and VO₂ nanoparticles. a, XRD pattern of the VO₂ film prepared by the solution method. b, XRD patterns of the VO₂ and $VO_2@SiO_2@TiO_2$ nanoparticles.

Figure S2 shows the SEM and TEM images of the VO₂ film and the VO₂, VO₂@SiO₂ and VO₂@SiO₂@TiO₂ nanoparticles. The VO₂ film is particulate with spherical VO₂ particles approximately 10 - 200 nm in diameter (Figures 2a, 2b). The SAED pattern in Figure S2c suggests that the film is highly crystalline. Figure S2d shows the morphology of the VO₂ nanoparticles, which are VO₂ (M) in crystalline phase and were prepared using the hydrothermal method. Figures S2e and S2f show the morphology of the VO₂@SiO₂ core-shell structure, and Figure S2i provides the EDS of the selected area of the red circle. The TEM image for the VO₂@SiO₂@TiO₂ nanoparticles is shown in Figure S2g. The corresponding EDS patterns of the k, j, and m points indicated in Figure S2g show three layers of the particle. The corresponding STEM of the green line in Figure S2g is shown in Figure S2h. From the EDS and the STEM, we can conclude that the three-layered structure of the VO₂@SiO₂@TiO₂

nanoparticles was successfully synthesised.

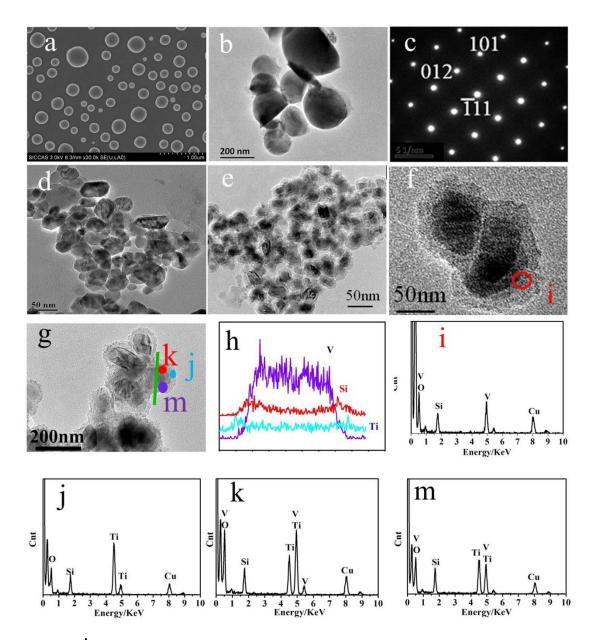


Figure S2|SEM and TEM characterisation of the VO₂ film and the particles. The SEM image of the VO₂ film is shown in a); the TEM image of the VO₂ film is shown in b); the SAED pattern of the film is shown in c); the TEM image of VO₂ particles is shown in d); the TEM image of VO₂@SiO₂ is shown in e); the magnification of e) is shown in f); the corresponding EDS is shown in i); the TEM image of VO₂@SiO₂@TiO₂ is shown in j); the corresponding EDS of the points j), k) and m) are shown in g), k) and m), respectively; the result of the STEM of the green line in g) is shown in h).